Outline

- Why FOL?
- Syntax and semantics of FOL
- Using FOL
- Wumpus world in FOL
- Knowledge engineering in FOL

Pros and cons of propositional

logic

© Propositional logic is declarative
() Propositional logic allows partial/disjunctive/negated information

- (unlike most data structures and databases)
() Propositional logic is compositional:
- meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
() Meaning in propositional logic is context-independent - (unlike natural language, where meaning depends on context)
© Propositional logic has very limited expressive power - (unlike natural language)
- E.g., cannot say "pits cause breezes in adjacent squares"

Example

- Consider

Katy is a cat cats are mammals
Katy is a mammal

- In propositional logic this would be represented as

$$
\frac{c, m}{k}
$$

- This derivation is not valid in propositional logic. If it were then from any c and m could derive any k . We need to capture the connection between c and m.
- We will use first-order or predicate logic.

First-order logic

- Whereas propositional logic assumes the world contains facts,
- first-order logic (like natural language) assumes the world contains
- Objects: people, houses, numbers, colors, baseball games, wars,
- Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
- Functions: father of, best friend, one more than, plus, ...

Syntax of FOL: Basic elements

- Constants KingJohn, 2, NUS,...
- Predicates Brother, >,...
- Functions Sqrt, LeftLegOf,...
- Variables $\quad x, y, a, b, \ldots$
- Connectives $\neg, \Rightarrow, \wedge, \vee, \Leftrightarrow$
- Equality =
- Quantifiers \forall, \exists

Example

- lecturer(Schmidt-Thieme,KI)
- male(Schmidt-Thieme)
- < $(3,4)$
- < (4, plustwo(1))
- mammal(Katy)
- Schmidt-Thieme, Katy, KI, 3, 4 and 1 are constants.
- lecturer, male, mammal, and < are predicates.
- male, mammal have arity one and the other predicates have arity two.
- plustwo is a function (that refer to other objects).
- For example plustwo(1) refers to the constant 3

Atomic sentences

- Term is a logical expression that refers to an object. Constants, variables and functions are all terms.
- Thus plustwo(1), Schmidt-Thieme and 3 are all terms.
- Atomic sentences are predicates applied to a list of terms (in brackets).
- E.g.,
- male(father_of(Leandro)),
- cat(Katy),
- shares_office(Leandro, Christine)
- and < (3,4) are all atomic sentences

Complex sentences

- Complex sentences are made from atomic sentences using connectives

$$
\neg S, S_{1} \wedge S_{2}, S_{1} \vee S_{2}, S_{1} \Rightarrow S_{2}, S_{1} \Leftrightarrow S_{2}
$$

E.g. Sibling(KingJohn,Richard) \Rightarrow Sibling(Richard,KingJohn)

$$
\begin{aligned}
& >(1,2) \vee \leq(1,2) \\
& >(1,2) \wedge \neg>(1,2)
\end{aligned}
$$

Truth in first-order logic

- Sentences are true with respect to a model and an interpretation
- Model contains objects (domain elements) and relations among them
- Interpretation specifies referents for
constant symbols $\rightarrow \quad$ objects
predicate symbols $\rightarrow \quad$ relations
function symbols $\rightarrow \quad$ functional relations
- An atomic sentence predicate $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$ is true iff the objects referred to by term ${ }_{1}, \ldots$, term $_{n}$ are in the relation referred to by predicate

Interpretation

- We need a domain to which we are referring. lecturer(Schmidt-Thieme,KI)
- The name Schmidt-Thieme is mapped to the object in the domain we are referring to (Prof. Lars SchmidtThieme).
- The name KI is mapped to the object in the domain we are referring to (the course KI)
- The predicate name lecturer will be mapped to a set of pairs of objects where the first in the pair is the (real) person who teaches the second in the pair.
- Hence the above evaluates to true.

Models for FOL: Example

Quantifiers

- Quantifiers allow us to express properties about collections of objects.
- The quantifiers are
- \forall universal quantifier 'For all . . . '
- \exists existential quantifier 'There exists
- If $P(x)$ is a predicate then we can write
- $\forall x P(x)$; and
- $\exists x \mathrm{P}(\mathrm{x})$;
- where x is a variable which can stand for any object in
- the domain.

Universal quantification

- $\forall<$ variables> <sentence>

All kings are persons
$\forall x$ King $(x) \Rightarrow$ Person (x)
For all x, if x is a king, then x is a person

- $\quad \forall x P$ is true in a model m iff P is true with x being each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of

> King(John) \Rightarrow Person(John) King(Richard) \Rightarrow Person(Richard) King(Peter) \Rightarrow Person(Peter)

King(Peter) \Rightarrow Person(Peter)

A common mistake to avoid

- Typically, \Rightarrow is the main connective with \forall
- Common mistake: using \wedge as the main connective with \forall :
$\forall x$ King (x) ^ Person (x)
means "Everyone is a king and everyone is smart"

Existential quantification

- ヨ<variables> <sentence>
- There exists an x such that x is a man and x is a father
(some men are fathers)
- $\exists x \operatorname{man}(x) \wedge$ father (x)
- $\exists x P$ is true in a model m iff P is true with x being some possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P man(Peter) ^ father(Peter)
, man(John) \wedge father(John)
, man(Tobias) \wedge father(Tobias)
$\vee \ldots$

Another common mistake to avoid

- Typically, \wedge is the main connective with \exists
- Common mistake: using \Rightarrow as the main connective with \exists :

$$
\exists x \operatorname{man}(x) \Rightarrow \text { father }(x)
$$

is true if there is anyone who is not a man!

Properties of quantifiers

- $\forall x \forall y$ is the same as $\forall y \forall x$
- $\exists x \exists y$ is the same as $\exists y \exists x$
- $\exists x \forall y$ is not the same as $\forall y \exists x$
- $\exists x \forall y$ Loves (x, y)
_ "There is a person who loves everyone in the world"
- $\forall y \exists x$ Loves (x, y)
- "Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other
- $\forall x$ Likes(x,IceCream) $\neg \exists x \neg$ Likes(x,IceCream)
- $\exists x$ Likes(x, Broccoli) $\neg \forall x \neg$ Likes(x, Broccoli)

Equality

- term $_{1}=$ term $_{2}$ is true under a given interpretation if and only if term $_{1}$ and term $_{2}$ refer to the same object
- E.g., definition of Sibling in terms of Parent: $\forall x, y$ Sibling $(x, y) \Leftrightarrow[\neg(x=y) \wedge \exists m, f \neg(m=f) \wedge$ $\operatorname{Parent}(m, x) \wedge \operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)]$

Using FOL

The kinship domain:

- Brothers are siblings
$\forall x, y \operatorname{Brother}(x, y) \Leftrightarrow \operatorname{Sibling}(x, y)$
- One's mother is one's female parent $\forall \mathrm{m}, \mathrm{c} \operatorname{Mother}(\mathrm{c})=\mathrm{m} \Leftrightarrow($ Female $(\mathrm{m}) \wedge$ Parent $(m, c))$
- "Sibling" is symmetric
$\forall x, y$ Sibling $(x, y) \Leftrightarrow$ Sibling (y, x)

Using FOL

The set domain:

- The only sets are the empty set and those made by adjoining something to a set:
$-\forall s \operatorname{Set}(\mathrm{~s}) \Leftrightarrow(\mathrm{s}=\{ \}) \vee\left(\exists \mathrm{x}, \mathrm{S}_{2} \operatorname{Set}\left(\mathrm{~s}_{2}\right) \wedge \mathrm{s}=\left\{x \mid \mathrm{s}_{2}\right\}\right)$
- The empty set has no elements ajoined into it $-\neg \exists x, s\{x \mid s\}=\{ \}$
- Two sets are equal if and only if it is a member of both sets.
$-\forall \mathrm{s}_{1}, \mathrm{~s}_{2}\left(\mathrm{~s}_{1}=\mathrm{s}_{2}\right) \Leftrightarrow\left(\mathrm{s}_{1} \subseteq \mathrm{~s}_{2} \wedge \mathrm{~s}_{2} \subseteq \mathrm{~s}_{1}\right)$

Interacting with FOL KBs

- Suppose a wumpus-world agent is using an FOL KB and perceives a glitter and a breeze (but no smell) at $t=5$:

Tell(KB,Percept([Glitter,Breeze,None],5))
Ask(KB, ヨa BestAction(a,5))

- I.e., does the KB entail some best action at $t=5$?
- Answer: Yes, $\{a / G r a b\} \leftarrow$ substitution (binding list)
- E.g,

Smarter(Hillary, Bill)
Smarter(x, y)
$\sigma=\{x /$ Hillary, $\mathrm{y} /$ Bill $\}$

- $\operatorname{Ask}(\mathrm{KB}, \mathrm{S})$ returns some/all σ such that $K B \equiv \sigma$

Knowledge base for the

 wumpus world- Perception
$-\forall \mathrm{t}, \mathrm{s}, \mathrm{b} \operatorname{Percept}([\mathrm{s}, \mathrm{b}, \mathrm{Glitter}], \mathrm{t}) \Rightarrow \operatorname{Glitter}(\mathrm{t})$
- Reflex
$-\forall \mathrm{t}$ Glitter(t) \Rightarrow BestAction(Grab,t)

Deducing hidden properties

- $\forall \mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{b} \operatorname{Adjacent}([\mathrm{x}, \mathrm{y}],[\mathrm{a}, \mathrm{b}]) \Leftrightarrow$
$[a, b] \in\{[x+1, y],[x-1, y],[x, y+1],[x, y-1]\}$
Properties of squares:
- $\forall \mathrm{s}, \mathrm{t} A t($ Agent $, \mathrm{s}, \mathrm{t}) \wedge \operatorname{Breeze}(\mathrm{t}) \Rightarrow \operatorname{Breezy}(\mathrm{s})$

Squares are breezy near a pit:

- Diagnostic rule---infer cause from effect $\forall s$ Breezy $(\mathrm{s}) \Rightarrow \exists \mathrm{Fr}$ Adjacent $(\mathrm{r}, \mathrm{s}) \wedge \operatorname{Pit}(\mathrm{r})$
- Causal rule---infer effect from cause

$$
\forall \mathrm{r} \operatorname{Pit}(\mathrm{r}) \Rightarrow[\forall \mathrm{s} \operatorname{Adjacent}(\mathrm{r}, \mathrm{~s}) \Rightarrow \operatorname{Breezy}(\mathrm{s})]
$$

Knowledge engineering in FOL

The electronic circuits domain

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base

One-bit full adder

The electronic circuits domain

1. Identify the task

- Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge

- Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
- Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary

- Alternatives:
$\operatorname{Type}\left(\mathrm{X}_{1}\right)=$ XOR
Type(X_{1}, XOR)
XOR(X ${ }_{1}$)

The electronic circuits domain

4. Encode general knowledge of the domain
$-\quad \forall \mathrm{t}_{1}, \mathrm{t}_{2} \operatorname{Connected}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \Rightarrow \operatorname{Signal}\left(\mathrm{t}_{1}\right)=\operatorname{Signal}\left(\mathrm{t}_{2}\right)$
$-\quad \forall \mathrm{t}$ Signal $(\mathrm{t})=1 \vee \operatorname{Signal}(\mathrm{t})=0$

- $1 \neq 0$
- $\quad \forall \mathrm{t}_{1}, \mathrm{t}_{2}$ Connected $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \Rightarrow$ Connected $\left(\mathrm{t}_{2}, \mathrm{t}_{1}\right)$
- $\quad \forall \mathrm{g}$ Type $(\mathrm{g})=\mathrm{OR} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=1 \Leftrightarrow \exists \mathrm{n}$

Signal($\ln (\mathrm{n}, \mathrm{g}))=1$
$-\quad \forall \mathrm{g} \operatorname{Type}(\mathrm{g})=$ AND $\Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=0 \Leftrightarrow \exists \mathrm{n}$
Signal($\ln (\mathrm{n}, \mathrm{g}))=0$
$-\quad \forall \mathrm{g} \operatorname{Type}(\mathrm{g})=\mathrm{XOR} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=1 \Leftrightarrow$
Signal($\ln (1, g)) \neq$ Signal $(\ln (2, g))$
$-\quad \forall \mathrm{g} \operatorname{Type}(\mathrm{g})=\mathrm{NOT} \Rightarrow \operatorname{Signal}(\mathrm{Out}(1, \mathrm{~g})) \neq$ Signal(In(1,g))

The electronic circuits domain

5. Encode the specific problem instance

Type $\left(\mathrm{X}_{1}\right)=$ XOR Type $\left(\mathrm{X}_{2}\right)=\mathrm{XOR}$
$\operatorname{Type}\left(\mathrm{A}_{1}\right)=$ AND
$\operatorname{Type}\left(\mathrm{A}_{2}\right)=$ AND
$\operatorname{Type}\left(\mathrm{O}_{1}\right)=\mathrm{OR}$
Connected(Out($1, \mathrm{X}_{1}$), $\ln \left(1, \mathrm{X}_{2}\right)$) Connected(Out $\left.\left(1, X_{1}\right), \ln \left(2, A_{2}\right)\right)$ Connected(Out($1, \mathrm{~A}_{2}$), $\ln \left(1, \mathrm{O}_{1}\right)$) Connected(Out($1, \mathrm{~A}_{1}$), $\ln \left(2, \mathrm{C}_{1}\right)$)
Connected(Out($1, \mathrm{X}_{2}$), Out $\left(1, \mathrm{C}_{1}\right)$)
Connected(Out($\left.\left.1, \mathrm{O}_{1}\right), \mathrm{Out}\left(2, \mathrm{C}_{1}\right)\right)$

Connected $\left(\ln \left(1, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{X}_{1}\right)\right)$ Connected $\left(\ln \left(1, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{~A}_{1}\right)\right)$ Connected $\left(\ln \left(2, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{X}_{1}\right)\right)$ Connected $\left(\ln \left(2, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{~A}_{1}\right)\right)$ Connected $\left(\ln \left(3, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{X}_{2}\right)\right)$ Connected $\left(\ln \left(3, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{~A}_{2}\right)\right)$

The electronic circuits domain

6. Pose queries to the inference procedure What are the possible sets of values of all the
terminals for the adder circuit?
$\exists \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{o}_{1}, \mathrm{o}_{2} \operatorname{Signal}\left(\ln \left(1, \mathrm{C}_{-} 1\right)\right)=\mathrm{i}_{1} \wedge \operatorname{Signal}\left(\ln \left(2, \mathrm{C}_{1}\right)\right)=$
terminals for the adder circuit?
$\exists \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{O}_{1}, \mathrm{o}_{2} \operatorname{Signal}\left(\operatorname{In}\left(1, \mathrm{C}_{-} 1\right)\right)=\mathrm{i}_{1} \wedge \operatorname{Signal}\left(\ln \left(2, \mathrm{C}_{1}\right)\right)=$ $\mathrm{i}_{2} \wedge \operatorname{Signal}\left(\ln \left(3, \mathrm{C}_{1}\right)\right)=\mathrm{i}_{3} \wedge \operatorname{Signal}\left(\operatorname{Out}\left(1, \mathrm{C}_{1}\right)\right)=\mathrm{o}_{1} \wedge$ Signal $\left(\right.$ Out $\left.\left(2, C_{1}\right)\right)=O_{2}$
7. Debug the knowledge base

May have omitted assertions like $1 \neq 0$

Summary

- First-order logic:
- objects and relations are semantic primitives
- syntax: constants, functions, predicates, equality, quantifiers
- Increased expressive power
- Increased expresive power

