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Artificial Intelligence / 1. Inductive Logic Programming
Inductive Logic Programming (ILP)

Given some positive examples for a target predicate P,

say
daughter(mary, ann)
daughter(eve, tom)

and some negative examples

—~daughter(tom, ann)
—~daughter(eve, ann)

as well as some descriptive predicates () of the entities

envolved
female(ann)
(

female(eve)
parent(ann, mary)
parent(tom, eve)

find a hypothesis definition / rule of P in terms of ) that

1. covers all the positive examples,
2. does not cover any negative example, and

3. is sulfficient general.
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Trivial Solutions "
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daughter(X,Y)

covers all positive examples,
but unfortunately also all negative examples.

false

covers no negative example,
but unfortunately also no positive example.

(X =mary AY =ann)V (X =eve A Y =tom) — daughter(X,Y)

covers all positive examples,

covers no negative example,
but unfortunately does not generalize (new examples will fail).
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Two principal approaches:
e top-down: generalization of decision trees (FOIL).

e inverse deduction (inverse resolution).
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First Order Inductive Learner (FOIL; Quinlan 1990).

|dea:
e iteratively build rules that cover
— some positive examples,
— but no negative ones.
Once a rule has been found, remove the positive examples
covered and proceed.

e to build a rule:
— add literals to the body until no negative example is covered

— if literals introduce new variables,
extend example tuples by all possible constants.
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FOIL / Algorithm (1/2)

Algorithm 4.1 (FOIL — the covering algorithm)

Initialize E.r := £.
Initialize H := (.
repeat {covering}
Initialize clause ¢ ;=T < .
Call the Specialization Algorithm(c, Ecyyr)
to find a clause cpeg;.
Assign ¢ 1= Cpest-
Post-process ¢ by removing irrelevant literals to get ¢
Add ¢ to H to get a new hypothesis H' := H U {c'}.
Remove positive examples covered by ¢’ from &, to get
a new training set &, := Eeur — coversey (B, {c'},EL.).
Assign Eoyp = &L, H = H'.
until £, = 0 or encoding constraints violated.

Output: Hypothesis H.

[Lavrac/Dzeroski 1994]
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Algorithm 4.2 (FOIL — the specialization algorithm)

Initialize local training set & := Eqyp-

Initialize current clause ¢; := c.

Initialize ¢ := 1.

while & # 0 or encoding constraints violated do

Find the best literal L; to add to the body of ¢; =T <+ Q

and construct ¢;y1 =T « Q, L;.

Form a new local training set £;11 as a set of extensions of

the tuples in &; that satisfy L;.
Assign ¢ := ¢i11.
Increment +.
endwhile

Output: Clause c.

[Lavrac/Dzeroski 1994]
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FOIL / Example

Current clause ¢; : daughter(X,Y) <
& (mary,ann) @ ny =2 I{¢)=1.00
(eve,tom) @ ny =2
(tom,ann) & L, = female(X)
(eve,ann) & Gain(Ly) =0.84 nf? =
Current clause ¢y : daughter(X,Y) < female(X)
E  (mary,ann) & ny =2 I(c;) =0.58
(eve,tom) & ng =
(eve,ann) & Ly = parent(Y, X)
Gain(Ly) =1.16  n§¥ =2
Current clause c3 : daughter(X,Y) < fefnéale(X)marent(Y, X)
& (mary,ann) & ny =2  I(c3) =0.00
(eve,tom) @ ng =0
[Lavrac/Dzeroski 1994]
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FOIL / Example 6

Current clause ¢; : daughter(X,Y) <

& (mary,ann) ® ny =2
(eve, tom) ) ny =2
(tom, ann) o Ly =parent(Y,7)
(eve,ann) S ny® =

Current clause co : daughter(X,Y) < parent(Y, Z)

& (mary,ann,mary) & ny =4

(mary, ann, tom)
(eve, tom, eve)
(eve, tom, ian)
(tom, ann, mary)
(tom, ann, tom)
(eve, ann, mary)
(eve, ann, tom)
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[Lavrac/Dzeroski 1994]
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Literal Selection

Let n;” be the number of positive examples in step i, n; be
the number of negative examples in step i.

information: -

ns
I(c;) = —log,——
(ci) anje +ny

If the new literal does not introduce new variables,

ni, <ngandng, <nf.

But if new variables are introduced, this may not hold anymore.
Denote by n”® the number of positive tuples in &; represented by

at least one tuple in &, ;.
weighted information gain:

WIG(L;, ¢;) :== WIG(cis1, ;) := ny(I(c;) — I(civn))

Select the literal with the highest weighted information gain.
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Resolution:
Given clauses C; and Cy, infer resolvent C'.
Ch:=ClU{R},Co:=CHU{-RY,ROI=RHO ~ C:=ClHUCH
Inverse resolution:
Given resolvent C' and clause (1, infer clause Cs.
Cy:={R} ~ C,:={-RYUC', R6=R0CH=CH
||:|Parent(x,z) Vv o Parent(zy) Vv Grandparem(x,y)| |Parent(George,EIizabeth) |
{x/George, ﬂEIizabeth}‘\
|\:|Parent(lﬂizabah,y) v Grandparent(George,y)| | Parent(Elizabeth,Anne) |
{y/Ann;}\
|Grandparent(George,Anne) | | 1 Grandpar ent(George,Anne) |
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Artificial Intelligence / 3. Inverse Resolution

Inverse resolution is a search,
as there may be many pairs of clauses leading to resolvent "

—Parent(Elizabeth, Anne) v Grandparent(George, Anne)
—Parent(z, Anne) v Grandparent(George, Anne)
—Parent(z, y) vV Grandparent(George, y)

Many techniques available for narrowing search space:
¢ eliminate redundancies, e.g., by generating only the most
specific hypothesis.

e restrict proof strategy, e.g., to linear proofs.
e restrict representation language, e.g., to Horn clauses.

e use different inference method, e.g., model checking or ground

propositional clauses.
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