Computer Vision

1. Projective Geometry in 2D

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science
University of Hildesheim, Germany
Outline

1. Very Brief Introduction

2. The Projective Plane

3. Projective Transformations

4. Recovery of Affine Properties from Images

5. Angles in the Projective Plane

6. Recovery of Metric Properties from Images

7. Organizational Stuff
Outline

1. Very Brief Introduction

2. The Projective Plane

3. Projective Transformations

4. Recovery of Affine Properties from Images

5. Angles in the Projective Plane

6. Recovery of Metric Properties from Images

7. Organizational Stuff
Topics of the Lecture

1. Simultaneous Localization and Mapping from Video (Visual SLAM)

2. Image Classification and Description
Simultaneous Localization and Mapping

[source https://www.youtube.com/watch?v=bD0nn0-4Nq8]
Simultaneous Localization and Mapping from Video

- SLAM usually employs laser range scanners (lidars).

- **Visual SLAM**: use video sensors (cameras).

- main parts required:
 1. Projective Geometry
 2. Point Correspondences
 3. Estimating Camera Positions (Localization)
 4. Triangulation (Mapping)
Image Classification and Description

A person riding a motorcycle on a dirt road.

Two dogs play in the grass.

A skateboarder does a trick on a ramp.

A dog is jumping to catch a frisbee.

A group of young people playing a game of frisbee.

Two hockey players are fighting over the puck.

A little girl in a pink hat is blowing bubbles.

A refrigerator filled with lots of food and drinks.

A herd of elephants walking across a dry grass field.

A close up of a cat laying on a couch.

A red motorcycle parked on the side of the road.

A yellow school bus parked in a parking lot.

[source: http://googleresearch.blogspot.de/2014/11/a-picture-is-worth-thousand-coherent.html]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
Outline

1. Very Brief Introduction

2. The Projective Plane

3. Projective Transformations

4. Recovery of Affine Properties from Images

5. Angles in the Projective Plane

6. Recovery of Metric Properties from Images

7. Organizational Stuff
Motivation

In Euclidean (planar) geometry, there are many exceptions, e.g.,

- most two lines intersect in exactly one point.
- but some two lines do not intersect.
 - parallel lines
Motivation

In Euclidean (planar) geometry, there are many exceptions, e.g.,

- most two lines intersect in exactly one point.
- but some two lines do not intersect.
 - parallel lines

Idea:

- add ideal points, one for each set of parallel lines / direction
- define these points as intersection of any two parallel lines
- now any two lines intersect in exactly one point
 - either in a finite or in an ideal point
Homogeneous Coordinates: Points

Inhomogeneous coordinates:

\[x \in \mathbb{R}^2 \]

Homogeneous coordinates:

\[x \in \mathbb{P}^2 := \mathbb{R}^3 / \equiv \]

\[x \equiv y \iff \exists s \in \mathbb{R} \setminus \{0\} : sx = y, \quad x, y \in \mathbb{R}^3 \]
Homogeneous Coordinates: Points

Inhomogeneous coordinates:

\[x \in \mathbb{R}^2 \]

Homogeneous coordinates:

\[x \in \mathbb{P}^2 := \mathbb{R}^3 / \equiv \]

\[x \equiv y :\iff \exists s \in \mathbb{R} \setminus \{0\} : sx = y, \quad x, y \in \mathbb{R}^3 \]

Example:

\[
\begin{pmatrix}
1 \\
2 \\
3
\end{pmatrix}
\equiv
\begin{pmatrix}
4 \\
8 \\
12
\end{pmatrix}
\]

represent the same point in \(\mathbb{P}^2 \)

\[
\begin{pmatrix}
1 \\
2 \\
4
\end{pmatrix}
\]

represent a different point in \(\mathbb{P}^2 \)
Homogeneous Coordinates: Points

Inhomogeneous coordinates:

\[x \in \mathbb{R}^2 \]

Homogeneous coordinates:

\[x \in \mathbb{P}^2 := \mathbb{R}^3 / \equiv \]

\[x \equiv y :\iff \exists s \in \mathbb{R} \setminus \{0\} : sx = y, \quad x, y \in \mathbb{R}^3 \]

finite points:

\[
\begin{pmatrix}
x_1 \\
x_2 \\
1
\end{pmatrix}
= : \iota\left(\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}\right)
\]

ideal points:

\[
\begin{pmatrix}
x_1 \\
x_2 \\
0
\end{pmatrix}
\]
Homogeneous Coordinates: Lines

Inhomogeneous coordinates:

\[a \in \mathbb{R}^3 : \ell_a := \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mid a_1 x_1 + a_2 x_2 + a_3 = 0 \right\} \]

- \(a_1 \neq 0 \) or \(a_2 \neq 0 \) (or both \(a_1, a_2 \neq 0 \)).
- \(sa = (sa_1, sa_2, sa_3)^T \) encodes the same line as \(a \) (any \(s \in \mathbb{R}, s \neq 0 \)).

Note: \(\kappa : \mathbb{R}^3 \to \mathbb{P}^2, a \mapsto [a] := \{ a' \in \mathbb{R}^3 \mid a' \equiv a \} \).
Homogeneous Coordinates: Lines

Inhomogeneous coordinates:

\[a \in \mathbb{R}^3 : \ell_a := \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \mid a_1 x_1 + a_2 x_2 + a_3 = 0 \right\} \]

- \(a_1 \neq 0 \) or \(a_2 \neq 0 \) (or both \(a_1, a_2 \neq 0 \)).
- \(sa = (sa_1, sa_2, sa_3)^T \) encodes the same line as \(a \) (any \(s \in \mathbb{R}, s \neq 0 \)).

Homogeneous coordinates:

\[a \in \mathbb{P}^2 : \ell_a := \{ x \in \mathbb{P}^2 \mid a^T x = a_1 x_1 + a_2 x_2 + a_3 x_3 = 0 \} \]

- contains all finite points of \(a' \in \kappa^{-1}(a) : \ell_{\kappa(a')} \supseteq \ell(\ell a') \)
- and the ideal point \((a_2, -a_1, 0)^T \).
 - intersection of parallel lines (same \(a_1, a_2 \), different \(a_3 \))

Note: \(\kappa : \mathbb{R}^3 \rightarrow \mathbb{P}^2, a \mapsto [a] := \{ a' \in \mathbb{R}^3 \mid a' \equiv a \} \).
A point on a line

A point x lies on line a iff $x^T a = 0$.
Intersection of two lines

Lines a and b intersect in $a \times b := \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ -a_1 b_3 + a_3 b_1 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$

Proof:

$$a^T (a \times b) = a_1 a_2 b_3 - a_1 a_3 b_2 - a_2 a_1 b_3 + a_2 a_3 b_1 + a_3 a_1 b_2 - a_3 a_2 b_1 = 0$$

$$b^T (a \times b) = \ldots = 0$$
Intersection of two lines

Lines a and b intersect in $a \times b := \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ -a_1 b_3 + a_3 b_1 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$

Proof:

\[a^T (a \times b) = a_1 a_2 b_3 - a_1 a_3 b_2 - a_2 a_1 b_3 + a_2 a_3 b_1 + a_3 a_1 b_2 - a_3 a_2 b_1 = 0 \]

\[b^T (a \times b) = \ldots = 0 \]

Example:

\[x = 1 : a = (-1, 0, 1)^T \]
\[y = 1 : b = (0, -1, 1)^T \]
\[a \times b = (1, 1, 1)^T \]
Intersection of two lines

Lines a and b intersect in $a \times b := \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ -a_1 b_3 + a_3 b_1 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$

Proof:

$$a^T (a \times b) = a_1 a_2 b_3 - a_1 a_3 b_2 - a_2 a_1 b_3 + a_2 a_3 b_1 + a_3 a_1 b_2 - a_3 a_2 b_1 = 0$$

$$b^T (a \times b) = \ldots = 0$$

Esp. for parallel lines: $b_1 = a_1$, $b_2 = a_2$, $b_3 \neq a_3$:

$$a \times b \equiv \begin{pmatrix} a_2 \\ -a_1 \\ 0 \end{pmatrix}$$
Line joining points

The line through x and y is $x \times y$.

Proof: exactly the same as previous slide.
Line joining points

The line through x and y is $x \times y$.

Proof: exactly the same as previous slide.

Example:

\[
x = (-1, 0, 1)^T
\]
\[
y = (0, -1, 1)^T
\]
\[
x \times y = (1, 1, 1)^T
\]
Line at infinity

All ideal points form a line:

\[l_\infty := (0, 0, 1)^T \] \hspace{1cm} \text{line at infinity}

Proof:
for any ideal point \(x = (x_1, x_2, 0)^T \): \(x^T l_\infty = 0 \).
for any finite (real-valued) point \(x = (x_1, x_2, 1) \): \(x^T l_\infty = 1 \neq 0 \).
Line at infinity

All ideal points form a line:

\[l_\infty := (0, 0, 1)^T \quad \text{line at infinity} \]

Proof:
for any ideal point \(x = (x_1, x_2, 0)^T \): \(x^T l_\infty = 0 \).
for any finite (real-valued) point \(x = (x_1, x_2, 1) \): \(x^T l_\infty = 1 \neq 0 \).

Furthermore:
- This is the only line in \(\mathbb{P}^2 \) not corresponding to an Euclidean line.
- Two parallel lines meet at the line at infinity.
A model for the projective plane

- points correspond to rays (lines through the origin)
- lines correspond to planes through the origin.

[HZ04, p. 29]
Conics

- A **conic section** (or just **conic**) is a curve one gets as intersection of a cone and a plane
 - ellipse, parabola, hyperbola
- Corresponds to a curve of degree 2:
 Heterogeneous coordinates:
 \[a \in \mathbb{R}^6 : C_a := \{ x \in \mathbb{R}^2 \mid a_1 x_1^2 + a_2 x_1 x_2 + a_3 x_2^2 + a_4 x_1 + a_5 x_2 + a_6 = 0 \} \]
Conics

- A conic section (or just conic) is a curve one gets as intersection of a cone and a plane
 - ellipsis, parabola, hyperbola
- Corresponds to a curve of degree 2:

 Heterogeneous coordinates:

 \[a \in \mathbb{R}^6 : C_a := \{ x \in \mathbb{R}^2 \mid a_1 x_1^2 + a_2 x_1 x_2 + a_3 x_2^2 + a_4 x_1 + a_5 x_2 + a_6 = 0 \} \]

 Homogeneous coordinates:

 \[a \in \mathbb{P}^5 : C_a := \{ x \in \mathbb{P}^2 \mid a_1 x_1^2 + a_2 x_1 x_2 + a_3 x_2^2 \]

 \[+ a_4 x_1 x_3 + a_5 x_2 x_3 + a_6 x_3^2 = 0 \} \]
Conics

- A **conic section** (or just **conic**) is a curve one gets as intersection of a cone and a plane
 - ellipsis, parabola, hyperbola
- Corresponds to a curve of degree 2:
 Heterogeneous coordinates:

 \[a \in \mathbb{R}^6 : C_a := \{ x \in \mathbb{R}^2 \mid a_1 x_1^2 + a_2 x_1 x_2 + a_3 x_2^2 + a_4 x_1 + a_5 x_2 + a_6 = 0 \} \]

 Homogeneous coordinates:

 \[a \in \mathbb{P}^5 : C_a := \{ x \in \mathbb{P}^2 \mid a_1 x_1^2 + a_2 x_1 x_2 + a_3 x_2^2 + a_4 x_1 x_3 + a_5 x_2 x_3 + a_6 x_3^2 = 0 \} \]

 \[= \{ x \in \mathbb{P}^2 \mid x^T C x = 0 \}, \quad C := \begin{pmatrix} a_1 & a_2/2 & a_4/2 \\ a_2/2 & a_3 & a_5/2 \\ a_4/2 & a_5/2 & a_6 \end{pmatrix} \]
Conics

- A **conic section** (or just **conic**) is a curve one gets as intersection of a cone and a plane
 - ellipsis, parabola, hyperbola
- Corresponds to a curve of degree 2:
 - Heterogeneous coordinates:
 \[a \in \mathbb{R}^6 : C_a := \{ x \in \mathbb{R}^2 | a_1 x_1^2 + a_2 x_1 x_2 + a_3 x_2^2 + a_4 x_1 + a_5 x_2 + a_6 = 0 \} \]
 - Homogeneous coordinates:
 \[C \in \text{Sym}(\mathbb{P}^3 \times \mathbb{P}^3) : C_C := \{ x \in \mathbb{P}^2 | x^T C x = 0 \} \]
A conic joining 5 points

- Let $x^1, \ldots, x^5 \in \mathbb{P}^2$ be 5 points
 - in general position (i.e., never more than 2 on the same line)
- Conic parameters a have to fulfil the following system of linear equations:

\[
\begin{pmatrix}
 x_1^1 x_1^1 & x_1^1 x_2^1 & x_1^1 x_3^1 & x_2^1 x_1^1 & x_2^1 x_3^1 \\
 x_1^2 x_1^2 & x_1^2 x_2^2 & x_1^2 x_3^2 & x_2^2 x_1^2 & x_2^2 x_3^2 \\
 x_1^3 x_1^3 & x_1^3 x_2^3 & x_1^3 x_3^3 & x_2^3 x_1^3 & x_2^3 x_3^3 \\
 x_1^4 x_1^4 & x_1^4 x_2^4 & x_1^4 x_3^4 & x_2^4 x_1^4 & x_2^4 x_3^4 \\
 x_1^5 x_1^5 & x_1^5 x_2^5 & x_1^5 x_3^5 & x_2^5 x_1^5 & x_2^5 x_3^5 \\
\end{pmatrix}
\begin{pmatrix}
a_1 \\
a_2 \\
a_3 \\
a_4 \\
a_5 \\
\end{pmatrix} = 0
Degenerate Conics

Conic C **degenerate**: C does not have full rank.

Example: two lines $C := ab^T + ba^T$ (rank 2).

- contains lines a and b.

 proof: for points x on line a: $x^T a = 0$.

 \Rightarrow x also on C: $x^T C x = x^T ab^T x + x^T ba^T x = 0$.
Conic tangent lines

The tangent line to a conic C at a point x is Cx.

Proof:
- x lies on Cx: $x^T Cx = 0$.
- If there is another common point y: $y^T Cy = 0$ and $y^T Cx = 0$.
- $x + \alpha y$ is common for all α, i.e., the whole line.
- C is degenerate (or there is no such y).
Outline

1. Very Brief Introduction
2. The Projective Plane
3. Projective Transformations
4. Recovery of Affine Properties from Images
5. Angles in the Projective Plane
6. Recovery of Metric Properties from Images
7. Organizational Stuff
Projectivity

A map $h : \mathbb{P}^2 \to \mathbb{P}^2$ is called **projectivity**, if

1. it is invertible and
2. it preserves lines,
 i.e., whenever x, y, z are on a line, so are $h(x), h(y), h(z)$.

Equivalently, $h(x) := Hx$ for a non-singular $H \in \mathbb{P}^{3 \times 3}$.

Note: $H^{-T} := (H^{-1})^T$.
Projectivity

A map $h : \mathbb{P}^2 \rightarrow \mathbb{P}^2$ is called **projectivity**, if

1. it is invertible and
2. it preserves lines,
 i.e., whenever x, y, z are on a line, so are $h(x), h(y), h(z)$.

Equivalently, $h(x) := Hx$ for a non-singular $H \in \mathbb{P}^{3 \times 3}$.

Proof:
Any map $h(x) := Hx$ is a projectivity:

Let x be a point on line a: $a^T x = 0$.
Then point Hx is on line $H^{-T} a$: $(H^{-1} a)^T Hx = a^T H^{-1} Hx = a^T x = 0$.

Any projectivity h is of type $h(x) = Hx$: more difficult to show.

Note: $H^{-T} : = (H^{-1})^T$.
Transformation of Lines and Conics

The image of a line a under projectivity H is the line $H^{-T}a$:

$$H(l_a) = l_{H^{-T}a}$$

Proof:

Let x be a point on line a: $a^T x = 0$.

Then point Hx is on line $H^{-1}a$: $(H^{-T}a)^T Hx = a^T H^{-1} Hx = a^T x = 0$.
Transformation of Lines and Conics

The image of a line a under projectivity H is the line $H^{-T}a$:

$$H(l_a) = l_{H^{-T}a}$$

Proof:
Let x be a point on line a: $a^T x = 0$.
Then point Hx is on line $H^{-1}a$: $(H^{-T}a)^T Hx = a^T H^{-1} Hx = a^T x = 0$.

The image of a conic C under projectivity H is the conic $H^{-T}CH^{-1}$:

$$H(C_C) = C_{H^{-T}CH^{-1}}$$

Proof:
Let x be a point on conic C: $x^T C x = 0$.
Then point Hx is on conic $H^{-T}CH^{-1}$: $x^T H^T H^{-T} CH^{-1} H^{-1} x = 0$.
A Hierarchy of Transformations

- The projective transformations form a group (projective linear group):
 \[\text{PL}_n := \text{GL}_n/ \equiv \{ H \in \mathbb{P}^{3 \times 3} \mid H \text{ invertible} \} \]
A Hierarchy of Transformations

- The projective transformations form a group (projective linear group):
 \[\text{PL}_n := \text{GL}_n / \equiv = \{ H \in \mathbb{P}^{3\times3} \mid H \text{ invertible} \} \]

- There are several subgroups:
 - **affine group**: last row is \((0, 0, 1)\)
 - **Euclidean group**: additionally \(H_{1:2,1:2}\) orthogonal
 - **oriented Euclidean group**: additionally \(\det H = 1\)
A Hierarchy of Transformations

- The projective transformations form a group (projective linear group):
 \[\text{PL}_n := \text{GL}_n/ \equiv \{ H \in \mathbb{P}^{3\times3} \mid H \text{ invertible} \} \]

- There are several subgroups:
 - affine group: last row is \((0, 0, 1)\)
 - Euclidean group: additionally \(H_{1:2,1:2}\) orthogonal
 - oriented Euclidean group: additionally \(\det H = 1\)

- These subgroups can be described two ways:
 - structurally (as above)
 - by invariants: objects or sets of objects mapped to themselves
Isometries

\[
\begin{pmatrix}
 x'_1 \\
 x'_2 \\
 1
\end{pmatrix}
= \begin{pmatrix}
 \epsilon \cos \theta & -\sin \theta & t_1 \\
 \epsilon \sin \theta & \cos \theta & t_2 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 1
\end{pmatrix}
= \begin{pmatrix}
 R & t \\
 0^T & 1
\end{pmatrix} x
\]

- **rotation matrix** R: $R^T R = R R^T = I$
- **translation vector** t.
- **orientation preserving** if $\epsilon = +1$ (equivalent to $\det R = +1$)
 ($\epsilon \in \{+1, -1\}$)
Isometries

\[
\begin{pmatrix}
 x'_1 \\
 x'_2 \\
 1
\end{pmatrix}
= \begin{pmatrix}
 \epsilon \cos \theta & -\sin \theta & t_1 \\
 \epsilon \sin \theta & \cos \theta & t_2 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 1
\end{pmatrix}
= \begin{pmatrix}
 R & t \\
 0^T & 1
\end{pmatrix} x
\]

- **rotation matrix** \(R \): \(R^T R = RR^T = I \)
- **translation vector** \(t \).
- **orientation preserving** if \(\epsilon = +1 \) (equivalent to \(\det R = +1 \))
\((\epsilon \in \{+1, -1\})\)

Invariants:
- length, angle, area
- line at infinity \(l_\infty \)
Similarity Transformations

\[
\begin{pmatrix}
 x'_1 \\
 x'_2 \\
 1
\end{pmatrix} = \begin{pmatrix}
 s \cos \theta & -s \sin \theta & t_1 \\
 s \sin \theta & s \cos \theta & t_2 \\
 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
 x_1 \\
 x_2 \\
 1
\end{pmatrix} = \begin{pmatrix}
 sR & t \\
 0 & 1
\end{pmatrix} x
\]

- isotropic scaling \(s \).
Similarity Transformations

\[
\begin{pmatrix}
 x'_1 \\
 x'_2 \\
 1
\end{pmatrix}
=
\begin{pmatrix}
 s \cos \theta & -s \sin \theta & t_1 \\
 s \sin \theta & s \cos \theta & t_2 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 1
\end{pmatrix}
=
\begin{pmatrix}
 sR \\
 0^T \\
 1
\end{pmatrix}
\times
\]

- isotropic scaling \(s \).

Invariants:
- angle
- ratio of lengths, ratio of areas
- line at infinity \(l_\infty \)
Affine Transformations

\[
\begin{pmatrix}
 x'_1 \\
 x'_2 \\
 1
\end{pmatrix}
= \begin{pmatrix}
 a_{1,1} & a_{1,2} & t_1 \\
 a_{2,1} & a_{2,2} & t_2 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 1
\end{pmatrix}
= \begin{pmatrix}
 A & t \\
 0^T & 1
\end{pmatrix} \times \text{x}
\]

- A non-singular
Affine Transformations

\[
\begin{pmatrix}
 x'_1 \\
 x'_2 \\
 1
\end{pmatrix} =
\begin{pmatrix}
 a_{1,1} & a_{1,2} & t_1 \\
 a_{2,1} & a_{2,2} & t_2 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 1
\end{pmatrix} =
\begin{pmatrix}
 A & t \\
 0^T & 1
\end{pmatrix} \times
\]

- A non-singular, decompose via SVD:

\[
A = R(\theta)R(-\phi) \begin{pmatrix}
 \lambda_1 & 0 \\
 0 & \lambda_2
\end{pmatrix} R(\phi)
\]

- non-isotropic scaling with axis ϕ

![Figure 2.7. Distortions arising from a planar affine transformation. (a) Rotation by $R(\theta)$. (b) A deformation $R(-\phi)DR(\phi)$. Note, the scaling directions in the deformation are orthogonal.](HZ04, p. 40)
Affine Transformations

\[
\begin{pmatrix}
 x'_1 \\
 x'_2 \\
 1
\end{pmatrix} = \begin{pmatrix}
 a_{1,1} & a_{1,2} & t_1 \\
 a_{2,1} & a_{2,2} & t_2 \\
 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
 x_1 \\
 x_2 \\
 1
\end{pmatrix} = \begin{pmatrix}
 A & t \\
 0^T & 1
\end{pmatrix} x
\]

- A non-singular, decompose via SVD:
 \[
 A = R(\theta)R(-\phi) \begin{pmatrix}
 \lambda_1 & 0 \\
 0 & \lambda_2
 \end{pmatrix} R(\phi)
 \]

- non-isotropic scaling with axis \(\phi\)

Invariants:
- parallel lines
- ratio of lengths of parallel line segments
- ratio of areas
- line at infinity \(l_\infty\)
Projective Transformations

\[
\begin{pmatrix}
 x_1' \\
 x_2' \\
 x_3'
\end{pmatrix} = \begin{pmatrix}
 a_{1,1} & a_{1,2} & t_1 \\
 a_{2,1} & a_{2,2} & t_2 \\
 v_1 & v_2 & v_3
\end{pmatrix} \begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix} = \begin{pmatrix} A & t \end{pmatrix} \begin{pmatrix} x \end{pmatrix}
\]

▷ ν moves the line at infinity l_∞
Projective Transformations

\[
\begin{pmatrix}
 x'_1 \\
 x'_2 \\
 x'_3
\end{pmatrix} =
\begin{pmatrix}
 a_{1,1} & a_{1,2} & t_1 \\
 a_{2,1} & a_{2,2} & t_2 \\
 v_1 & v_2 & v_3
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix} =
\begin{pmatrix}
 A & t \\
 v^T & v_3
\end{pmatrix}
\]

- \(v \) moves the line at infinity \(l_\infty \)

Invariants:

- ratio of ratios of lengths of parallel line segments (cross ratio)
Similary, Affine & Projective Transformations / Example

Fig. 2.6. Distortions arising under central projection. Images of a tiled floor.

(a) Similarity: the circular pattern is imaged as a circle. A square tile is imaged as a square. Lines which are parallel or perpendicular have the same relative orientation in the image.

(b) Affine: The circle is imaged as an ellipse. Orthogonal world lines are not imaged as orthogonal lines. However, the sides of the square tiles, which are parallel in the world, are parallel in the image.

(c) Projective: Parallel world lines are imaged as converging lines. Tiles closer to the camera have a larger image than those further away.

Result 2.13. Under a point transformation $x' = Hx$, a conic C transforms to $C' = H^{-T}CH^{-1}$. This gives the transformation rule for a conic:

Result 2.14. Under a point transformation $x' = Hx$, a dual conic C^* transforms to $C'^* = HC^*H^T$.

2.4 A hierarchy of transformations

In this section we describe the important specializations of a projective transformation and their geometric properties. It was shown in section 2.3 that projective transformations form a group. This group is called the projective linear group, and it will be seen that these specializations are subgroups of this group.

The group of invertible $n \times n$ matrices with real elements is the (real) general linear group on n dimensions, or $GL(n)$. To obtain the projective linear group the matrices related by a scalar multiplier are identified, giving $PL(n)$ (this is a quotient group of $GL(n)$). In the case of projective transformations of the plane $n = 3$.

The important subgroups of $PL(3)$ include the affine group, which is the subgroup of $PL(3)$ consisting of matrices for which the last row is $(0, 0, 1)$, and the Euclidean group, which is a subgroup of the affine group for which in addition the upper left hand 2×2 matrix is orthogonal. One may also identify the oriented Euclidean group in which the upper left hand 2×2 matrix has determinant 1.

We will introduce these transformations starting from the most specialized, the isometries, and progressively generalizing until projective transformations are reached.
Similary, Affine & Projective Transformations / Example

Fig. 2.6. Distortions arising under central projection. Images of a tiled floor. (a) Similarity: the circular pattern is imaged as a circle. A square tile is imaged as a square. Lines which are parallel or perpendicular have the same relative orientation in the image. (b) Affine: The circle is imaged as an ellipse. Orthogonal world lines are not imaged as orthogonal lines. However, the sides of the square tiles, which are parallel in the world are parallel in the image. (c) Projective: Parallel world lines are imaged as converging lines. Tiles closer to the camera have a larger image than those further away.

which is a quadratic form $x^T C x$ with $C' = H - TCH - 1$. This gives the transformation rule for a conic:

Result 2.13. Under a point transformation $x' = Hx$, a conic C transforms to $C' = H - TCH - 1$.

The presence of H^{-1} in this equation may be expressed by saying that a conic transforms covariantly. The transformation rule for a dual conic is derived in a similar manner.

This gives:

Result 2.14. Under a point transformation $x' = Hx$, a dual conic C^* transforms to $C'^* = HC^*H^T$.

2.4 A hierarchy of transformations

In this section we describe the important specializations of a projective transformation and their geometric properties. It was shown in section 2.3 that projective transformations form a group. This group is called the projective linear group, and it will be seen that these specializations are subgroups of this group.

The group of invertible $n \times n$ matrices with real elements is the (real) general linear group on n dimensions, or $GL(n)$. To obtain the projective linear group the matrices related by a scalar multiplier are identified, giving $PL(n)$ (this is a quotient group of $GL(n)$). In the case of projective transformations of the plane $n = 3$.

The important subgroups of $PL(3)$ include the affine group, which is the subgroup of $PL(3)$ consisting of matrices for which the last row is $(0, 0, 1)$, and the Euclidean group, which is a subgroup of the affine group for which in addition the upper left hand 2×2 matrix is orthogonal. One may also identify the oriented Euclidean group in which the upper left hand 2×2 matrix has determinant 1.

We will introduce these transformations starting from the most specialized, the isometries, and progressively generalizing until projective transformations are reached.

<table>
<thead>
<tr>
<th>Shapes</th>
<th>Similarity</th>
<th>Affine</th>
</tr>
</thead>
<tbody>
<tr>
<td>circles</td>
<td>circles</td>
<td>ellipse</td>
</tr>
<tr>
<td>squares</td>
<td>squares</td>
<td>diamond</td>
</tr>
<tr>
<td>parallel lines</td>
<td>parallel</td>
<td>parallel</td>
</tr>
<tr>
<td>orthogonal lines</td>
<td>orthogonal</td>
<td>non-orthogonal</td>
</tr>
</tbody>
</table>
2.4 A hierarchy of transformations

In this section we describe the important specializations of a projective transformation and their geometric properties. It was shown in section 2.3 that projective transformations form a group. This group is called the **projective linear group**, and it will be seen that these specializations are subgroups of this group.

The group of invertible $n \times n$ matrices with real elements is the (real) general linear group on n dimensions, or $\text{GL}(n)$. To obtain the projective linear group the matrices related by a scalar multiplier are identified, giving $\text{PL}(n)$ (this is a quotient group of $\text{GL}(n)$). In the case of projective transformations of the plane $n = 3$.

The important subgroups of $\text{PL}(3)$ include the **affine group**, which is the subgroup of $\text{PL}(3)$ consisting of matrices for which the last row is $(0, 0, 1)$, and the **Euclidean group**, which is a subgroup of the affine group for which in addition the upper left hand 2×2 matrix is orthogonal. One may also identify the **oriented Euclidean group** in which the upper left hand 2×2 matrix has determinant 1.

We will introduce these transformations starting from the most specialized, the isometries, and progressively generalizing until projective transformations are reached.

<table>
<thead>
<tr>
<th>a) similarity</th>
<th>b) affine</th>
<th>c) projective</th>
</tr>
</thead>
<tbody>
<tr>
<td>circles</td>
<td>circles</td>
<td>conic</td>
</tr>
<tr>
<td>squares</td>
<td>squares</td>
<td>quadrangle</td>
</tr>
<tr>
<td>parallel lines</td>
<td>parallel</td>
<td>converging</td>
</tr>
<tr>
<td>orthogonal linnes</td>
<td>orthogonal</td>
<td>non-orthogonal</td>
</tr>
</tbody>
</table>

Fig. 2.6. Distortions arising under central projection. Images of a tiled floor. (a) **Similarity**: the circular pattern is imaged as a circle. A square tile is imaged as a square. Lines which are parallel or perpendicular have the same relative orientation in the image. (b) **Affine**: The circle is imaged as an ellipse. Orthogonal world lines are not imaged as orthogonal lines. However, the sides of the square tiles, which are parallel in the world are parallel in the image. (c) **Projective**: Parallel world lines are imaged as converging lines. Tiles closer to the camera have a larger image than those further away.

[HZ04, p. 37]
Projective Transformations / Decomposition

\[
\begin{pmatrix}
A & t \\
v^T & v_3
\end{pmatrix}
= \begin{pmatrix}
sR & t \\
0^T & 1
\end{pmatrix}
\begin{pmatrix}
K & 0 \\
0^T & 1
\end{pmatrix}
\begin{pmatrix}
I & 0 \\
v^T & v_3
\end{pmatrix}
\]

\[A = sRK + tv^T\]

- \(K\) upper triangular matrix with \(\det K = 1\)
- valid for \(v_3 \neq 0\)
- unique if \(s\) is chosen \(s > 0\)
Summary of Projective Transformations

<table>
<thead>
<tr>
<th>Group</th>
<th>Matrix</th>
<th>Distortion</th>
<th>Invariant properties</th>
</tr>
</thead>
</table>
| Projective | \[
| 8 dof | \[
| | \h_11 \ h_12 \ h_13 \n| | \h_21 \ h_22 \ h_23 \n| | \h_31 \ h_32 \ h_33 \n| | \] | Concurrency, collinearity, **order of contact**: intersection (1 pt contact); tangency (2 pt contact); inflections (3 pt contact with line); tangent discontinuities and cusps. cross ratio (ratio of ratio of lengths). |
| Affine | \[
| 6 dof | \[
| | \a_{11} \ a_{12} \ t_x \n| | \a_{21} \ a_{22} \ t_y \n| | 0 \ 0 \ 1 \n| | \] | Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, l_∞. |
| Similarity | \[
| 4 dof | \[
| | \s r_{11} \ s r_{12} \ t_x \n| | \s r_{21} \ s r_{22} \ t_y \n| | 0 \ 0 \ 1 \n| | \] | Ratio of lengths, angle. The circular points, I, J (see section 2.7.3). |
| Euclidean | \[
| 3 dof | \[
| | \r_{11} \ r_{12} \ t_x \n| | \r_{21} \ r_{22} \ t_y \n| | 0 \ 0 \ 1 \n| | \] | Length, area |

[HZ04, p. 44]
Outline

1. Very Brief Introduction
2. The Projective Plane
3. Projective Transformations
4. Recovery of Affine Properties from Images
5. Angles in the Projective Plane
6. Recovery of Metric Properties from Images
7. Organizational Stuff
Recovery of Affine and Metric Properties

Decomposition of general projective transformation:

\[
\begin{pmatrix}
A & t \\
0^T & 1
\end{pmatrix}
= \begin{pmatrix}
sR & t \\
0^T & 1
\end{pmatrix}
\begin{pmatrix}
K & 0 \\
0^T & 1
\end{pmatrix}
\begin{pmatrix}
l & 0 \\
0^T & 1
\end{pmatrix}
\]

1. undo proper projective transformation (affine rectification):
 ▶ then original and image differ only by an affine transformation
 ▶ measure affine properties of the original in the image
 (＝ properties invariant under affine transformations)
 ▶ parallel lines, ratio of lengths on parallel lines
Recovery of Affine and Metric Properties

Decomposition of general projective transformation:

\[
\begin{pmatrix}
A & t \\
v^T & v_3
\end{pmatrix} =
\begin{pmatrix}
sR & t \\
0^T & 1
\end{pmatrix}
\begin{pmatrix}
K & 0 \\
0^T & 1
\end{pmatrix}
\begin{pmatrix}
I & 0 \\
v^T & v_3
\end{pmatrix}
\]

1. undo proper projective transformation (affine rectification):
 - then original and image differ only by an affine transformation
 - \(\rightsquigarrow\) measure **affine properties** of the original in the image
 (= properties invariant under affine transformations)
 - parallel lines, ratio of lengths on parallel lines

2. undo proper affine transformation (metric rectification):
 - then original and image differ only by a similarity transformation
 - \(\rightsquigarrow\) measure **metric properties** of the original in the image
 (= properties invariant under similarity transformations)
 - angles, ratio of lengths
Recovery of Affine Properties

Undo proper projective transformation:

\[
\begin{pmatrix}
I & 0 \\
v^T & v_3
\end{pmatrix} : \begin{pmatrix}
x_1 \\
x_2 \\
0
\end{pmatrix} \mapsto \begin{pmatrix}
x_1 \\
x_2 \\
v_1x_1 + v_2x_2
\end{pmatrix}
\]

\[I_\infty := \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix} \mapsto \begin{pmatrix} -v/v_3 \\
1/v_3 \end{pmatrix} = \frac{1}{v_3} \begin{pmatrix} v_1 \\
v_2 \\
1
\end{pmatrix}\]

- maps line at infinity to finite line \((v_1, v_2, 1)^T\)
- to undo:
 - locate image \((v_1, v_2, 1)^T\) of line at infinity
 - undo by applying the inverse \(H^{-1} = \begin{pmatrix}
I & 0 \\
-v^T/v_3 & 1/v_3
\end{pmatrix}\)

Note: Lines transform by \(H^{-T}: \begin{pmatrix}
I & 0 \\
v^T & v_3
\end{pmatrix}^{-T} = \begin{pmatrix}
I & -v/v_3 \\
0 & 1/v_3
\end{pmatrix}\).
Recovery of Affine Properties / Example

Fig. 2.13. Affine rectification via the vanishing line. The vanishing line of the plane imaged in (a) is computed from the intersection of two sets of imaged parallel lines. The image is then projectively warped to produce the affine rectified image (b). In the affine rectified image parallel lines are now parallel. However, angles do not have their veridical world value since they are affinely distorted. See also figure 2.17.

Example 2.18. Affine rectification

In a perspective image of a plane, the line at infinity on the world plane is imaged as the vanishing line of the plane. This is discussed in more detail in chapter 8. As illustrated in figure 2.13 the vanishing line l may be computed by intersecting imaged parallel lines. The image is then rectified by applying a projective warping (2.19) such that l is mapped to its canonical position $l_\infty = (0, 0, 1)^T$.

This example shows that affine properties may be recovered by simply specifying a line (2 dof). It is equivalent to specifying only the projective component of the transformation decomposition chain (2.16). Conversely if affine properties are known, these may be used to determine points and the line at infinity. This is illustrated in the following example.

Example 2.19. Computing a vanishing point from a length ratio.

Given two intervals on a line with a known length ratio, the point at infinity on the line may be determined. A typical case is where three points a', b' and c' are identified on a line in an image. Suppose a, b and c are the corresponding collinear points on the world line, and the length ratio $d(a,b): d(b,c)=a : b$ is known (where $d(x,y)$ is the Euclidean distance).

Now we can measure area ratios!

[HZ04, p. 50]
Recovery of Affine Properties / Algorithm

1: procedure RECTIFY-AFFINE-TWO-PARALLELS($a^1, a^2, b^1, b^2 \in \mathbb{P}^2$)
2: $s^1 := a^1 \times a^2$ \Comment{compute intersection of parallels a^1, a^2}
3: $s^2 := b^1 \times b^2$ \Comment{compute intersection of parallels b^1, b^2}
4: $l_\infty := s^1 \times s^2$ \Comment{compute image of line at infinity}
5: $H^{-1} := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -l_\infty,1/l_\infty,3 & -l_\infty,2/l_\infty,3 & 1/l_\infty,3 \end{pmatrix}$ \Comment{compute inverse}
6: return H^{-1}
Outline

1. Very Brief Introduction
2. The Projective Plane
3. Projective Transformations
4. Recovery of Affine Properties from Images
5. Angles in the Projective Plane
6. Recovery of Metric Properties from Images
7. Organizational Stuff
Circular Points

A conic

\[
C := \begin{pmatrix}
 a_1 & a_2/2 & a_4/2 \\
 a_2/2 & a_3 & a_5/2 \\
 a_4/2 & a_5/2 & a_6
\end{pmatrix}
= \begin{pmatrix}
 a_1 & 0 & a_4/2 \\
 0 & a_1 & a_5/2 \\
 a_4/2 & a_5/2 & a_6
\end{pmatrix}
\]

is a circle if \(a_1 = a_3 \) and \(a_2 = 0 \).
Circular Points

A conic

\[
C := \begin{pmatrix}
 a_1 & a_2/2 & a_4/2 \\
 a_2/2 & a_3 & a_5/2 \\
 a_4/2 & a_5/2 & a_6 \\
\end{pmatrix} = \begin{pmatrix}
 a_1 & 0 & a_4/2 \\
 0 & a_1 & a_5/2 \\
 a_4/2 & a_5/2 & a_6 \\
\end{pmatrix}
\]

is a circle if \(a_1 = a_3 \) and \(a_2 = 0 \).

Ideal points \(x = (x_1, x_2, 0)^T \) on a circle:

\[
x^T C x = a_1 x_1^2 + a_1 x_2^2 = 0
\]

are exactly the circular points:

\[
I := \begin{pmatrix}
 1 \\
 i \\
 0
\end{pmatrix}, \quad J := \begin{pmatrix}
 1 \\
 -i \\
 0
\end{pmatrix}
\]
Line Conics

$C \in \text{Sym}({\mathbb{P}^3} \times {\mathbb{P}^3})$ defines a point conic via

$$C_C := \{x \in \mathbb{P}^2 \mid x^T C x = 0\}$$

It also can be used to define a line conic / dual conic:

$$C_C^* := \{a \in \mathbb{P}^2 \mid a^T C a = 0\}$$

(where a denotes a line)
Adjugate of a Matrix

For a square matrix $A \in \mathbb{R}^{n \times n}$,

$$A^* \in \mathbb{R}^{n \times n} \text{ with } A_{i,j}^* := (-1)^{i+j} \det A_{-j,-i}$$

is called its **adjugate** A^*.

It holds:

- for any A: $A^* A = A A^* = (\det A) I$
- A^* is continuous in A.
- if A is invertible, the adjoint is the scaled inverse: $A^* = (\det A) A^{-1}$
- if A is not invertible, the adjoint nullifies A: $A^* A = A A^* = 0$
- the adjugate is the transposed of the cofactor matrix.

Note: $A_{-j,-i}$ denotes the matrix A with row j and column i removed.

The adjugate is also called **adjoint**.
Dual Conic

For any point conic $C \in \text{Sym}(\mathbb{P}^3 \times 3)$, the set of tangent lines forms a line conic, parametrized by the adjugate C^*:

$$\{ a \in \mathbb{P}^2 \mid a \text{ tangent to } C \} = C^*_C$$
Dual Conic to the Circular Points

Dual conic to the circular points (degenerate):

\[C^*_\infty := IJ^T + JJ^T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]

- contains exactly all lines through the circular points \(I \) or \(J \).
- transforms as \(HC^*_\infty H^T \): \(H(C^*_\infty) = C^*_{HC^*_\infty H^T} \).
- fixed under projectivity \(H \) iff \(H \) is a similarity.
- 4 dof (general \(C \) has 5, minus 1 due to \(\det C = 0 \)).
- \(l_\infty \) is the null vector of \(C^*_\infty \).
Angles in the Projective Plane

Angels are defined as:

$$\cos \theta(a, b) := \frac{a^T C_\infty^* b}{\sqrt{(a^T C_\infty^* a) (b^T C_\infty^* b)}}, \quad a, b \in \mathbb{P}^2$$

- for the canonical C_∞^*, coincides with the Euclidean definition:

$$\cos \theta(a, b) := \frac{a^T b}{\sqrt{(a^T a) (b^T b)}}, \quad a, b \in \mathbb{R}^2$$

- stays invariant under projective transformation:

$$a' = H^{-T} a, \quad b' = H^{-T} b, \quad C_\infty'^* = H C_\infty^* H^T$$

$$a'^T C_\infty'^* b' = a^T H^{-1} H C_\infty^* H^T H^{-T} b = a^T C_\infty b$$
Outline

1. Very Brief Introduction
2. The Projective Plane
3. Projective Transformations
4. Recovery of Affine Properties from Images
5. Angles in the Projective Plane
6. Recovery of Metric Properties from Images
7. Organizational Stuff
Recovery of Metric Properties

- assume there is no pure projective transformation (i.e., affine rectification already done).
- need only to find pure affine transformation:

\[
H_a := \begin{pmatrix} K & 0 \\ 0^T & 1 \end{pmatrix}, \quad \text{with } K \text{ upper triangular}
\]

- under \(H_a \) we get \(C_\infty' \) as

\[
C_\infty' := H_a C_\infty H_a^T = \begin{pmatrix} KK^T & 0 \\ 0^T & 0 \end{pmatrix}
\]

1. find symmetric matrix \(S := KK^T \)
2. find \(K \) via Cholesky decomposition of \(S \)
Recovery of Metric Properties (2/2)

- for two lines \(a', b' \) that are orthogonal in the original:

\[
0 = a'^T C_{\infty}^* b' = a'_{1:2}^T S b_{1:2} \\
= a'_1 S_{1,1} b'_1 + a'_1 S_{1,2} b'_2 + a'_2 S_{2,1} b'_1 + a'_2 S_{2,2} b'_2 \\
= a'_1 b'_1 S_{1,1} + (a'_1 b'_2 + a'_2 b'_1) S_{1,2} + a'_2 b'_2 S_{2,2} \\
= (a'_1 b'_1, a'_1 b'_2 + a'_2 b'_1, a'_2 b'_2)(S_{1,1}, S_{1,2}, S_{2,2})^T
\]

we get 1 linear constraint in \(s := (S_{1,1}, S_{1,2}, S_{2,2})^T \).

- for two pairs of lines that are orthogonal in the original we get 2 linear constraints for 3 variables

\[
\begin{pmatrix}
 a'_1 b'_1 & a'_1 b'_2 + a'_2 b'_1 & a'_2 b'_2 \\
 c'_1 d'_1 & c'_1 d'_2 + c'_2 d'_1 & c'_2 d'_2
\end{pmatrix} s
\]

where \(s \neq 0 \) has to be identified only up to a factor.
Recovery of Metric Properties / Algorithm

1: procedure
 RECTIFY-METRIC-TWO-ORTHOGONALS(\(a^1, a^2, b^1, b^2 \in \mathbb{P}^2\))

2: \[A := \begin{pmatrix}
 a_1^1 a_2^2 & a_1^1 a_2^1 + a_2^1 a_2^2 & a_2^1 a_2^2 \\
 b_1^1 b_2^2 & b_1^1 b_2^1 + b_2^1 b_2^2 & b_2^1 b_2^2
\end{pmatrix} \]

3: find \(s \neq 0: As = 0\) \hspace{1cm} \triangleright \text{find } C_\infty^* := \begin{pmatrix}
 s_1 & s_2 & 0 \\
 s_2 & s_3 & 0 \\
 0 & 0 & 0
\end{pmatrix}

4: \(K := \text{cholesky}(\begin{pmatrix}
 s_1 & s_2 \\
 s_2 & s_3
\end{pmatrix})\) \hspace{1cm} \triangleright \text{find } H := \begin{pmatrix}
 K & 0 \\
 0^T & 1
\end{pmatrix}

5: \(H^{-1} := \begin{pmatrix}
 1/K_{1,1} & -1/(K_{1,2}K_{2,2}) & 0 \\
 0 & 1/K_{2,2} & 0 \\
 0 & 0 & 1
\end{pmatrix}\) \hspace{1cm} \triangleright \text{compute inverse}

6: return \(H^{-1}\)
Recovery of Metric Properties / Example

a) affine rectified image

Now we can measure angles and length ratios!

b) metric rectified image

[HZ04, p. 57]
Outline

1. Very Brief Introduction
2. The Projective Plane
3. Projective Transformations
4. Recovery of Affine Properties from Images
5. Angles in the Projective Plane
6. Recovery of Metric Properties from Images
7. Organizational Stuff
Exercises and Tutorials

▶ There will be a weekly sheet with 4 exercises handed out each Tuesday in the lecture. 1st sheet will be handed out Thu. 23.4. in the tutorial.

▶ Solutions to the exercises can be submitted until next Tuesday noon 1st sheet is due Tue. 28.4.

▶ Exercises will be corrected.

▶ Tutorials each Thursday 2pm–4pm, 1st tutorial at Thur. 23.4.

▶ Successful participation in the tutorial gives up to 10% bonus points for the exam.
Exam and Credit Points

- There will be a written exam at end of term (2h, 4 problems).

- The course gives 6 ECTS (2+2 SWS).

- The course can be used in
 - IMIT MSc. / Informatik / Gebiet KI & ML
 - Wirtschaftsinformatik MSc / Informatik / Gebiet KI & ML
 - as well as in both BSc programs.
Some Text Books

Some First Computer Vision Software

- Open Computer Vision Library (OpenCV)
 - C++ library
 - has wrappers for Python & Octave
 - originally developed by Intel
 - v3.0 beta, 11/2014; http://opencv.org

Public data sets:
 - ...

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
Summary (1/3)

- The **projective plane** \mathbb{P}^2 is an extension of the Euclidean plane with **ideal points**.

- Points and lines in \mathbb{P}^2 are parametrized by **homogeneous coordinates**.

- Each two parallels intersect in an ideal point, all ideal points form the **line at infinity** l_∞.

- Each circle contains two ideal points, the **circular points**, all lines through the circular points form the **dual conic to the circular points** C^*.

- **Conics** are curves of order 2 (hyperbolas, parabolas, ellipses), parametrized by a symmetric matrix C containing all points x with $x^T C x = 0$.
Summary (2/3)

- **Projectivities** H are invertibles mappings of \mathbb{P}^2 onto \mathbb{P}^2 that preserve lines.

- Lines a transform via $H^{-T}a$, conics C via $H^{-T}CH^{-1}$.

- There exist several subgroups of the group of projectivities:
 - **Isometries** rotate and translate figures.
 - preserving lengths
 - **Similarities** additionally (isotropic) scale figures.
 - preserving ratio of lengths, angle
 - **Affine transforms** additionally non-isotropic scale figures.
 - preserving ratio of lengths on parallel lines, parallel lines
 - **Projectivities** additionally move the line at infinity.
 - preserving cross ratio

- Any projectivity can be decomposed into a chain of an pure projectivie, a pure affine transform and a similarity.
Summary (3/3)

- Images distorted by an projective transformation can be **rectified** (i.e., undoes the projective transformation).

- **Affine rectification**
 - undoes a proper projective transformation
 - moves the **line at infinity** back to its **canonical position**.
 - allows to measure **affine properties**:
 - ratio of lengths on parallel lines, parallel lines
 - requires, e.g., **two pairs of parallel lines**.

- **Metric rectification**
 - undoes a proper affine transformation
 - moves the **dual conic to the circular points** back to its canonical position.
 - allows to measure **metric properties**:
 - angles, ratio of lengths
 - requires, e.g., **two pairs of orthogonal lines**.
Further Readings

- [HZ04, ch. 1 and 2].
References

Richard Hartley and Andrew Zisserman.
Multiple view geometry in computer vision.