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Artificial Intelligence / 1. Inductive Logic Programming

Inductive Logic Programming (ILP)

Given some positive examples for a target predicate P,
say

daughter(mary, ann)

daughter(eve, tom)

and some negative examples

—~daughter(tom, ann)
—daughter(eve, ann)

as well as some descriptive predicates () of the entities

envolved
female(ann)

(
female(eve)
parent(ann, mary)
parent(tom, eve)

find a hypothesis definition / rule of P in terms of () that
1. covers all the positive examples,

2. does not cover any negative example, and

3. is sufficient general.

aefsitdy
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Trivial Solutions B S

daughter(X,Y)

covers all positive examples,
but unfortunately also all negative examples.

false

covers no negative example,
but unfortunately also no positive example.

(X =maryAY =ann)V (X =eve ANY =tom) — daughter(X,Y)

covers all positive examples,

covers no negative example,
but unfortunately does not generalize (new examples will fail).
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Two principal approaches:
e top-down: generalization of decision trees (FOIL).
e inverse deduction (inverse resolution).
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FOIL ® 200 ¥

First Order Inductive Learner (FOIL; Quinlan 1990).

|dea:
e iteratively build rules that cover
— some positive examples,
— but no negative ones.
Once a rule has been found, remove the positive examples
covered and proceed.

e to build a rule:
— add literals to the body until no negative example is covered

— if literals introduce new variables,
extend example tuples by all possible constants.
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FOIL / Algorithm (1/2)

Algorithm 4.1 (FOIL — the covering algorithm)

Initialize &,y := £.
Initialize H := 0.
repeat {covering}
Initialize clause ¢ := T <+ .
Call the SpecializationAlgorithm(c, Ecyyr)
to find a clause cpest.
Assign ¢ := Cpest.
Post-process ¢ by removing irrelevant literals to get ¢'.
Add ¢ to H to get a new hypothesis H' := H U {c'}.
Remove positive examples covered by ¢’ from &, to get
a new training set &, . 1= Eeyr — coversey (B, {c'},EL,.).
Assign Epyp = &L, H = H'.

until £ = or encoding constraints violated.

Output: Hypothesis H.

[Lavrac/Dzeroski 1994]
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Algorithm 4.2 (FOIL — the specialization algorithm)

Initialize local training set &; := Eqyr.
Initialize current clause ¢; := c.
Initialize ¢ := 1.
while £ # () or encoding constraints violated do
Find the best literal L; to add to the body of ¢; =T « Q
and construct ¢;11 : =T < Q, L;.
Form a new local training set &1 as a set of extensions of
the tuples in &; that satisfy L;.
Assign ¢ := cjy1.
Increment 1.
endwhile

Output: Clause c.

[Lavrac/Dzeroski 1994]
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Artificial Intelligence / 2. FOIL

FOIL / Example

Current clause ¢1 : daughter(X,Y) <

& (mary,ann) &
(eve,tom) @ ny = 2
(tom,ann) © L; = female(X)

(eve,ann) © Gain(L;) =084 nf¥ =2

Current clause ¢y : daughter(X,Y) < female(X)

Ey (mary,ann) & ng =2 I(c) =0.58
(eve,tom) @ ng =
(eve,ann) & Ly = parent(Y,X)

Gain(Ly) =1.16  ny® =2

Current clause c3 : daughter(X,Y) < female(X), parent(Y, X)

& (mary,ann) & ng =2 I(c3) =0.00
(eve,tom) & ng =

A

[Lavrac/Dzeroski 1994]
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FOIL / Example »

Current clause ¢1 : daughter(X,Y) <

& (mary,ann) ® ny =2
(eve, tom) ® ny =2
(tom, ann) © Ly =parent(Y,Z)

(eve, ann) - ny® =2

Current clause ¢y : daughter(X,Y) < parent(Y, Z)

Ey  (mary,ann,mary) & ny =4

(mary, ann, tom)
(eve, tom, eve)
(eve, tom, ian)
(tom, ann, mary)
(tom, ann, tom,)
(eve, ann, mary)
(eve, ann, tom)

OO OO DDD
=
O
|
W

[Lavrac/Dzeroski 1994]
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Literal Selection ® a0 ¥

Let n;” be the number of positive examples in step 1, ns be
the number of negative examples in step «.

information: .

n;

](CZ') = |092W

If the new literal does not Introduce new variables,
z+1 < n and nz+1 < n
But if new variables are mtroduced, this may not hold anymore.

Denote by n;"® the number of positive tuples in &; represented by
at least one tuple in &;,;.

weighted information gain:
WIG(L;, ¢;) := WIG(cii1,¢) = ny(I(c;) — I(cisq))

Select the literal with the highest weighted information gain.
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Resolution:

Given clauses C; and (s, infer resolvent C.

Ci=ClU{R},Cy=C,U{~R},RO=RO ~ C:=CloUC)H

Inverse resolution:
Given resolvent C' and clause (4, infer clause .

Cy:={R} ~ Cy:={-RYUC, RO=RICH=CH

Parent(George,Elizabeth)

o Parent(x,z) Vv Parent(zy) Vv Grandparent(x,y)

{x/George, Z/Eli zabeth}‘\

o Parent(Elizabeth,y) v Grandparent(George,y)

{ y/Anng}\

Grandparent(George,Anne) 0 Grandparent(George,Anne)

D

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 10/11

Parent(Elizabeth,Anne)




Artificial Intelligence / 3. Inverse Resolution 3 p/:s.ﬁ
: ol ¢

Inverse resolution is a search,
as there may be many pairs of clauses leading to resolvent ('

—Parent(Elizabeth, Anne) v Grandparent(George, Anne)
—Parent(z, Anne) v Grandparent(George, Anne)
—Parent(z, y) v Grandparent(George, y)

Many techniques available for narrowing search space:

e climinate redundancies, e.g., by generating only the most
specific hypothesis.

e restrict proof strategy, e.g., to linear proofs.
e restrict representation language, e.g., to Horn clauses.

e use different inference method, e.g., model checking or ground
propositional clauses.
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