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Artificial Intelligence / 1. Syntax

What is propositional logic?

In propositional logic, atomic formulas are propositions, i.e.,
assertions such as

A := “Aristotle is dead.”
B := “Hildesheim is on the Rhine.”
C := “Logic is fun.”

Atomic formulas are denoted by capital letters A, B, C, etc.

Each atomic formula is assigned a truth value: true (1) or false (0).
(In fuzzy logic truth values can be degrees between 0 and 1.)

“Propositional logic is not the study of truth,
but of the relationship between the truth of one statement and that
of another” (Hedman 2004).
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Artificial Intelligence / 1. Syntax

What is propositional logic?

There are several relationships between propositions that can be
expressed:

word symbol example terminus technicus
not ¬ not A ¬A negation
and ∧ A and B A ∧B conjunction
or ∨ A or B A ∨B disjunction
implies → A implies B A→ B implication
if and only if ↔ A if and only if B A↔ B biconditional
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Artificial Intelligence / 1. Syntax

What is propositional logic?

The natural language words may have slightly different meanings.

Example:

A ∧B and B ∧ A should always have the same meaning.

But the sentences

She became sick and she went to the doctor.

and

She went to the doctor and she became sick.

have different meanings.
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Artificial Intelligence / 1. Syntax

Syntax

formula := atomicFormula | complexFormula

atomicFormula := True | False | symbol

symbol := P | Q | R | . . .

complexFormula := ( ¬ formula ) [negation]

| ( formula ∧ formula ) [conjunction]

[positive literal] the same as atomicFormula.

[negative literal] ¬ P where P is an atomic formula.

Formulas also are called sentences or propositions.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 4/66



Artificial Intelligence / 1. Syntax

Syntax

Let S be a set of atomic formulas.
F(S) denotes the set of formulas over S,
i.e., the smallest set

– that contains S: S ⊆ F ,
– is closed under ¬: for all F ∈ F , also ¬F ∈ F , and
– is closed under ∧: for all F, G ∈ F , also F ∧G ∈ F .
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Artificial Intelligence / 1. Syntax

Syntax / Abbreviations

Some additional operators are introduced as abbreviations of
some complex formulas:

A ∨B := ¬(¬A ∧ ¬B)

A→ B := ¬A ∨B = ¬(¬¬A ∧ ¬B)

A↔ B := (A→ B) ∧ (B → A) = ¬(¬¬A ∧ ¬B) ∧ ¬(¬¬B ∧ ¬A)
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Artificial Intelligence / 1. Syntax

Syntax / Bracket Simplification (1/2)

The formal syntax makes extensive use of brackets
to make grouping unambiguous:

(((¬P ) ∨ (Q ∧R))⇒ S)

With the usual precedence rules

from highest to lowest: ¬, ∧, ∨,⇒,⇔
many brackets can be droppend and formulas be simplified:

¬P ∨Q ∧R⇒ S
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Artificial Intelligence / 1. Syntax

Syntax / Bracket Simplification (2/2)

Chaining of the same operator still is ambiguous on syntactic
level.

The formulas

P ∧Q ∧R and P ∨Q ∨R and P ⇔ Q⇔ R

can safely be used as the semantics (see below) of both possible
groupings

(P ∧Q) ∧R and P ∧ (Q ∧R)

is the same.

But
P ⇒ Q⇒ R

is not allowed because the semantics depends on the grouping.
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Artificial Intelligence / 1. Syntax

Subformulas

Subformulas of a formula F are substrings that are formulas
(if all parentheses are present).

But beware if you omit parentheses!
(A ∧B is a substring of ¬A ∧B, but not a subformula!)

Subformulas also can be recursively defined by

subformula(F ) :=

 {F}, if F is atomic
{¬G} ∪ subformula(G), if F = ¬G
{G ∧H} ∪ subformula(G) ∪ subformula(H), if F = G ∧H

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 9/66

Artificial Intelligence

1. Syntax

2. Semantics

3. Formal Proofs

4. Normal Forms

5. Resolution

6. Propositional Horn Formulas

7. Entailment by Model Checking

8. A Silly Example

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 10/66



Artificial Intelligence / 2. Semantics

Assignments

Let S be a set of atomic formulas.
A function A : S → {0, 1} is called an assignment of S or a
model of S.

Assignments of complex formulas are defined in terms of
assignments of their subformulas:

A(¬F ) := 1−A(F )

A(F ∧G) := A(F )A(G)

These functions usually are presented as truth tables:

F ¬F
0 1
1 0

F G F ∧G
0 0 0
0 1 0
1 0 0
1 1 1
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Artificial Intelligence / 2. Semantics

Assignments

This way, assignments are extended from A : S → {0, 1}
unambiguously to

A : F(S)→ {0, 1}

Assignments can even be extended to some formulas not in F(S),
but say in F(S ∪ S ′) with some additional atomic formulas S ′:
Let F ∈ F(S ∪ S ′).
If for every extension of A to S ∪ S ′
— i.e., every assignment A′ of S ∪ S ′ with A′|S = A—
A′(F ) has the same value,
then A(F ) := A′(F ).
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Artificial Intelligence / 2. Semantics

Assignments

Example:
Let S := {A, B}
and A(A) := 1 and A(B) := 0 an assignment on S.
Then

A(A ∧B) = 0

A(A ∨B) = 1

A(A ∧ (C ∨ ¬C)) = 1

A(A ∧ C ∧ ¬C) = 0
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Artificial Intelligence / 2. Semantics

Validity, Satisfiability, Contradiction

If A(F ) = 1, we say

– F holds under assignment A or
– A models F

and write
A |= F

A formula F is called

valid / a tautology, written |= F
if it holds under every assignment.

satisfiable
if it holds under some assignment.

unsatisfiable / a contradiction
if it holds under no assignment.

Examples:
C ∨ ¬C is valid.
C ∧ ¬C is unsatisfiable.
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Artificial Intelligence / 2. Semantics

Decision problems

Given a formula F ∈ F(S),
decide if

– F is valid ?
– F is satisfiable ?

Simple algorithm:
enumerate all possible assignments A of S and compute A(F ).
if A(F ) = 1 for all A, F is valid.
if A(F ) = 1 for at least one A, F is satisfiable.
otherwise F is unsatisfiable.

If F has n different atomic subformulas,
the runtime complexity of exhaustive enumeration is O(2n).
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Artificial Intelligence / 2. Semantics

Consequence / Entailment

Let F, G ∈ F(S) be two formulas.
G is said to be a consequence of F or F to entail G

F |= G

if for every assignment A under which F holds, also G holds,
i.e., if A |= F , then A |= G.

Lemma 1. F |= G if and only if |= F → G

Proof.
6|= F → G, i.e., there exists an assignment A with A(F → G) = 0
⇔ 1 = A(¬(F → G)) = A(¬(¬F ∨G)) = A(F ∧ ¬G)
⇔ A(F ) = 1 and A(¬G) = 1,
i.e., A |= F but not A |= G,
i.e., F 6|= G.
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Artificial Intelligence / 2. Semantics

Equivalence

Let F, G ∈ F(S) be two formulas.
G is said to be equivalent to F

F ≡ G

if G is a consequence of F and F is a consequence of G.

Examples:

F ∧ (G ∨H) ≡ (F ∧G) ∨ (F ∧H) [distributivity rule]
F ∨ (G ∧H) ≡ (F ∨G) ∧ (F ∨H) [distributivity rule]
¬(F ∧G) ≡ ¬F ∨ ¬G [DeMorgan’s rule]
¬(F ∨G) ≡ ¬F ∧ ¬G [DeMorgan’s rule]
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Artificial Intelligence / 2. Semantics

Consequences / Entailment of Theories

Let F ⊆ F(S) be a set of formulas (also called a theory or a
knowledge base).
An assignment A models F

A |= F
if it models every F ∈ F .

A formula G ∈ F(S) is said to be a consequence of theory F or
a theory F to entail G

F |= G

if every assignment A that models F , also models G,
i.e., if A |= F , then A |= G.

If F = {F1, F2, . . . , Fn} is finite, then

A |= {F1, F2, . . . , Fn} ⇔ A |= F1 ∧ F2 ∧ . . . ∧ Fn

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 17/66



Artificial Intelligence / 2. Semantics

The Consequence Problem

Given two formulas F and G,
decide if G is a consequence of F : F |= G ?

Given a theory F and a formula G,
decide if G is a consequence of F : F |= G ?

The problem for finite theories can be reduced to the problem for
a single formula via conjunction.

But as for the other problems, exhaustive enumeration is O(2n) in
the number n of atomic formulas.

But what to do if F is infinite?
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Artificial Intelligence / 3. Formal Proofs

Example (1/2)

Example:
Let

F := {A, A→ B, B → C, C → D, D → E,E → F, F → G}
and say we want to decide if F entails F ∨G ?

There are 27 = 128 different assignments for S = {A, B, . . . , G}
that would have to be checked separately.

assignment A theory F
A B C D E F G A A→ B B → C C → D D → E E → F F → G F ∨G
0 0 0 0 0 0 0 0 1 1 1 1 1 1 0
0 0 0 0 0 0 1 0 1 1 1 1 1 1 1
... ... ...
1 0 0 0 0 0 0 1 0 1 1 1 1 1 0
... ... ...
1 1 1 1 1 1 0 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Artificial Intelligence / 3. Formal Proofs

Example (2/2)

Example:
Let

F := {A, A→ B, B → C, C → D, D → E,E → F, F → G}
and say we want to decide if F entails F ∨G ?

On the other hand, we could derive F ∨G from the formulas F
step by step via

A, A→ B therefore B
B, B → C therefore C
C, C → D therefore D
D, D → E therefore E
E,E → F therefore F
F therefore F ∨G
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Artificial Intelligence / 3. Formal Proofs

Proofs

Let F be a set of formulas and G be a formula.
F ` G denotes that formula G can be derived from formulas F .

A proof system consists of a set of derivation rules r
that state which derivations follow from which other derivations
(parametrized by variables for subformulas).

A proof for F |= G is a sequence of derivations

F1 ` G1

F2 ` G2
...

Fn ` Gn

such that each derivation follows from earlier derivations by some
rule.
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Artificial Intelligence / 3. Formal Proofs

Example (1/2)

Let the proof system consist of just three rules:

premise conclusion name
F ∈ F F ` F assumption
F ` F F ` F ∨G ∨-introduction
F ` F,F ` F → G F ` G → -elimination

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 22/66



Artificial Intelligence / 3. Formal Proofs

Example (2/2)

The we can proof F ∨G from

F := {A, A→ B, B → C, C → D, D → E,E → F, F → G}
by

1. F ` A [assumption]
2. F ` A→ B [assumption]
3. F ` B [→-elimination applied to 1,2]
4. F ` B → C [assumption]
5. F ` C [→-elimination applied to 3,4]
6. F ` C → D [assumption]
7. F ` D [→-elimination applied to 5,6]
8. F ` D → E [assumption]
9. F ` E [→-elimination applied to 7,8]

10. F ` E → F [assumption]
11. F ` F [→-elimination applied to 9,10]
12. F ` F ∨G [∨-introduction applied to 11]
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Artificial Intelligence / 3. Formal Proofs

Basic rules for derivation

premise conclusion name
G ∈ F F ` G assumption
F ` G,F ⊆ F ′ F ′ ` G monotonicity
F ` ¬¬G F ` G double negation
F ` F,F ` G F ` F ∧G ∧-introduction
F ` F ∧G F ` F ∧-elimination
F ` F ∧G F ` G ∧ F ∧-symmetry
F ` F F ` F ∨G ∨-introduction
F ` F ∧G,
F ∪ {F} ` H,F ∪ {G} ` H F ` H ∨-elimination

F ` F ∨G F ` G ∨ F ∨-symmetry
F ∪ {F} ` G F ` F → G → -introduction
F ` F,F ` F → G F ` G → -elimination
F ` F F ` (F ) ()-introduction
F ` (F ) F ` F ()-elimination
F ` ((F ∧G) ∧H) F ` F ∧G ∧H ∧-parentheses rule
F ` ((F ∨G) ∨H) F ` F ∨G ∨H ∨-parentheses rule
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Artificial Intelligence / 3. Formal Proofs

More rules

Additionally one needs rules for definitions of ∨,→ and↔:

rule name
F ` F ∨G if and only if F ` ¬(¬F ∧ ¬G) ∨-definition
F ` F → G if and only if F ` ¬F ∨G →-definition
F ` F ↔ G if and only if F ` F → G,F ` G→ F ↔-definition

More rules can be derived from these rules.
E.g.,

premise conclusion name
none F ` ¬G ∨G tautology rule

proof:

1. F ∪ {G} ` G [assumption]
2. F ` G→ G [→-introduction applied to 1]
3. F ` ¬G ∨G [∨-definition applied to 2]
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Artificial Intelligence / 3. Formal Proofs

More rules

premise conclusion name
none F ` ¬G ∨G tautology rule
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Artificial Intelligence / 3. Formal Proofs

Soundness

A proof system is called sound if F ` G, then F |= G.

Lemma 2. The proof system outlined in this section is sound.

Proof. Show for each rule, that for its conclusion F ` G: F |= G.

∧-elimination:
F G F ∧G F ∧G→ F
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 1
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Artificial Intelligence / 3. Formal Proofs

Completeness

A proof system is called complete if F |= G, then F ` G.

Lemma 3. The proof system outlined in this section is complete.

Proof. See Hedmann 2004, p. 47.
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Artificial Intelligence / 4. Normal Forms

Definition Normal Forms

Formulas

F =

n∧
i=1

mi∨
j=1

Li,j

where Li,j is a literal (i.e., either an atom or the negation of an
atom) are called conjunctive normal form (CNF).

Formulas

F =

n∨
i=1

mi∧
j=1

Li,j

where Li,j is a literal (i.e., either an atom or the negation of an
atom) are called disjunctive normal form (DNF).

Here we write
n∧

i=1

Fi := F1 ∧ F2 ∧ . . . ∧ Fn,
n∨

i=1

Fi := F1 ∨ F2 ∨ . . . ∨ Fn
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Artificial Intelligence / 4. Normal Forms

Definition Normal Forms / Examples

Examples:

(A ∨B) ∧ (C ∨D) ∧ (¬A ∨ ¬B ∨ ¬D) is in CNF

(¬A ∧B) ∨ C ∨ (B ∧ ¬C ∧D) is in DNF

(A ∨B) ∧ ((A ∧ C) ∨ (B ∧D)) is neither
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Artificial Intelligence / 4. Normal Forms

Existence of CNF and DNF Equivalents

Lemma 4. Each formula is equivalent to a formula in CNF as well
as to a formula in DNF.

Proof. Let F be the formula and proof by induction:
if F is atomic, it clearly is CNF as well as DNF.
if F = ¬G, then let G ≡ ∧

i

∨
j Li,j by induction.

F = ¬G ≡ ¬
∧
i

∨
j

Li,j ≡
∨
i

∧
j

¬Li,j ≡
∨
i

∧
j

L′i,j

where L′i,j := ¬A if Li,j = A is atomic and L′i,j := A if Li,j = ¬A is
the negation of an atom, i.e., F is equivalent to a DNF. Similiar for
CNF.
if F = G ∧H, then F obviously is equivalent to a CNF.
To show that F is also equivalent to a DNF, let G ≡ ∨

i Li and
H ≡ ∨

j Mj be DNFs, respectively. Then

F = G ∧H ≡ (
∨
i

Li) ∧ (
∨
j

Mj) ≡
∨
i

∨
j

(Li ∧Mj)

is in DNF.
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Artificial Intelligence / 4. Normal Forms

CNF/DNF algorithm

1 cnf(formula F ) :
2 Replace all subformulas (G↔ H) of F by ((¬G ∨H) ∧ (¬H ∨G))
3 Replace all subformulas (G→ H) of F by (¬G ∨H)
5 Move ¬ inwards:
6 Replace all subformulas ¬(G ∧H) of F by (¬G ∨ ¬H)
7 Replace all subformulas ¬(G ∨H) of F by (¬G ∧ ¬H)
8 Replace all subformulas ¬¬G of F by G

10 Apply the ∨ -distributivity rule:
11 Replace all subformulas G ∨ (H ∧ I) of F by (G ∨H) ∧ (G ∨ I)
12 Replace all subformulas (H ∧ I) ∨G of F by (H ∨G) ∧ (I ∨G)
13 return F
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Artificial Intelligence / 4. Normal Forms

CNF/DNF algorithm / Example

F =(A ∨B)→ (¬B ∧ A)

≡¬(A ∨B) ∨ (¬B ∧ A)

≡(¬A ∧ ¬B) ∨ (¬B ∧ A)

≡((¬A ∧ ¬B) ∨ ¬B) ∧ ((¬A ∧ ¬B) ∨ A)

≡((¬A ∨ ¬B) ∧ (¬B ∨ ¬B)) ∧ ((¬A ∨ A) ∧ (¬B ∨ A))

≡(¬A ∨ ¬B) ∧ (¬B ∨ ¬B) ∧ (¬A ∨ A) ∧ (¬B ∨ A)

≡(¬A ∨ ¬B) ∧ ¬B ∧ (¬B ∨ A)

≡¬B
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Artificial Intelligence / 5. Resolution

Clauses

A formula
n∨

i=1

Li

where Li are literals is called clause.

Obviously, each CNF is a conjunction of clauses and determined
up to equivalence by its set of clauses

clauses(F ) := {
mi∨
j=1

Li,j | i = 1, . . . , n}

Clauses are often written as sets of literals:
n∨

i=1

Li  {L1, L2, . . . , Ln}
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Artificial Intelligence / 5. Resolution

Resolvents

Let F and G be two clauses (described by sets of literals) with
A ∈ F and ¬A ∈ G. Then the clause

(F \ {A}) ∪ (G \ {¬A})
is called a resolvent of F and G.

Example:
Let

F := {A,¬B, C}, G := {B,¬C, D}
then a resolvent of F and G is

({A,¬B, C} \ {C}) ∪ ({B,¬C, D} \ {¬C}) = {A,¬B, B, D}

Resolvents are not unique, e.g., another resolvent of F and G is

({A,¬B, C} \ {¬B}) ∪ ({B,¬C, D} \ {B}) = {A, C,¬C, D}
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Artificial Intelligence / 5. Resolution

Resolvents can be derived

Lemma 5. Resolvents can be derived.
More detailed: let F and G be two clauses and R a resolvent of F
and G, then

{F, G} ` R
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Artificial Intelligence / 5. Resolution

Resolvents can be derived

Proof. Let

F = F ′ ∨ A, G = G′ ∨ ¬A, R = F ′ ∨G′

Then
1. {F ′ ∨ A, G′ ∨ ¬A} ` F ′ ∨ A assumption
2. {F ′ ∨ A, G′ ∨ ¬A,¬A} ` F ′ ∨ A monotonicity applied to 1
3. {F ′ ∨ A, G′ ∨ ¬A,¬A} ` ¬A assumption
4. {F ′ ∨ A, G′ ∨ ¬A,¬A} ` F ′ ∨-elimination applied to 2 and 3
5. {F ′ ∨ A, G′ ∨ ¬A,¬A} ` F ′ ∨G′ ∨-introduction applied to 4

6. {F ′ ∨ A, G′ ∨ ¬A} ` G′ ∨ ¬A assumption
7. {F ′ ∨ A, G′ ∨ ¬A,¬¬A} ` G′ ∨ ¬A monotonicity applied to 6
8. {F ′ ∨ A, G′ ∨ ¬A,¬¬A} ` ¬¬A assumption
9. {F ′ ∨ A, G′ ∨ ¬A,¬¬A} ` G′ ∨-elimination applied to 7 and 8

10. {F ′ ∨ A, G′ ∨ ¬A,¬¬A} ` G′ ∨ F ′ ∨-introduction applied to 9
11. {F ′ ∨ A, G′ ∨ ¬A,¬¬A} ` F ′ ∨G′ ∨-symmetry applied to 10

12. {F ′ ∨ A, G′ ∨ ¬A} ` F ′ ∨G′ proof by cases applied to 5 and 11
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Artificial Intelligence / 5. Resolution

Resolution Proof System

Let F be a CNF. We define

Res0(F ) :=clauses(F )

Resi(F ) :=Resi−1(F )

∪{R |R is a resolvent of two clauses C, D ∈ Resi−1(F )}

As there are only finite many clauses of a finite set of atoms,
for some i we have

Resi(F ) = Resi−1(F )

and call this Res∗(F ).

The clauses in Res∗(F ) can be derived by just two rules:

premise conclusion name
1. C is a clause of F F ` C [assumption]
2. F ` C, F ` D, R is a resolvent of C, D F ` R [resolution]
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Artificial Intelligence / 5. Resolution

Soundness & Completeness

The resolution proof system claims for a CNF F :

F is unsatisfiable⇐⇒ ∅ ∈ Res∗(F )

Lemma 6. Resolution is sound and complete.

Proof.
sound: as resolution can be proved.

complete: not so obvious to see; see Hedmann 2004, p. 42.
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Artificial Intelligence / 5. Resolution

Entailment by Resolvents / Algorithm

1 entails(formula F, query formula Q) :
2 C := ∅
3 C′ := clauses(cnf(F ∧ ¬Q))
4 while C′ 6= ∅ do
5 C := C ∪ C′

6 C′ := ∅
7 for C, D ∈ C do
8 R := {R |R is a resolvent of C, D}
9 if ∅ ∈ R return true fi

10 C′ := C′ ∪R
11 od
12 od
13 return false
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Artificial Intelligence / 5. Resolution

Entailment by Resolvents / Example

Is the following formula satisfiable?

F := (A ∨B ∨ ¬C) ∧ ¬A ∧ (A ∨B ∨ C) ∧ (A ∨ ¬B)

{A, B,¬C} {A, B, C}
↘ ↙
{A, B} {A,¬B}

↘ ↙
{¬A} {A}

↘ ↙
∅

Therefore, F is unsatisfiable.
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Artificial Intelligence / 6. Propositional Horn Formulas

Horn Formulas

A CNF F is called Horn formula if
each conjunction contains at most one positive literal,
i.e.

F =

n∧
i=1

mi∨
j=1

Li,j

where Li,j are literals and for each i there is at most one j with
Li,j positive.

Example:

A ∧ (¬A ∨ ¬B ∨ C) ∧ (¬B ∨ C) ∧ (¬B ∨D) ∧ (¬C ∨ ¬D) is Horn
A ∨B is not Horn

Different from CNF, not every formula has an equivalent Horn
formula.
Example: A ∨B
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Artificial Intelligence / 6. Propositional Horn Formulas

Basic Horn Formulas

A formula
n∨

i=1

Li

where Li are literals and at most one is positive, is called Horn
clause or Basic Horn formula.

Obviously, each Horn formula is a conjunction of Horn clauses
and determined up to equivalence by its sets of clauses

clauses(F ) := {
mi∨
j=1

Li,j | i = 1, . . . , n}

Example:

A ∧ (¬A ∨ ¬B ∨ C) ∧ (¬B ∨ C) ∧ (¬B ∨D) ∧ (¬C ∨ ¬D) is Horn, but not basic Horn
(¬A ∨ ¬B ∨ C) is basic Horn
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Artificial Intelligence / 6. Propositional Horn Formulas

Basic Horn Formulas as Implications

Basic Horn formulas can be written as implications of
atoms/positive literals:

(

n∨
i=1

¬Li ∨M) ≡(

n∧
i=1

Li →M)

(

n∨
i=1

¬Li) ≡(

n∧
i=1

Li → false)

M ≡(true→M)

where Li and M are positive literals.

Example:
A ∧ (¬A ∨ ¬B ∨ C) ∧ (¬B ∨ C) ∧ (¬B ∨D) ∧ (¬C ∨ ¬D)

≡(true→ A) ∧ (A ∧B → C) ∧ (B → C) ∧ (B → D) ∧ (C ∧D → false)

For an implication L→M , we write
body(L→M) :=L

head(L→M) :=M
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Artificial Intelligence / 6. Propositional Horn Formulas

Entailment for Horn Formulas

The entailment problem for Horn formulas can be solved efficiently,
in linear time in the number of clauses.

Idea: build assignment incrementally using clauses for inference:

1. all atoms that occur in clauses without premise are assigned true,

2. for all clauses where all premises are already assigned true,
assign also the head true.

3. once the query atom is assigned true, terminate and return true.

4. if there are no more clauses with all premises assigned true,
terminate and return false.

Satisfiability:
Horn formulas without a clauses with head false always are satisfiable.
Horn formulas with some clauses with head false are unsatisfiable,
if the atom false is entailed.
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Artificial Intelligence / 6. Propositional Horn Formulas

Entailment for Horn Formulas / Example

Is the following Horn formula satisfiable?

(true→ A) ∧ (A ∧B → C) ∧ (C → D) ∧ (C ∧D → false) ∧ (true→ B)

Can we entail the query atom false?

As there are clauses true→ A and true→ B,
we assign A and B to true.

As now all premises of A ∧B → C are true,
we assign C to true.

As now all premises of C → D are true,
we assign D to true.

As now all premises of C ∧D → false are true,
we entail the query atom false.

Therefore, the formula is not satisfiable.
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Artificial Intelligence / 6. Propositional Horn Formulas

And/Or Graphs

Horn clauses:

P =⇒ Q

L ∧M =⇒ P

B ∧ L =⇒ M

A ∧ P =⇒ L

A ∧B =⇒ L

A

B

Q

P

M

L

BA

2 2

2

2

1
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Artificial Intelligence / 6. Propositional Horn Formulas

Entailment for Horn Formulas / Algorithm

1 entail(horn formula F, query atom Q) :
2 S := atoms(F )
3 A(A) := false, ∀A ∈ S
4 C := clauses(F )
5 p(C) := number of premises in body(C), ∀C ∈ C
6 H := {head(C) |C ∈ C : body(C) = ∅}
7 while H 6= ∅ do
8 A := remove-element(H)
9 if A = Q return true fi

10 if A(A) = false
11 A(A) := true
12 for C ∈ C : A occurs in body(C) do
13 p(C) := p(C)− 1
14 if (p(C) = 0)
15 append(H, head(C))
16 fi
17 od
18 fi
19 od
20 return false
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Artificial Intelligence / 6. Propositional Horn Formulas

Entailment for Horn Formulas / Soundness & Completeness

Lemma 7. The inference algorithm for Horn formulas is sound
and complete.

Proof.
sound, i.e., every derived atom is entailed:
in each step only modus ponens /→-elimination rule applied.

complete, i.e., every entailed atom will be derived:
A is an assignment for F , i.e., each clause holds:
assume L1 ∧ L2 ∧ . . . ∧ Ln →M is clause that does not hold.
Then A(Li) = true and A(M) = false. But in this case M would
have been assigned true, so there cannot be a clause that does
not hold.
As A is an assignment that models F , any atom not assigned
true in A is not entailed by F . And all the atoms assigned true by
A will be derived.
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Artificial Intelligence / 7. Entailment by Model Checking

Entailment, Satisfiability, Existence of Models

Entailment of a query formula Q by a given formula F can also be
computed by model checking,
i.e.,

computing a model/assignment that models F but not Q
(F ∧ ¬Q is satisfiable)
then F does not entail Q.

show that there is no model that models F but not Q
(F ∧ ¬Q is not satisfiable)
then F entails Q.
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Artificial Intelligence / 7. Entailment by Model Checking

Approaches

Different approaches:

incremental model building / complete enumeration
compute all assignments and check each individually.

incremental model building / use inference where possible
use inference in some easy to check situations,
otherwise enumerate all possible assignments.

local search
start with a complete random assignment,
update the truth value of some variables in each step to make
less clauses false.
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Artificial Intelligence / 7. Entailment by Model Checking

Use inference where possible / Early stopping

Transform the formula to check for satisfiability to CNF.

A clause is true, if one of its literals is true.
The formula is true, if each clause is true.

Example:

(A ∨ ¬B ∨ C) ∧ (¬B ∨ ¬C ∨D) ∧ (A ∧D)

Assume partial assignment: A(B) = false, A(D) = true.

Then each clause is already true,
so we do not have to complete the assignment but can stop here.
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Artificial Intelligence / 7. Entailment by Model Checking

Use inference where possible / early stopping

A clause is false, if all of its literals are false.
The formula is false, if one of its clauses is false.

Example:

(A ∨ ¬B ∨ C) ∧ (¬B ∨ ¬C ∨D) ∧ (A ∧D)

Assume partial assignment: A(A) = false, A(D) = false.

The last clause is false,
so this partial assignment cannot be completed to a model.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 53/66

Artificial Intelligence / 7. Entailment by Model Checking

Use inference where possible / pure symbols

If of some symbol A, only positive (or only negative) literals occur,
then the symbol safely can be assigned true (or false).
Such symbols are called pure.

Example:

(A ∨ ¬B ∨ C) ∧ (¬B ∨ ¬C ∨D) ∧ (A ∧D)

Assume empty assignment: A = ∅.

A is pure as it appears only in positive form.
B is pure as it appears only in negative form.
D is pure as it appears only in positive form.
 it is safe to assign A(A) = true, A(B) = false and A(D) = true.
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Artificial Intelligence / 7. Entailment by Model Checking

Use inference where possible / unit clauses

If some clause consists only of a single literal not yet assigned to
false, then the respective symbol safely can be assigned true (or
false).
Such symbolsclauses called unit clauses.

Example:

(A ∨ ¬B ∨ C) ∧ (¬B ∨ ¬C ∨D) ∧ (A ∧D)

Assume partial assignment: A(A) = false, A(C) = false.

The first clause consists only of the literal ¬B not yet assigned to
false.
 A(B) = false.
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Artificial Intelligence / 7. Entailment by Model Checking

Davis-Putnam Algorithm

Model checking using

early stopping
(true if one literal of each clause is true,
false if all literals of one clause are false)

pure symbols
(occurs only as positive or only as negative literal)

unit clauses
(contains only one literal not yet assigned to false)

is called Davis-Putnam Algorithm or DPLL (after its inventors
Martin Davis, Hilary Putnam (1960) and Davis, Logemann and
Loveland (1962)).
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Artificial Intelligence / 7. Entailment by Model Checking

Davis-Putnam Algorithm

1 entails-dpll(formulaF, query formulaQ) :
2 C := clauses(cnf(F ∧ ¬Q))
3 A(A) := ∅ ∀A ∈ S(C)
4 return not satisfiable-dpll(C,A)
5

6 satisfiable-dpll(set of clausesC, partial assignmentA) :
7 if ∀C ∈ C∃A ∈ C : A(A) = truereturn truefi
8 if ∃C ∈ C∀A ∈ C : A(A) = falsereturn falsefi
9

10 if ∃A ∈ A−1(∅) : ∀C ∈ C : A ∈ C or¬A 6∈ C [pure symbol]
11 return satisfiable.dpll(C,A ∪ {A 7→ true})
12 elsif ∃A ∈ A−1(∅) : ∀C ∈ C : ¬A ∈ C or A 6∈ C
13 return satisfiable-dpll(C,A ∪ {A 7→ false})
14 fi
15

16 if ∃C ∈ C, A ∈ A−1(∅) : A ∈ C and∀B ∈ C, B 6= A : A(B) = false [unit clause]
17 return satisfiable-dpll(C,A∪ {A 7→ true})
18 elsif ∃C ∈ C, AA−1(∅) : ¬A ∈ C and∀B ∈ C, B 6= ¬A : A(B) = false
19 return satisfiable-dpll(C,A ∪ {A 7→ false})
20 fi
21

22 A = random(A−1(∅))
23 return satisfiable-dpll(C,A∪ {A 7→ true}) | satisfiable-dpll(C,A ∪ {A 7→ false})
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Artificial Intelligence / 7. Entailment by Model Checking

Local Search: WalkSat

Local search algorithm for deciding satisfiability

• start with a random complete assignment,

• stop when all clauses are satisfied,

• otherwise pick an unsatisfied clause C and
– either flip the assignment of the symbol that maximizes the

number of satisfied clauses (min-conflicts step)

A := argmaxA∈S(C)|{C ′ ∈ C |A|S\{A}∪{A 7→ 1−A(A)} |= C ′}|
– or flip a random symbol of C.

Cannot prove insatisfiability,
just indicates that no solution may exist
as it could not be computed in time.
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Artificial Intelligence / 7. Entailment by Model Checking

WalkSat Algorithm

1 satisfiable-walksat(set of clausesC, random walk prob.p ∈ [0, 1], maxSteps) :
2 A := random assignment ofS(C)
3 for i := 1 . . . maxStepsdo
4 if ∀C ∈ C : A(C) = truereturn true fi
5 C := random{C ∈ C |A(C) = false}
6 if random() > p
7 A := argmaxA∈S(C)|{C ′ ∈ C |A|S\{A} ∪ {A 7→ 1−A(A)} |= C ′}|
8 else
9 A := randomS(C)

10 fi
11 A(A) := 1−A(A)
12 od
13 return failure
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Artificial Intelligence / 7. Entailment by Model Checking

Hard Satisfibility Problems

3-CNF: CNF where each clause consists of exactly 3 literals.

The satisfiability problem (SAT) for 3-CNF formulas is called
3-SAT and still NP-complete.

The more clauses per symbol a SAT problem has,
the more models may be ruled out
and thus the less likely it is satisfiable.
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Artificial Intelligence / 7. Entailment by Model Checking

Hard Satisfibility Problems
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Artificial Intelligence / 8. A Silly Example

Wumpus World

Toy example by Gregory Yob (1975), adapted by our textbook.

– 4× 4 grid, tiles numbered (1,1) to (4,4),
– the agent starts in (1,1),
– the beast Wumpus sits at a random tile, unknown to the agent,
– a pile of gold sits at another random tile, unknown to the agent,
– some pits are located at random tiles, unknown to the agent.

– if the agent enters the tile of the Wumpus, he will be eaten,
– if the agent enters a pit, he will be trapped,
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Artificial Intelligence / 8. A Silly Example

Wumpus World

Toy example by Gregory Yob (1975), adapted by our textbook.

– the agent has a single shot to shoot at a neighboring tile and
kill the Wumpus if it is there,

– the agent can pick up the pile of gold if it is at the same tile,
– the agent can move to neighboring tiles,

– the agent perceives a breeze at neighboring tiles of pits,
– the agent perceives stench at neighboring tiles of the

Wumpus.
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Artificial Intelligence / 8. A Silly Example

Physics

64 variables:

Px,y tile x, y contains a pit (x, y = 1, . . . , 4).
Wx,y tile x, y contains the Wumpus (x, y = 1, . . . , 4).
Bx,y tile x, y contains a breeze (x, y = 1, . . . , 4).
Sx,y tile x, y contains stench (x, y = 1, . . . , 4).

start is save: (2 formulas)

¬P1,1, ¬W1,1

how breeze arises: (16 formulas)

Bx,y ↔ Px−1,y ∨ Px+1,y ∨ Px,y−1 ∨ Px,y+1, x, y = 1, . . . , 4

how stench arises: (16 formulas)

Sx,y ↔ Wx−1,y ∨Wx+1,y ∨Wx,y−1 ∨Wx,y+1, x, y = 1, . . . , 4

there is exactly one Wumpus: (121 formulas)

W1,1 ∨W1,2 ∨ . . . ∨W4,4

¬Wx,y ∨ ¬Wx′,y′, x, y, x′, y′ = 1, . . . , 4, x 6= x′ or y 6= y′
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Artificial Intelligence / 8. A Silly Example

Explore the Wumpus World
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Artificial Intelligence / 8. A Silly Example

Explore the Wumpus World
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Artificial Intelligence / 8. A Silly Example

Explore the Wumpus World
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Artificial Intelligence / 8. A Silly Example

Explore the Wumpus World
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Artificial Intelligence / 8. A Silly Example

Explore the Wumpus World

OK

OK OK

A

A

B

P?

P?

A

S

OK

P

W

A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 64/66



Artificial Intelligence / 8. A Silly Example

Explore the Wumpus World
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Artificial Intelligence / 8. A Silly Example

Explore the Wumpus World
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Artificial Intelligence / 8. A Silly Example

Wumpus World

Perceptions are told / added to the knowledgebase.

Consequences as conditions for actions can then be asked from
the knowledgebase, e.g.,

• tile x, y is provably safe if

¬Wx,y ∧ ¬Px,y

is entailed by the knowledgebase.

• if there are no provably safe tiles,
choose among tiles x, y that may or may not be dangerous,
i.e., where

Wx,y ∨ Px,y

is not entailed.

Beyond Wumpus World, have a look at General Game Playing
(http://games.stanford.edu).
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Artificial Intelligence / 8. A Silly Example

Wumpus World

function PL-Wumpus-Agent( percept) returns an action
inputs: percept, a list, [stench,breeze,glitter]
static: KB, a knowledge base, initially containing the “physics” of the wumpus world

x, y, orientation, the agent’s position (initially [1,1]) and orientation (initially right)
visited, an array indicating which squares have been visited, initially false
action, the agent’s most recent action, initially null
plan, an action sequence, initially empty

update x,y,orientation, visited based on action

if stench then Tell(KB,Sx,y) else Tell(KB,¬ Sx,y)
if breeze then Tell(KB,Bx,y) else Tell(KB,¬ Bx,y)
if glitter then action← grab

else if plan is nonempty then action←Pop(plan)
else if for some fringe square [i,j], Ask(KB, (¬ Pi,j ∧ ¬ Wi,j)) is true or

for some fringe square [i,j], Ask(KB, (Pi,j ∨ Wi,j)) is false then do
plan←A∗-Graph-Search(Route-Problem([x,y], orientation, [i,j],visited))
action←Pop(plan)

else action← a randomly chosen move
return action

1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 66/66


