First-Order Logic

Adapted from Russel and Norvig

Outline

Why FOL?

Syntax and semantics of FOL
Using FOL

Wumpus world in FOL
Knowledge engineering in FOL

Pros and cons of propositional
logic
© Propositional logic is declarative
© Propositional logic allows partial/disjunctive/negated
information
— (unlike most data structures and databases)
© Propositional logic is compositional:
— meaning of B, , A P, , is derived from meaning of B, , and of P, ,
© Meaning in propositional logic is context-independent
— (unlike natural language, where meaning depends on context)
® Propositional logic has very limited expressive power

— (unlike natural language)
— E.g., cannot say "pits cause breezes in adjacent squares*”

Example

Consider
Katy is a cat
cats are mammals
Katy is a mammal
In propositional logic this would be represented as
c,m
k

This derivation is not valid in propositional logic. If it were
then from any ¢ and m could derive any k. We need to
capture the connection between ¢ and m.

We will use first-order or predicate logic.

First-order logic

» Whereas propositional logic assumes the

world contains facts,
« first-order logic (like natural language)

assumes the world contains

— Objects: people, houses, numbers, colors,
baseball games, wars, ...

— Relations: red, round, prime, brother of,
bigger than, part of, comes between, ...

— Functions: father of, best friend, one more
than, plus, ...

Syntax of FOL: Basic elements

Constants KingJohn, 2, NUS,...
Predicates Brother, >,...

Functions Sqrt, LeftLegOf,...
Variables x, vy, a, b,...
Connectives -, =, A, v, &
Equality =

Quantifiers Vv, 3

Example

* lecturer(Schmidt-Thieme,KI)

* male(Schmidt-Thieme)

< (3,4)

* < (4, plustwo(1))

+ mammal(Katy)

« Schmidt-Thieme, Katy, Kl, 3, 4 and 1 are constants.
« lecturer, male, mammal, and < are predicates.

* male, mammal have arity one and the other predicates
have arity two.

« plustwo is a function (that refer to other objects).
» For example plustwo(1) refers to the constant 3

Atomic sentences

Term is a logical expression that refers to an object.
Constants,variables and functions are all terms.

Thus plustwo(1), Schmidt-Thieme and 3 are all terms.

Atomic sentences are predicates applied to a list of
terms (in brackets).

E.g.,

— male(father_of(Leandro)),

— cat(Katy),

— shares_office(Leandro, Christine)

— and < (3, 4) are all atomic sentences

Complex sentences

» Complex sentences are made from atomic
sentences using connectives

-8, 8,78, S;v S, S, S, S, S,

E.g. Sibling(KingJohn,Richard) =
Sibling(Richard,KingJohn)
>(1,2) v<(1,2)
>(1,2) A = >(1,2)

Truth in first-order logic

+ Sentences are true with respect to a model and an interpretation

» Model contains objects (domain elements) and relations among

them

Interpretation specifies referents for

constant symbols — objects
predicate symbols — relations
function symbols — functional relations

» An atomic sentence predicate(term;,...,term,) is true

iff the objects referred to by term,,...,term,
are in the relation referred to by predicate

Interpretation

We need a domain to which we are referring.
lecturer(Schmidt-Thieme,KI)

The name Schmidt-Thieme is mapped to the object in
the domain we are referring to (Prof. Lars Schmidt-
Thieme).

The name Kl is mapped to the object in the domain we
are referring to (the course Ki).

The predicate name lecturer will be mapped to a set of
pairs of objects where the first in the pair is the (real)
person who teaches the second in the pair.

Hence the above evaluates to true.

Models for FOL: Example

person brother

Quantifiers

» Quantifiers allow us to express properties about
collections of objects.

« The quantifiers are

* Y universal quantifier ‘Forall ...’

« 3 existential quantifier 'There exists . . .~

« If P(x) is a predicate then we can write

* Vx P(x); and

« Ix P(x);

« where x is a variable which can stand for any object in
+ the domain.

Universal quantification

* V<variables> <sentence>

All kings are persons
Vx King(x) = Person(x)

For all x, if xis a king, then x is a person

* Vx Pis true in a model miff Pis true with x being each possible
object in the model

» Roughly speaking, equivalent to the conjunction of instantiations of
P

King(John) = Person(John)
A King(Richard) = Person(Richard)
A King(Peter) = Person(Peter)
A

A common mistake to avoid

» Typically, = is the main connective with Vv

» Common mistake: using A as the main
connective with V:
vx King(x) A Person(x)
means “Everyone is a king and everyone is smart”

Existential quantification

» 3d<variables> <sentence>

« There exists an x such that x is a man and x is a father
* (some men are fathers)
« 3x man(x) A father(x)

« 3x Pis true in a model miff Pis true with x being some possible
object in the model

» Roughly speaking, equivalent to the disjunction of instantiations of P
man(Peter) A father(Peter)
v man(John) A father(John)
v man(Tobias) A father(Tobias)
V..

Another common mistake to
avoid

» Typically, A is the main connective with 3

» Common mistake: using = as the main
connective with 3:

Ix man(x) = father(x)
is true if there is anyone who is not a man!

Properties of quantifiers

* Vx Vyis the same as Vy Vx
+ 3x 3y is the same as 3y 3x

« 3x Vyis not the same as Vy 3x
« 3x Vy Loves(x,y)
— “There is a person who loves everyone in the world”
* Vy3x Loves(x,y)
— “Everyone in the world is loved by at least one person”

« Quantifier duality: each can be expressed using the other
+ Vx Likes(x,IceCream) —3x —Likes(x,IceCream)
+ 3x Likes(x,Broccoli) —Vx —Likes(x,Broccoli)

Equality

« term, = term;is true under a given interpretation
if and only if term, and term, refer to the same
object

» E.g., definition of Sibling in terms of Parent:
vx,y Sibling(x,y) & [-(x=y) A AMmf=(m=1f) A
Parent(m,x) A Parent(f,x) A Parent(m,y) A Parent(f,y)]

Using FOL

The kinship domain:
» Brothers are siblings
Vvx,y Brother(x,y) < Sibling(x,y)
» One's mother is one's female parent
vm,c Mother(c) = m < (Female(m) A Parent(m,c))
» “Sibling” is symmetric
vx,y Sibling(x,y) < Sibling(y,x)

Using FOL

The set domain:

» The only sets are the empty set and those made
by adjoining something to a set:
— Vs Set(s) & (s ={}) v (3x,s, Set(s,) A s ={x|s,})

» The empty set has no elements ajoined into it
— —3x,s {x|s} = {}

» Two sets are equal if and only if it is a member
of both sets.
= V81,8, (81 =8,) & (S, =S, A8, C8y)

Interacting with FOL KBs

+ Suppose a wumpus-world agent is using an FOL KB and perceives a glitter
and a breeze (but no smell) at t=5:

Te11(KB,Percept([Glitter,Breeze,None],5))
Ask(KB,3a BestAction(a,5))

+ le., does the KB entail some best action at t=5?

« Answer: Yes, {a/Grab} « substitution (binding list)

+ Eg,
Smarter(Hillary,Bill)
Smarter(x,y)

o = {x/Hillary,y/Bill}

- Ask(KB,S) returns some/all o such that KB |=U

Knowledge base for the
wumpus world

» Perception
— Vi,s,b Percept([s,b,Glitter],t) = Glitter(t)

+ Reflex
— Vit Glitter(t) = BestAction(Grab,t)

Deducing hidden properties

* VX,y,a,b Adjacent([x,y],[a,b])
[a7b] € {[X+1 !Y]! [X_1 !Y]![X!y+1]![x7y_1]}

Properties of squares:
» Vs,t Al(Agent,s,t) A Breeze(t) = Breezy(s)

Squares are breezy near a pit:
— Diagnostic rule---infer cause from effect
Vs Breezy(s) = 3r Adjacent(r,s) A Pit(r)
— Causal rule---infer effect from cause
Vr Pit(r) = [Vs Adjacent(r,s) = Breezy(s)]

Knowledge engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge

3. Decide on a vocabulary of predicates,
functions, and constants

4. Encode general knowledge about the domain

5. Encode a description of the specific problem
instance

6. Pose queries to the inference procedure and
get answers

7. Debug the knowledge base

The electronic circuits domain

One-bit full adder

c1

The electronic circuits domain

1. Identify the task

— Does the circuit actually add properly? (circuit
verification)

2. Assemble the relevant knowledge

— Composed of wires and gates; Types of gates (AND,

OR, XOR, NOT)
— lIrrelevant: size, shape, color, cost of gates
3. Decide on a vocabulary

— Alternatives:
Type(X,) = XOR
Type(X,, XOR)
XOR(X,)

The electronic circuits domain

4. Encode general knowledge of the domain
- Vt,,t, Connected(t,, t,) = Signal(t,) = Signal(t,)
— VtSignal(t) = 1 v Signal(t) =
- 1#0
- Vt1 t2 Connected(t;, t,) = Connected(t,, t,)
F OR = Signal(Out(1,9)) =1 & 3n
Slgna |n81 9))

F AND = Signal(Out(1,9)) =0 & 3n
Slgna |n81 a))

XOR:SI nal(Out(1 =1
Slgnaf)ln(gl #Slgnal(l%(2 g(;)) (.9)
- vgTy NOT = Signal(Out(1,9)) #
Slgna In(g1

The electronic circuits domain

5. Encode the specific problem instancel’

The electronic circuits domain

6. Pose queries to the inference procedure

What are the possible sets of values of all the
terminals for the adder circuit?

Jiy,inig,04,0, Signal(In(1,C_1)) = i; A Signal(In(2,C,)) =
i» A Signal(In(3,C;)) = i3 A Signal(Out(1,C,)) = 0, A
Signal(Out(2,C,)) =

7. Debug the knowledge base
May have omitted assertions like 1 #0

Type(X,) = XOR Type(X,) = XOR

Type(A,) = AND Type(A,) = AND

Type(O;) = OR

Connected(Out(1,X,),In(1,Xy)) Connected(In(1,C,),In(1,X,))
Connected(Out(1,X,),In(2,A,)) Connected(In(1,C,),In(1,A,))
Connected(Out(1,A,),In(1,0,)) Connected(In(2,C,),In(2,X,))
Connected(Out(1,A,),In(2,0,)) Connected(In(2,C,),In(2,A,))
Connected(Out(1,X,),0ut(1,C,)) Connected(In(3,C,),In(2,X,))
Connected(Out(1,0,),0ut(2,C;)) Connected(In(3,C,),In(1,A;))

Summary

First-order logic:
— objects and relations are semantic primitives

— syntax: constants, functions, predicates,
equality, quantifiers

Increased expressive power

