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First-Order Logic

Adapted from Russel and Norvig

Outline
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• Wumpus world in FOL

• Knowledge engineering in FOL

Pros and cons of propositional 
logic

☺ Propositional logic is declarative

☺ Propositional logic allows partial/disjunctive/negated 
information
– (unlike most data structures and databases)

☺ Propositional logic is compositional:
– meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2

☺ Meaning in propositional logic is context-independent
– (unlike natural language, where meaning depends on context)

� Propositional logic has very limited expressive power
– (unlike natural language)

– E.g., cannot say "pits cause breezes in adjacent squares“

Example

• Consider

Katy is a cat

cats are mammals

Katy is a mammal

• In propositional logic this would be represented as

c,m

k

• This derivation is not valid in propositional logic. If it were
then from any c and m could derive any k. We need to 
capture the connection between c and m.

• We will use first-order or predicate logic.
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First-order logic

• Whereas propositional logic assumes the 
world contains facts,

• first-order logic (like natural language) 
assumes the world contains
– Objects: people, houses, numbers, colors, 

baseball games, wars, …

– Relations: red, round, prime, brother of, 
bigger than, part of, comes between, …

– Functions: father of, best friend, one more 
than, plus, …

Syntax of FOL: Basic elements

• Constants KingJohn, 2, NUS,... 

• Predicates Brother, >,...

• Functions Sqrt, LeftLegOf,...

• Variables x, y, a, b,...

• Connectives ¬, ⇒, ∧, ∨, ⇔

• Equality = 

• Quantifiers  ∀, ∃

Example

• lecturer(Schmidt-Thieme,KI)

• male(Schmidt-Thieme)

• < (3, 4)

• < (4, plustwo(1))

• mammal(Katy)

• Schmidt-Thieme, Katy, KI, 3, 4 and 1 are constants.

• lecturer, male, mammal, and < are predicates.

• male, mammal have arity one and the other predicates
have arity two.

• plustwo is a function (that refer to other objects).

• For example plustwo(1) refers to the constant 3

Atomic sentences

• Term is a logical expression that refers to an object. 
Constants,variables and functions are all terms.

• Thus plustwo(1), Schmidt-Thieme and 3 are all terms.

• Atomic sentences are predicates applied to a list of 
terms (in brackets).

• E.g., 

– male(father_of(Leandro)),

– cat(Katy),

– shares_office(Leandro, Christine)

– and < (3, 4) are all atomic sentences
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Complex sentences

• Complex sentences are made from atomic 
sentences using connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1⇒ S2, S1 ⇔ S2,

E.g. Sibling(KingJohn,Richard) ⇒

Sibling(Richard,KingJohn)

>(1,2) ∨ ≤ (1,2)

>(1,2) ∧ ¬ >(1,2) 

Truth in first-order logic

• Sentences are true with respect to a model and an interpretation

• Model contains objects (domain elements) and relations among 
them

• Interpretation specifies referents for
constant symbols → objects
predicate symbols → relations

function symbols → functional relations

• An atomic sentence predicate(term1,...,termn) is true
iff the objects referred to by term1,...,termn

are in the relation referred to by predicate

Interpretation

• We need a domain to which we are referring. 
lecturer(Schmidt-Thieme,KI)

• The name Schmidt-Thieme is mapped to the object in 
the domain we are referring to (Prof. Lars Schmidt-
Thieme).

• The name KI is mapped to the object in the domain we
are referring to (the course KI).

• The predicate name lecturer will be mapped to a set of 
pairs of objects where the first in the pair is the (real) 
person who teaches the second in the pair.

• Hence the above evaluates to true.

Models for FOL: Example
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Quantifiers

• Quantifiers allow us to express properties about
collections of objects.

• The quantifiers are

• ∀ universal quantifier ’For all . . . ’

• ∃ existential quantifier ’There exists . . . ’

• If P(x) is a predicate then we can write

• ∀x P(x); and

• ∃x P(x);

• where x is a variable which can stand for any object in

• the domain.

Universal quantification

• ∀<variables> <sentence>

All kings are persons

∀x King(x) ⇒ Person(x)

For all x, if x is a king, then x is a person

• ∀x P is true in a model m iff P is true with x being each possible 
object in the model

• Roughly speaking, equivalent to the conjunction of instantiations of 
P

King(John) ⇒ Person(John) 

∧ King(Richard) ⇒ Person(Richard) 

∧ King(Peter) ⇒ Person(Peter) 

∧ ...

A common mistake to avoid

• Typically, ⇒ is the main connective with ∀

• Common mistake: using ∧ as the main 

connective with ∀:

∀x King(x) ∧ Person(x)

means “Everyone is a king and everyone is smart”

Existential quantification

• ∃<variables> <sentence>

• There exists an x such that x is a man and x is a father

• (some men are fathers)

• ∃x  man(x) ∧ father(x)

• ∃x P is true in a model m iff P is true with x being some possible 
object in the model

• Roughly speaking, equivalent to the disjunction of instantiations of P
man(Peter) ∧ father(Peter)

∨ man(John) ∧ father(John)

∨ man(Tobias) ∧ father(Tobias)
∨ ...
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Another common mistake to 
avoid

• Typically, ∧ is the main connective with ∃

• Common mistake: using ⇒ as the main 

connective with ∃:

∃x  man(x) ⇒ father(x)

is true if there is anyone who is not a man!

Properties of quantifiers

• ∀x ∀y is the same as ∀y ∀x

• ∃x ∃y is the same as ∃y ∃x

• ∃x ∀y is not the same as ∀y ∃x

• ∃x ∀y Loves(x,y)
– “There is a person who loves everyone in the world”

• ∀y ∃x Loves(x,y)
– “Everyone in the world is loved by at least one person”

• Quantifier duality: each can be expressed using the other

• ∀x Likes(x,IceCream) ¬∃x ¬Likes(x,IceCream)

• ∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)

Equality

• term1 = term2 is true under a given interpretation 

if and only if term1 and term2 refer to the same 

object

• E.g., definition of Sibling in terms of Parent:

∀x,y Sibling(x,y) ⇔ [¬(x = y) ∧ ∃m,f ¬ (m = f) ∧
Parent(m,x) ∧ Parent(f,x) ∧ Parent(m,y) ∧ Parent(f,y)]

Using FOL

The kinship domain:

• Brothers are siblings

∀x,y Brother(x,y) ⇔ Sibling(x,y)

• One's mother is one's female parent

∀m,c Mother(c) = m ⇔ (Female(m) ∧ Parent(m,c))

• “Sibling” is symmetric

∀x,y Sibling(x,y) ⇔ Sibling(y,x)
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Using FOL

The set domain: 

• The only sets are the empty set and those made 

by adjoining something to a set:

– ∀s Set(s) ⇔ (s = {} ) ∨ (∃x,s2 Set(s2) ∧ s = {x|s2})

• The empty set has no elements ajoined into it

– ¬∃x,s {x|s} = {}

• Two sets are equal if and only if it is a member 

of both sets.

– ∀s1,s2 (s1 = s2) ⇔ (s1 ⊆ s2 ∧ s2 ⊆ s1)

Interacting with FOL KBs

• Suppose a wumpus-world agent is using an FOL KB and perceives a glitter 
and a breeze (but no smell) at t=5:

Tell(KB,Percept([Glitter,Breeze,None],5))

Ask(KB,∃a BestAction(a,5))

• I.e., does the KB entail some best action at t=5?

• Answer: Yes, {a/Grab}  ← substitution (binding list)

• E.g,
Smarter(Hillary,Bill)

Smarter(x,y)

σ = {x/Hillary,y/Bill}

• Ask(KB,S) returns some/all σ such that KB╞ σ

Knowledge base for the 
wumpus world

• Perception

– ∀t,s,b Percept([s,b,Glitter],t) ⇒ Glitter(t)

• Reflex

– ∀t Glitter(t) ⇒ BestAction(Grab,t)

Deducing hidden properties

• ∀x,y,a,b Adjacent([x,y],[a,b]) ⇔

[a,b] ∈ {[x+1,y], [x-1,y],[x,y+1],[x,y-1]} 

Properties of squares:

• ∀s,t At(Agent,s,t) ∧ Breeze(t) ⇒ Breezy(s)



Squares are breezy near a pit:
– Diagnostic rule---infer cause from effect

∀s Breezy(s) ⇒ ∃r Adjacent(r,s) ∧ Pit(r)

– Causal rule---infer effect from cause
∀r Pit(r) ⇒ [∀s Adjacent(r,s) ⇒ Breezy(s) ]
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Knowledge engineering in FOL

1. Identify the task

2. Assemble the relevant knowledge

3. Decide on a vocabulary of predicates, 
functions, and constants

4. Encode general knowledge about the domain

5. Encode a description of the specific problem 
instance

6. Pose queries to the inference procedure and 
get answers

7. Debug the knowledge base

The electronic circuits domain

One-bit full adder

The electronic circuits domain

1. Identify the task
– Does the circuit actually add properly? (circuit 

verification)

2. Assemble the relevant knowledge
– Composed of wires and gates; Types of gates (AND, 

OR, XOR, NOT)
– Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
– Alternatives:

Type(X1) = XOR

Type(X1, XOR)
XOR(X1)

The electronic circuits domain

4. Encode general knowledge of the domain
– ∀t1,t2 Connected(t1, t2) ⇒ Signal(t1) = Signal(t2)

– ∀t Signal(t) = 1 ∨ Signal(t) = 0
– 1 ≠ 0

– ∀t1,t2 Connected(t1, t2) ⇒ Connected(t2, t1)
– ∀g Type(g) = OR ⇒ Signal(Out(1,g)) = 1 ⇔ ∃n 

Signal(In(n,g)) = 1

– ∀g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n 
Signal(In(n,g)) = 0

– ∀g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔
Signal(In(1,g)) ≠ Signal(In(2,g))

– ∀g Type(g) = NOT ⇒ Signal(Out(1,g)) ≠
Signal(In(1,g))
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The electronic circuits domain

5. Encode the specific problem instance

Type(X1) = XOR Type(X2) = XOR

Type(A1) = AND Type(A2) = AND

Type(O1) = OR

Connected(Out(1,X1),In(1,X2)) Connected(In(1,C1),In(1,X1))

Connected(Out(1,X1),In(2,A2)) Connected(In(1,C1),In(1,A1))

Connected(Out(1,A2),In(1,O1)) Connected(In(2,C1),In(2,X1))

Connected(Out(1,A1),In(2,O1)) Connected(In(2,C1),In(2,A1))

Connected(Out(1,X2),Out(1,C1)) Connected(In(3,C1),In(2,X2))

Connected(Out(1,O1),Out(2,C1)) Connected(In(3,C1),In(1,A2))




The electronic circuits domain

6. Pose queries to the inference procedure

What are the possible sets of values of all the 

terminals for the adder circuit? 

∃i1,i2,i3,o1,o2 Signal(In(1,C_1)) = i1 ∧ Signal(In(2,C1)) = 

i2 ∧ Signal(In(3,C1)) = i3 ∧ Signal(Out(1,C1)) = o1 ∧

Signal(Out(2,C1)) = o2

7. Debug the knowledge base

May have omitted assertions like 1 ≠ 0

Summary

• First-order logic:

– objects and relations are semantic primitives

– syntax: constants, functions, predicates, 

equality, quantifiers

• Increased expressive power


