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Artificial Intelligence / 1. Greedy Best-First Search

Uniform Cost Search

1 uniform-cost-search(X, succ, cost, x0, g) :
2 border := {x0}
3 c(x0) := 0
4 while border 6= ∅ do
5 x := argminx∈borderc(x)
6 if g(x) = 1
7 return branch(x, previous)
8 fi
9 for y ∈ succ(x, A) do

10 border := border ∪ {y}
11 c(y) := c(x) + cost(x, y)
12 previous(y) := x
13 od
14 border := border \ {x}
15 od
16 return ∅
17

18 branch(x, previous) :
19 P := ∅
20 while x 6= ∅ do
21 insert-at-beginning(P, x)
22 x := previous(x)
23 od
24 return P
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Artificial Intelligence / 1. Greedy Best-First Search

Best-First-Search

1 uniform-cost-search(X, succ, cost, x0, g) :
2 border := {x0}
3 c(x0) := 0
4 while border 6= ∅ do
5 x := argminx∈borderc(x)
6 if g(x) = 1
7 return branch(x, previous)
8 fi
9 for y ∈ succ(x, A) do

10 border := border ∪ {y}
11 c(y) := c(x) + cost(x, y)
12 previous(y) := x
13 od
14 border := border \ {x}
15 od
16 return ∅
17

18 branch(x, previous) :
19 P := ∅
20 while x 6= ∅ do
21 insert-at-beginning(P, x)
22 x := previous(x)
23 od
24 return P

1 best-first-search(X, succ, cost, x0, g, f) :
2 border:= {x0}
3 while border6= ∅ do
4 x := argminx∈borderf(x)
5 if g(x) = 1
6 return branch(x, previous)
7 fi
8 for y ∈ succ(x, A) do
9 border:= border∪ {y}

10 previous(y) := x
11 od
12 border:= border\ {x}
13 od
14 return ∅

f : evaluation function

uniform cost search is special case with

f (x) := cost(branch(x,previous))
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Artificial Intelligence / 1. Greedy Best-First Search

Additional Information: a Heuristics
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cost : X ×X → R h : X → R
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Artificial Intelligence / 1. Greedy Best-First Search

Greedy Best-First Search

Additional Information:
Heuristics h estimates costs to next goal state.

Greedy best-first search:
Take heuristics as evaluation function:

f := h
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Artificial Intelligence / 1. Greedy Best-First Search

Greedy Best-First Search / Example

Arad

366
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Artificial Intelligence / 1. Greedy Best-First Search

Greedy Best-First Search / Example

Zerind

Arad

Sibiu Timisoara

253 329 374
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Artificial Intelligence / 1. Greedy Best-First Search

Greedy Best-First Search / Example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

329 374

366 176 380 193
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Artificial Intelligence / 1. Greedy Best-First Search

Greedy Best-First Search / Example

Rimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Sibiu Bucharest

329 374

366 380 193

253 0
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Artificial Intelligence / 1. Greedy Best-First Search

Greedy Best-First Search

Completeness
no (can get stuck in loops:

e.g., goal Oradea; Iasi→ Neamt→ Iasi→ . . . )
yes with repeated state checking

Optimality
no

Time complexity
O(bm) — but average time complexity may be much better for
good heuristics.

Space complexity
same as time complexity as whole search tree is kept in
memory.
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Artificial Intelligence / 2. A∗ Search

A∗ Search

Additional Information:
Heuristics h estimates costs to next goal state.

Greedy best-first search:
Take heuristics as evaluation function:

f := h

A∗ search:
Idea: penalty paths that are already costly.
 take sum of costs so far and heuristics as evaluation function:

f := cost + h
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Artificial Intelligence / 2. A∗ Search

A∗ Search / Example

A∗ search example

Zerind

Arad

Sibiu Timisoara

447=118+329 449=75+374393=140+253

Chapter 4, Sections 1–2 18
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Artificial Intelligence / 2. A∗ Search

A∗ Search / Example

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374

646=280+366 413=220+193415=239+176 671=291+380

Chapter 4, Sections 1–2 19

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 6/25

Artificial Intelligence / 2. A∗ Search

A∗ Search / Example

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Fagaras Oradea

447=118+329 449=75+374

646=280+366 415=239+176

Rimnicu Vilcea

Craiova Pitesti Sibiu

526=366+160 553=300+253417=317+100

671=291+380
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Artificial Intelligence / 2. A∗ Search

A∗ Search / Example

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253417=317+100

671=291+380
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Artificial Intelligence / 2. A∗ Search

A∗ Search / Example

A∗ search example

Zerind

Arad

Sibiu

Arad

Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea

Craiova Pitesti Sibiu

Bucharest Craiova Rimnicu Vilcea

418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380
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Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 6/25



Artificial Intelligence / 2. A∗ Search

A∗ Search

Completeness
yes (if b is finite and step costs are ≥ ε > 0

 there are only finite many states x with f (x) ≤ f (goal))

Optimality
no (with any heuristics)
yes with admissible heuristics (see next page)

Time complexity
exponential in (relative error in h) · d.

Space complexity
same as time complexity as whole search tree is kept in
memory.
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Artificial Intelligence / 2. A∗ Search

Optimality

Heuristics is admissible (“optimistic”, lower bound):

h ≤ h∗

where h∗ denotes the true cost to the next goal.

Lemma: If h is admissible, A∗ search is optimal.

Proof: assume suboptimal G2 has been found
and let n be any node on an optimal path to optimal solution G.

f (G2) = cost(G2) > cost(G) ≥ f (n)

Hence n must be visited before G2.

G

n

G2

Start
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Artificial Intelligence / 2. A∗ Search

Optimality

A∗ expands nodes in layers/contours of increasing f value.
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Artificial Intelligence / 3. Admissible Heuristic Functions

Example 8-Puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7
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5
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Artificial Intelligence / 3. Admissible Heuristic Functions

Example 8-Puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h1(x) := number of misplaced tiles

h1(x) = 6.
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Artificial Intelligence / 3. Admissible Heuristic Functions

Example 8-Puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

h2(x) := sum of distances of all misplaced tiles to goal
Here: distance in required moves, i.e., Manhattan distance.

h2(x) = 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14
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Artificial Intelligence / 3. Admissible Heuristic Functions

Which heuristics is better?

Size of search tree in nodes for two examples:

length of optimal solution
algorithm d = 14 d = 24
IDS 3,473,941 ≈ 54,000,000,000
A∗(h1) 539 39,135
A∗(h2) 113 1,641

For two admissble heurstics h1 and h2:
h1 dominates h2 if h1(x) ≥ h2(x) for all x.

Using a dominant heuristics with A∗ always is faster.
(as only nodes x with f (x) = cost(x) + h(x) ≤ f (x∗) are
expanded!)

h := max(h1, h2) also is admissible and dominates h1 and h2.
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Artificial Intelligence / 3. Admissible Heuristic Functions

How to design a heuristics? / 1. Relaxation

Conditions for legal moves:

A tile can move from A to B
(a) if A and B are horizontally or vertically adjacent and B is blank.

Relax conditions to:

(b) if A and B are horizontally or vertically adjacent.
— OR —
(c) if B is blank.
— OR —
(d) if true.

h1 gives the true costs for relaxed problem (d).
h2 gives the true costs for relaxed problem (b).
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Artificial Intelligence / 3. Admissible Heuristic Functions

How to design a heuristics? / 2. Subproblems

Look at a subproblem, e.g.,
8-puzzle with four tiles labeled 1 to 4 and four unlabeled tiles.

Each state x can be projected to a state subproblem1234(x) of the
subproblem.

 7 2 4
5 6
8 3 1

 project 

 ∗ 2 4
∗ ∗
∗ 3 1

 solve 

 1 2 3
4 ∗ ∗
∗ ∗


h3(x) :=cost(subproblem1234(x))
— the cost to solve just the subproblem.
(all configurations of such subproblems, called patterns and their
costs can be precomputed and stored in a database).
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Artificial Intelligence / 4. Local Search

Local Search

For some problems just the final state is interesting,
not the action/state sequence to reach the final state.

Examples:

– 8-queens problem
– traveling salesman problem
– . . .

Then it is a waste to keep all the information about solution paths.
Instead:

– keep only one state x, the actual or current state
– consider only neighboring states as next actual state

i.e., reachable by an action from the actual state: succ(x,A).
– needs objective function to steer movement: f

may need an heuristics if the true objective is not accessible.

Called local search or neighborhood search.
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Artificial Intelligence / 4. Local Search

Local Search

If the state space consists just of “complete configurations”,
local search can be understood as iterative improvement.

In any case:
Local search requires just constant space.
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Artificial Intelligence / 4. Local Search

Example / Traveling Salesman Problem

Problem:
given a graph with labeled edges,
find a cycle that visits each node exactly once (hamiltonian cycle;
tour) with minimal sum of edge labels (costs).

State space:
all tours.

Actions:
remove two edges and join the resulting two paths in the other
possible way (2-Opt; Croes 1958).

Objective function:
cost of resulting tour.
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Artificial Intelligence / 4. Local Search

Example / 8-Queens

State space:
8 queens on the board, each in one column.

Actions:
move a queen to another row in her column.

Heuristics h:
number of possible attacks.

Example: n-queens

Put n queens on an n× n board with no two queens on the same
row, column, or diagonal

Move a queen to reduce number of conflicts

h = 5 h = 2 h = 0

Almost always solves n-queens problems almost instantaneously
for very large n, e.g., n = 1million

Chapter 4, Sections 3–4 5
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Artificial Intelligence / 4. Local Search

Hill-climbing / Steepest Descent/Ascent

Greedy local search:
always move to the neighbor with the maximal objective value.

1 hill-climbing(X, succ, f, x0) :
2 y := x0

3 do
4 x := y
5 y := argmaxy∈succ(x,A)f(y)

6 while f(y) > f(x)
7 return x

For continuous state spaces / actions and differentiable objective
functions:
gradient descent/ascent.
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Artificial Intelligence / 4. Local Search

Hill-climbing / Steepest Descent/Ascent

State space landscape:

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

Random restart: try to overcome local maxima.

Random sideways move: try to overcome shoulders.
(but restrict their number to avoid infinite loops on flat local
maxima)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 19/25

Artificial Intelligence / 4. Local Search

Stochastic Hill-climbing

Idea:
like hill-climbing
but choose randomly among all improving actions
proportional to their improvement.

1 hill-climbing-stochastic(X, succ, f, x0) :
2 y := x0

3 do
4 x := y

5 y ∼ multinomial(succ(x, A)) with p(y) := max(0,f(y)−f(x))P
y max(0,f(y)−f(x))

, y ∈ succ(x, A)

6 while f(y) > f(x)
7 return x

p(y) is called the acceptance probability for neighboring state y
of x.
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Artificial Intelligence / 4. Local Search

Simulated Annealing

Idea:
like hill-climbing
but also allow deteriorating actions
slight deteriorations more often than severe deteriorations
less and less deteriorations as the search proceeds

1 simulated-annealing(X, succ, f, x0, T ) :
2 x := x0

3 for k := 1 to∞ while T (k) > 0 do
4 y ∼ uniform(succ(x, A))
5 if f(y) > f(x) or random() ≤ exp((f(y)− f(x))/T (k))
6 x := y
7 fi
8 od
9 return x

T is called the temperature schedule, T → 0 for k growing.
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Artificial Intelligence / 4. Local Search

Beam Search

Idea:
like hill-climbing
but retain k best solutions in parallel.

1 beam-search(X, succ, f, g, k) :
2 S := random subset of X of size k
3 while g(x) = 0 ∀x ∈ S do
4 S := argmaxk

y∈succ(S,A)f(y)

5 od
6 return x ∈ S with g(x) = 1

where succ(S,A) :=
⋃
x∈S succ(x,A) and

argmaxk selects the k elements with maximum argument.

S is called population, each state an individual.

This is different from k random restarts of hill-climbing!
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Artificial Intelligence / 4. Local Search

Genetic Algorithms

Idea:
like beam search
but combine two states to a new state
(represented as string/vector)

1 genetic-algorithm(X, f, g, k) :
2 S := random subset of X of size k
3 while g(x) = 0 ∀x ∈ S do
4 S ′ := ∅
5 for i = 1 . . . k do
6 x1, x2 ∼ multinomial(S) with p(x) := f(x)P

x′∈S f(x′) , x ∈ S

7 y := combine(x1, x2)
8 if (random() < pmutation) y := mutation(y) fi
9 S ′ := S ′ ∪ {y}

10 od
11 S := S ′

12 od
13 return x ∈ S with g(x) = 1
14

15 combine(x1, x2) :
16 n := length(x1)
17 c ∼ uniform({1, 2, . . . , n})
18 return concat(x1[1 . . . c], x2[c + 1 . . . n])

f also is called fitness (and should be ≥ 0).
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Artificial Intelligence / 4. Local Search

Genetic Algorithms / Example

32252124

Selection Cross−Over Mutation

24748552

32752411

24415124

24

23

20

32543213 11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24752411

32748152

24415417

Fitness Pairs

Genetic algorithms create triadic neighborhoods
pair of states→ state

by means of combination/reproductio/cross-over.

To make sense, the string encoding must be such that close
positions encode related properties of the candidate solution.
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Artificial Intelligence / 4. Local Search

Genetic Algorithms / Example

32252124

Selection Cross−Over Mutation

24748552

32752411

24415124

24

23

20

32543213 11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

24752411

32748152

24415417

Fitness Pairs

Genetic algorithms contd.

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

+ =

GAs 6= evolution: e.g., real genes encode replication machinery!

Chapter 4, Sections 3–4 12
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