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Uniform Cost Search

uniform-cost-search( X, succ, cost, o, g) :
border := {xo}
c(xp) =0
while border # () do
T 1= AGMIN, cporger ()
if g(z) =1
return branch(z, previous)
fi
for y € succ(x, A) do
border := border U {y}
c(y) = c(x) + cost(x, y)
previous(y) := x
od
border := border \ {z}
od
return (
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branch(z, previous) :

P:=0

while = # () do
insert-at-beginning( P, x)
x := previous(z)

od

return P
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Best-First-Search 2008

1 uniform-cost-search( X, succ, cost, xg, g) : 1 best-first-seardtX, succ cost zg, g, f) :
2 border := {0} 2 border:= {zo}

3 ¢(xg) =0 3 while border# § do

4 while border # () do 4 x = argmin, cporged (%)

5 €T= argminzeborderc(m) 5 if g(x) =1

6 if g(x) =1 6 return branchz, previoug
7 return branch(z, previous) 7 fi

8 fi 8 for y € succx, A) do

9 for y € succ(z, A) do 9 border:= borderu {y}
10 border := border U {y} 10 previougy) := z

1 c(y) = c(z) + cost(z, y) 1 od

12 previous(y) := x 12 border:= border\ {z}

13 od 13 od

14 border := border \ {z} 14 return ()

15 od

16 return 0

17

18 branch(z, previous) : . .

1> brenchilr, previous) f: evaluation function

20 while = # () do

insert-at-beginning( P, x)
x := previous(z)

od

return P f(z) := cost(branch(z, previous))

N
=

uniform cost search is special case with
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Additional Information: a Heuristics

Straight-line distance

to Bucharest

Arad 36€
Buchar est o
Craiova 16(
Dobreta 242
Eforie 161
Fagaras 17¢
Giurgiu 77
[] Vaslui Hirsova 151
las 22€
Timisoara Lugoj 244
Mehadia 241
Pitesti Neamt 234
Oradea 38(
98 , Pitesti 08
[[] Hirsova . . .
[] Mehadia Rimnicu Vilcea 19z
75 86 Sibiu 252
Timisoara 32¢
Dobreta [] Ur ziceni 8C
o Eforie Vaslui 19¢
[] Giurgiu Zerind 374
cost: X x X —- R h: X —R
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Artificial Intelligence / 1. Greedy Best-First Search

Greedy Best-First Search

Additional Information:
Heuristics h estimates costs to next goal state.

Greedy best-first search:
Take heuristics as evaluation function:

f=nh
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Greedy Best-First Search / Example
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Greedy Best-First Search / Example
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Artificial Intelligence / 1. Greedy Best-First Search
Greedy Best-First Search

c_}'\,\\uﬂy

Completeness
no (can get stuck in loops:
e.g., goal Oradea; lasi — Neamt — lasi — ...)

yes with repeated state checking

Optimality
no

Time complexity
O(b™) — but average time complexity may be much better for
good heuristics.

Space complexity
same as time complexity as whole search tree is kept in

memory.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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1. Greedy Best-First Search

2. A* Search

3. Admissible Heuristic Functions

4. Local Search
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A* Search ® 2008 ¥

Additional Information:
Heuristics h estimates costs to next goal state.

Greedy best-first search:
Take heuristics as evaluation function:

f=nh

A* search:
|dea: penalty paths that are already costly.
~+ take sum of costs so far and heuristics as evaluation function:

f:=cost+h

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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A* Search / Example a0 7
393=140+253 447=118+329 449=75+374
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A* Search / Example

449=75+374

447=118+329

646=280+366 415=239+176 671=291+380 413=220+193

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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A* Search / Example a0 ¥
447=118+329 449=75+374
646=280+366 415=239+176 671=291+380
526=366+160 417=317+100 553=300+253
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A* Search / Example ¢

_sibiu_> Climisoara) CZerind >
447=118+329 449=75+374

Caad > Fagaras> COradea @i Viced

646=280+366 671=291+380

G @D CaoabCRm o

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253
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A* Search / Example

449=75+374

447=118+329

526=366+160 553=300+253

591=338+253 450=450+0

418=418+0 615=455+160 607=414+193

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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A* Search

Completeness
yes (if b is finite and step costs are > ¢ > 0

~- there are only finite many states x with f(x) < f(goal))

Optimality
no (with any heuristics)
yes with admissible heuristics (see next page)

Time complexity
exponential in (relative errorin i) - d.

Space complexity

same as time complexity as whole search tree is kept in

memory.
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Optimality

Heuristics is admissible (“optimistic”, lower bound):
h<h'

where h* denotes the true cost to the next goal.
Lemma: If ~ is admissible, A* search is optimal.

Proof: assume suboptimal GG, has been found

and let n be any node on an optimal path to optimal solution G.

f(Gs) = cost(Gsy) > cost(G) > f(n)

Hence n must be visited before Gb.
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Optimality % a0 ¥
A* expands nodes in layers/contours of increasing f value.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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1. Greedy Best-First Search
2. A* Search
3. Admissible Heuristic Functions
4. Local Search
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Example 8-Puzzle ® 2008 ¥

8 3 1 7 8

Start State Goal State
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Artificial Intelligence / 3. Admissible Heuristic Functions S %’S’%
Example 8-Puzzle B
7 2 4 1 2 3
) 6 4 ) 6
8 3 1 7 8
Start State Goal State
hi(x) := number of misplaced tiles
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Example 8-Puzzle
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8 3 1 7 8

Start State Goal State

ho(x) := sum of distances of all misplaced tiles to goal
Here: distance in required moves, i.e., Manhattan distance.

ho(r) =4+0+34+3+1+0+2+1=14

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Atrtificial Intelligence, summer term 2008 10/25
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Which heuristics is better? s

Size of search tree in nodes for two examples:

length of optimal solution

algorithm d=14 d=24
IDS 3,473,941 | ~ 54,000,000,000
A*(hy) 539 39,135
A*(hs) 113 1,641

For two admissble heurstics h; and h:
h, dominates h; if hi(z) > ho(x) for all x.

Using a dominant heuristics with A* always is faster.
(as only nodes x with f(x) = cost(z) + h(x) < f(z*) are
expanded!)

h := max(hy, h2) also is admissible and dominates h; and hs.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 11/25



qerSilE
ol & ¢
o s

Artificial Intelligence / 3. Admissible Heuristic Functions

How to design a heuristics? / 1. Relaxation
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Conditions for legal moves:

A tile can move from A to B
(a) if A and B are horizontally or vertically adjacent and B is blank.

Relax conditions to:

(b) if A and B are horizontally or vertically adjacent.
— OR—

(c) if B is blank.

— OR—

(d) if true.

hi gives the true costs for relaxed problem (d).
ho gives the true costs for relaxed problem (b).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,

Course on Atrtificial Intelligence, summer term 2008 12/25
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How to design a heuristics? / 2. Subproblems ey

Look at a subproblem, e.g.,
8-puzzle with four tiles labeled 1 to 4 and four unlabeled tiles.

Each state x can be projected to a state subproblem,,,,(x) of the
subproblem.

72 4 . x 2 4
5 6 | POset [, | soe
8 31 * 31

hs(x) :=cost(subproblem,.,(x))

— the cost to solve just the subproblem.

(all configurations of such subproblems, called patterns and their
costs can be precomputed and stored in a database).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 13/25
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Artificial Intelligence

1. Greedy Best-First Search

2. A* Search

3. Admissible Heuristic Functions

4. Local Search
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Local Search

For some problems just the final state is interesting,
not the action/state sequence to reach the final state.

Examples:

— 8-queens problem
— traveling salesman problem

Then it is a waste to keep all the information about solution paths.

Instead:

— keep only one state z, the actual or current state

— consider only neighboring states as next actual state
i.e., reachable by an action from the actual state: succ(z, A).

— needs objective function to steer movement: f
may need an heuristics if the true objective is not accessible.

Called local search or neighborhood search.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
14/25
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Local Search Py

If the state space consists just of “complete configurations”,
local search can be understood as iterative improvement.

In any case:
Local search requires just constant space.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,

Course on Atrtificial Intelligence, summer term 2008 15/25
Artificial Intelligence / 4. Local Search o%%,
Example / Traveling Salesman Problem ey

Problem:

given a graph with labeled edges,
find a cycle that visits each node exactly once (hamiltonian cycle;
tour) with minimal sum of edge labels (costs).

State space:
all tours.

Actions:
remove two edges and join the resulting two paths in the other
possible way (2-Opt; Croes 1958).

Objective function:
cost of resulting tour.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 16/25
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Example / 8-Queens

State space:
8 queens on the board, each in one column.

Actions:
move a queen to another row in her column.

Heuristics h:
number of possible attacks.

= =

h=5 h=2

TSl
¥ %,
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Hill-climbing / Steepest Descent/Ascent

Greedy local search:
always move to the neighbor with the maximal objective value.

1 hill-climbing(X, succ, f, o) :
2 Y =X

3 do

4 Ti=y

5 Yy = argmaxyesuoc(z,A)f(y)
s while f(y) > f(z)

7 return x

For continuous state spaces / actions and differentiable objective
functions:
gradient descent/ascent.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008
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Hill-climbing / Steepest Descent/Ascent B ©

State space landscape:

objective function lobal maximum

|

shoulg

local maximum
"flat" local maximum

»state space

current
State

Random restart: try to overcome local maxima.

Random sideways move: try to overcome shoulders.
(but restrict their number to avoid infinite loops on flat local
maxima)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Atrtificial Intelligence, summer term 2008 19/25
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|dea:

like hill-climbing

but choose randomly among all improving actions
proportional to their improvement.

1 hill-climbing-stochastic( X, succ, f, xo) :
2 Y =X
3 do

4

Ti=1y
5y ~ multinomial(succ(z, A)) withp(y) := %, y € succ(z, A)

6 While f(y) > f(z)
7 return z

p(y) is called the acceptance probability for neighboring state y
of x.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 20/25
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|dea:

like hill-climbing

but also allow deteriorating actions

slight deteriorations more often than severe deteriorations
less and less deteriorations as the search proceeds

1 simulated-annealing( X, succ, f, zo, T) :
2 T =Xy
3 for k := 1to co while T'(k) > 0 do
y ~ uniform(succ(x, A))
if £(y) > f(z) or random() < exp((f(y) — f(x))/T(k))

4

5

6 Ti=y
. )

8

9

fi

od
return x

T is called the temperature schedule, 7' — 0 for £ growing.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Beam Search ® 202 ¥

|dea:
like hill-climbing
but retain & best solutions in parallel.

1 beam-search(X, succ, f, g, k) :

2 S := random subset of X of size k
3 whileg(z) =0Vx € Sdo

4 S 1= AYMEX g5, 0./ (V)
5 od

6 return z € Swithg(z) =1

where succ(S, A) .= |J,.qsucc(z, A) and
argmax” selects the £ elements with maximum argument.

S is called population, each state an individual.

This is different from &£ random restarts of hill-climbing!

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Genetic Algorithms

|dea:

like beam search

but combine two states to a new state
(represented as string/vector)

1 genetic-algorithm(X, f, g, k) :

2 S := random subset of X of size k
3 while g(z) =0Vx € Sdo

4 S'i=10

5 fori=1...kdo

6 1, x5 ~ multinomial () with p(z) := % res
7 y := combine(z;, z5) )

8 i (random() < pmut(ztion) Y= mutation(y) f_l

9 S'i=S"U{y}

10 od

11 S:=9

12 od

13 return xz € Swithg(z) =1

14

15 combine(zy, z3) :

16 n := length(z)

17 ¢ ~uniform({1,2,...,n})

18 return concat(z[1...c],zafc+1...n])

f also is called fitness (and should be > 0).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Genetic Algorithms / Example 5 2008
24748552 | 24 31% 327%52411 >_< 32748552 327481p2
32752411 [ 23 29% 247@48552 24752411 24752411
24415124 | 20 26% 32752%411 >_< 32752124 3222124
32543213 | 11 14% ™[ 24415124 24415411 2441541[7]
Fithess  Selection Pairs Cross—Over
Genetic algorithms create triadic neighborhoods
pair of states — state
by means of combination/reproductio/cross-over.
To make sense, the string encoding must be such that close
positions encode related properties of the candidate solution.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 24/25
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24748552 | 24 31% 327@52411 32748552 327481p2

32752411 [ 23 29% 247;48552 >_< 24752411 24752411

24415124 | 20 26% 32752@411 >_< 32752124 32Pp2124

32543213 | 11 14% 24415;124 24415411 244154
Fitness  Selection Pairs Cross—Over

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2008 25/25



