Outline

1. Overview of SLAM

2. Camera Models

3. Two Cameras and the Fundamental Matrix

4. Triangulation

5. Putting it all Together
Different Approaches to SLAM:
- Kalman filters
- Particle filters / Monte Carlo methods
- Scan matching of range data
- Set-membership techniques
- Bundle adjustment

Outline

1. Overview of SLAM
2. Camera Models
3. Two Cameras and the Fundamental Matrix
4. Triangulation
5. Putting it all Together
Types of Cameras

Camera: Mapping from 3D world to 2D image.

finite camera:
- finite camera center

infinite camera:
- camera center at infinity
- generalization of parallel projection

Pinhole Camera

\[
\begin{pmatrix}
 x \\
y \\
z
\end{pmatrix} \mapsto \begin{pmatrix}
 fx/z \\
fy/z
\end{pmatrix}
\]

[HZ04, p. 154]
Pinhole Camera / Homogeneous Coordinates

inhomogeneous coordinates:
\[
\begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix}
\mapsto
\begin{pmatrix}
 fx/z \\
 fy/z
\end{pmatrix}
\]

homogeneous coordinates:
\[
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
\mapsto
\begin{pmatrix}
 fx \\
 fy \\
 z
\end{pmatrix}
= \begin{pmatrix}
 f & 0 \\
 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
\]

\[P = \text{diag}(f, f, 1)[I | 0]\]

Pinhole Camera / Principal Point Offset

\[
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
\mapsto
\begin{pmatrix}
 fx/z + px \\
 fy/z + py \\
 1
\end{pmatrix}
= \begin{pmatrix}
 fx + zpx \\
 fy + zpy \\
 z
\end{pmatrix}
= \begin{pmatrix}
 f & px & 0 \\
 f & py & 0 \\
 1 & 0
\end{pmatrix}
\begin{pmatrix}
 x \\
 y \\
 z \\
 1
\end{pmatrix}
\]

\[P = \begin{pmatrix}
 f & px \\
 f & py \\
 1
\end{pmatrix}[I | 0]
= :K\]

K is called camera calibration matrix.
Pinhole Camera / Camera Rotation and Translation

c': coordinates of camera center in world coordinates
R: rotation of world coordinate frame to camera coordinate frame (around c')

\[p = R(p' - c') \]

\[
\begin{pmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{pmatrix}
\mapsto
\begin{pmatrix}
 R & 0 \\
 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{pmatrix}
- \begin{pmatrix}
 x_{c'} \\
 y_{c'} \\
 z_{c'} \\
 1
\end{pmatrix}
= \begin{pmatrix}
 R & -Rc' \\
 1 & 1
\end{pmatrix}
\begin{pmatrix}
 x' \\
 y' \\
 z' \\
 1
\end{pmatrix}

P = KR[I | -c']

without explicit camera center:

\[P = K[R | t], \quad t := -Rc' \]

CCD Cameras

CCD camera:

- pixels may be no square – different width \(\alpha_x \) and height \(\alpha_y \)

\[
K = \begin{pmatrix}
 \alpha_x & \alpha_y & x_0 \\
 & \alpha_y & y_0 \\
 & & 1
\end{pmatrix}
\]

- finite projective camera:

\[
K = \begin{pmatrix}
 \alpha_x & s & x_0 \\
 & \alpha_y & y_0 \\
 & & 1
\end{pmatrix}
\]

- \(s \) skew
- usually \(s = 0 \), but rare cases (e.g., photo from photo)
Finite Projective Camera

- **skew** s:

 $$K = \begin{pmatrix} \alpha_x & s & x_0 \\ \alpha_y & y_0 & 1 \end{pmatrix}$$

 $$P = K[R | t]$$

 - usually $s = 0$, but in rare cases (e.g., photo from photo)
 - left 3×3 matrix is non-singular ($\det P_{1:3,1:3} \neq 0$)
 - 11 parameters:
 - 5 for K: $\alpha_x, \alpha_y, x_0, y_0, s$
 - 3 for R
 - 3 for t
 - any 3×4 matrix P with $\det P_{1:3,1:3} \neq 0$ is such a finite projective camera
Two Views: Epipolar Geometry

- two 2D views on a 3D scene
 - 3D coordinates X in the 3D scene
 - 2D coordinates x in the first view
 \[x = PX \]
 - 2D coordinates x' in the second view
 \[x' = P'X \]

- epipolar geometry: describe relation between the two views
- fundamental matrix F:
 \[x'^T F x = 0 \iff \exists X : x = PX, x' = P'X \]

Epipolar Geometry

- **baseline**: line joining the two camera centers
- **epipole**: image of the camera center of the other view (intersection of baseline and image plane)
- **epipolar planes**: planes containing the baseline
- **epipolar lines**: lines in the image plane through the epipole
Epipolar Geometry / Example

9.2 The fundamental matrix

The fundamental matrix F is the algebraic representation of epipolar geometry. In the following we derive the fundamental matrix from the mapping between a point and its epipolar line, and then specify the properties of the matrix.

Given a pair of images, it was seen in figure 9.1 that to each point x in one image, there exists a corresponding epipolar line l' in the other image. Any point x' in the second image matching the point x must lie on the epipolar line l'. The epipolar line...
Fundamental Matrix (2/2)

▶ construct ℓ:

1. possible 3D source points of $x = PX$:
 \[X = P^+x + \lambda C, \quad \lambda \in \mathbb{R} \quad (as \quad PC = 0) \]

2. their 2D images in second view:
 \[x' = P'(P^+x + \lambda C) = P'P^+x + \lambda P'C \]
 esp. $x' := P'P^+x$, for $\lambda := 0$
 \[e' = P'C, \quad for \quad \lambda := \infty \quad epipole \quad of \quad second \quad view \]

3. ℓ' is the line through x' and e':
 \[F(X) = e' \times x' = e' \times P'P^+ \]

▶ F is linear: fundamental matrix $F = [e']_\times P'P^+$

Note: P^+ pseudoinverse, C camera center 1st view, $[a]_\times := \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix}$.

From Two Cameras to the Fundamental Matrix

\[P = K[I \mid 0] \]
\[P' = K'[R \mid t] \]
\[\sim \quad P^+ = \begin{pmatrix} K^{-1} \\ 0^T \end{pmatrix}, \quad C = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]

1. general case:
 \[F = [P'C]_\times P'P^+ = [K't]_\times K'RK^{-1} = [e']_\times K'RK^{-1} \]

2. pure translation ($R = I$, $K' = K$):
 \[F = [K't]_\times K'RK^{-1} = [Kt]_\times = [e']_\times \]

3. pure translation parallel to x-axis ($e' = (1, 0, 0)^T$):
 \[F = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \]
From the Fundamental Matrix to Two Cameras

- The fundamental matrix does determine two cameras only up to a 3D projectivity.

\[\tilde{P} = PH, \quad \tilde{P}' = P'H, \quad \tilde{C} = H^{-1}C \]
\[\sim \tilde{P}^+ = H^{-1}P^+ \]
\[\tilde{F} = [\tilde{P}' \tilde{C}] \times \tilde{P}' \tilde{P}^+ \]
\[= [P'HH^{-1}C] \times P'HH^{-1}P^+ = [P'C] \times P'P^+ = F \]

- Cameras can be chosen as

\[P = [I \mid 0], \quad P' = [[e'] \times F \mid e'] \]
\[\sim F(P, P') = [e'] \times K'RK^{-1} = [e'] \times [e'] \times F \propto F \]

Fundamental Matrix / Properties

- \(F \) maps points \(x \) of the 1st view to the epipolar line \(\ell' := Fx \) of their possibly corresponding points in the 2nd view.

- For corresponding points \(x, x' \):

\[x'^T Fx = 0 \]

- \(e' \) is the left nullvector of \(F \): \(e'^T F = 0 \) (as \(e' \) is on all lines \(Fx \))
- \(e \) is the right nullvector of \(F \): \(Fe = 0 \)

- \(F \) has 7 degrees of freedom.
 - 8 ratios of a \(3 \times 3 \) matrix
 - -1 for det \(F = 0 \)
Computing the Fundamental Matrix

Different methods:
1. Linear Method I: The 8-Point Algorithm
2. Linear Method II: The 7-Point Algorithm
3. Iterative Minimization of the Reconstruction Error

Linear System of Equations

- every pair \(((x, y), (x', y'))\) of corresponding points fulfills
 \[(x', y')F(x, y)^T = 0\]
 \[
 \sim (x'x \quad x'y \quad x'y'x \quad y'y \quad y'x \quad y \quad 1) \text{ vect}(F) = 0
 \]

- for \(N\) such pairs \(((x_1, y_1), (x'_1, y'_1)), \ldots, ((x_N, y_N), (x'_N, y'_N))\):

\[
\begin{pmatrix}
 x_1x_1 & x_1y_1 & x'_1x_1 & y'_1y_1 & y'_1x_1 & x_1 & y_1 & 1 \\
 x_2x_2 & x_2y_2 & x'_2x_2 & y'_2y_2 & y'_2x_2 & x_2 & y_2 & 1 \\
 \vdots \\
 x_Nx_N & x_Ny_N & x'_Nx_N & y'_Ny_N & y'_Nx_N & x_N & y_N & 1
\end{pmatrix} \text{ vect}(F) = 0
\]

- linear system of equations: \(Af = 0\) for \(f = \text{vect}(F)\)

Note: \(\text{vect}(A) := (a_{1,1}, a_{1,2}, \ldots, a_{1,M}, a_{2,1}, \ldots, a_{2,M}, \ldots, a_{N,1}, \ldots, a_{N,M})^T\) vectorization.
8-Point Algorithm

1. Solve linear system of equations for 8 corresponding points.
2. Ensure \(\det F = 0 \):
 \[
 F = USU^T, \quad S = \text{diag}(s_1, \ldots, s_9), s_1 \geq s_2 \geq \cdots \geq s_9 \quad \text{SVD}
 \]

 \[
 F' := US'U^T, \quad S' := \text{diag}(s_1, \ldots, s_8, 0)
 \]

7-Point Algorithm

1. Solve linear system of equations for 7 corresponding points, yielding \(\lambda F_1 + (1 - \lambda)F_2 \)
2. Ensure \(\det F = 0 \):
 \[
 \det(\lambda F_1 + (1 - \lambda)F_2) \models 0
 \]

 Find root \(\lambda^* \) of this polynomial of degree 3, then
 \[
 F := \lambda^* F_1 + (1 - \lambda^*)F_2
 \]

 ▶ all linear methods should be used with normalization !
 ▶ both, esp. 7-point algorithm often used in RANSAC wrappers.
Iterative Minimization of the Reconstruction Error

minimize \(\sum_{n=1}^{N} d(x_n, \hat{x}_n)^2 + d(x'_n, \hat{x}'_n)^2 \)

- \(\hat{x}_n = PX_n = X_n \), for \(P = [I \mid 0] \)
- \(\hat{x}'_n = P'X_n \), for general \(P' \)
- 3N + 12 parameters (for general \(P' \))
- as in chapter 3:
 - initialize with linear method: 8-point algorithm
 - initial estimate of \(X_n \) by triangulation (see next section)
 - iteratively minimize using Levenberg-Marquardt

Outline

1. Overview of SLAM
2. Camera Models
3. Two Cameras and the Fundamental Matrix
4. Triangulation
5. Putting it all Together
Triangulation

Different methods:
1. Linear triangulation
2. Iterative Minimization of the Reconstruction Error
3. Minimizing Reconstruction Error via Root Finding

Linear Triangulation

Each 3D point \(X \) satisfies:

\[
x \overset{!}{=} \hat{x} := PX, \quad x' \overset{!}{=} \hat{x}' := P'X
\]

yielding

\[
\begin{pmatrix}
x_3 P_{1,.}^T - x^T P_{3,1} \\
x_3 P_{2,.}^T - x^T P_{3,2} \\
x_3 P_{3,.}^T - x^T P_{3,3}
\end{pmatrix} X = 0
\]

of which 2 rows are independent, and the same for \(x' \) and \(P' \).

Solve \(AX = 0 \) for

\[
A(x, P, x', P') := \begin{pmatrix}
x_3 P_{1,.}^T - x^T P_{3,1} \\
x_3 P_{2,.}^T - x^T P_{3,2} \\
x_3 P_{3,.}^T - x^T P_{3,3} \\
x_3' P_{1,.}^T - x'^T P'_{3,1} \\
x_3' P_{2,.}^T - x'^T P'_{3,2}
\end{pmatrix}
\]
Linear Triangulation (2/2)

- Exact solutions to

 \[AX = 0, \quad X \neq 0 \]

 for a 4×4 matrix A may not exist if noise is involved.

- Solve approximately via SVD:

 \[A = USV^T, \quad S = \text{diag}(s_1, s_2, s_3, s_4), \quad s_1 \geq s_2 \geq s_3 \geq s_4, \text{SVD} \]

 \[X \approx V_{:,4} \]

Iterative Minimization of the Reconstruction Error

- solve N separate problems, one for each point X_n ($n = 1, \ldots, N$):

 minimize \(d(x_n, \hat{x}_n)^2 + d(x'_n, \hat{x}'_n)^2 \)

 with \(\hat{x}_n := PX_n = X_n, \quad n = 1, \ldots, N, \quad \text{for} \ P := [I \mid 0] \)

 \(\hat{x}'_n := P'X_n, \quad n = 1, \ldots, N, \)

 over X_n

- 3 parameters each (P' is fixed)

- as in chapter 3:

 - iteratively minimize using Levenberg-Marquardt
Outline

1. Overview of SLAM
2. Camera Models
3. Two Cameras and the Fundamental Matrix
4. Triangulation
5. Putting it all Together

Monocular Visual SLAM

Calibrated camera K with known start pose $Q^{(0)}$

Do forever (time t):

1. Get image $I^{(t)}$ from the camera
2. Find interesting points in $I^{(t)}$ and their descriptors
3. Match interesting points of two consecutive images $I^{(t-1)}$, $I^{(t)}$ based on their descriptors to get corresponding points
4. Minimize reconstruction loss for all corresponding points in the two images to get new camera pose $Q^{(t)}$ and 3D points $X^{(t)}$

- **localization:**
 $Q^{(t)}$ describes the trajectory of the camera
 (and thus the vehicle)

- **mapping:**
 $X^{(t)}$ describes the scene

Many detail problems still to discuss. Many variants exist.
Stereo Visual SLAM
Calibrated cameras K, K' with known start poses $Q^{(0)}, Q'^{(0)}$
Do forever (time t):
1. Get two images $I^{(t)}, I'^{(t)}$ from the two cameras
2. Find interesting points in both $I^{(t)}, I'^{(t)}$ and their descriptors
3. Match interesting points of all four images $I^{(t-1)}, I'^{(t-1)}, I^{(t)}, I'^{(t)}$ based on their descriptors to get corresponding points
4. Minimize reconstruction loss for all corresponding points in the four images to get new camera poses $Q^{(t)}, Q'^{(t)}$ and 3D points $X^{(t)}$

- **localization:**
 $Q^{(t)}, Q'^{(t)}$ describes the trajectory of the cameras
 (and thus the vehicle)
- **mapping:**
 $X^{(t)}$ describes the scene

Many detail problems still to discuss. Many variants exist.

Example / Projective Reconstruction

![Original image pair](a)

![2 views of a 3D projective reconstruction](b)

Note: Additional knowledge: none.

[HZ04, p. 267]
Example / Affine Reconstruction

Note: Additional knowledge: three sets of parallel lines.

Example / Metric Reconstruction

Note: Additional knowledge: additionally lines in different sets are orthogonal.
Outlook

- methods applicable in two settings:
 - two cameras, single shot: **stereo vision**
 - one camera, sequence of shots: **structure from motion**, **monocular visual SLAM**

- structure from motion:
 - do not compute everything from scratch for every frame
 - tracking (computer vision terminology)
 - online updates (machine learning terminology)

- methods to combine stereo vision and structure from motion
 - two cameras, sequence of shots
 - the very same methods, just for 4 views instead of 2.
 - some new concepts (e.g., trifocal tensor for 3 views)

Summary (1/4)

- There exist several methods for **simultaneous localization and mapping (SLAM)**
 - We discussed: **bundle adjustment**: minimize a loss between
 - in two views observed and
 - from two unknown 2D-projections of unknown 3D points reconstructed corresponding points.

- **Cameras** are described by linear projective maps $P : \mathbb{P}^3 \rightarrow \mathbb{P}^2$ ($= 4 \times 3$ matrices)
 - usually structured as $P = K[R | t]$:
 - **camera calibration matrix** K (5 intrinsic parameters)
 - **camera pose** $[R | t]$ (6 external parameters)
 - finite vs infinite (esp. affine) cameras; pinhole camera
The geometric relation between two 2D views on a 3D scene can be represented by the 3×3 fundamental matrix F:
- maps points in 1st view to epipolar line of all possible corresponding points in 2nd view.
- $x'Fx = 0$ for corresponding points x, x'
- For two cameras P, P' their fundamental matrix can be computed as:

$$F = [e'] \times P' P^+, \text{ with epipole in 2nd view } e'$$

- For a fundamental matrix F, several pairs of cameras are possible. Two canonical cameras P, P' can be computed as:

$$P = [I \mid 0], \quad P' = [([e'] \times F \mid e')]$$

To compute the fundamental matrix from point correspondences several methods exist.
- Problem has 7 degrees of freedom (8 ratios; singular)
- Linear methods
 - 8-point algorithm: solve a linear system of equations / SVD
 - 7-point algorithm: solve a linear system of equations / SVD
 - enforce singularity
- Iterative minimization of the reconstruction error

To estimate 3D point positions from their observed images under known 2D projection(s):
triangulation. Several methods exist:
- Linear methods
 - individually for each 3D point
 - solve a 4×4 linear system of equations / SVD
- Iterative minimization of the reconstruction error
- Minimizing Reconstruction Error via Root Finding
Summary (4/4)

- **Metric reconstruction:**
 - With just multiple 2D views of a scene, it can only be reconstructed up to a projectivity.
 - requires either background knowledge or
 - **camera calibration:** estimate the intrinsic parameters of the camera calibration matrix from a known scene.

Further Readings

- Reconstruction ambiguity: [HZ04, ch. 10].
- Computing the Fundamental Matrix: [HZ04, ch. 11].
- Triangulation: [HZ04, ch. 12].
- Camera models: [HZ04, ch. 6].
- The Fundamental Matrix: [HZ04, ch. 9].
References