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Artificial Intelligence / 1. Constraint Satisfaction Problems g% %
Problem Definition ey
A constraint satisfaction problem consists of
variables X, X,, ... X, with values from given domains dom X;
(i=1,....n).
constraints ', C,, ..., C,, i.e., functions defined on some
variables var C; C {Xj,..., X, }:
Cj H dom X — {true,false}, j=1,...,m
Xevar O
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Assignments 5 a0 ¥

assignment: assignment A of values to some variables
var A C{Xy,..., X, }, i.e.,

AZX3:7,X5:1,X6:2

An assignment A that does not violate any constraint is called
consistent / legal:

Cj(A) =true for C; with varA CvarCj,j=1,...,m

An assignment A for all variables is called complete:
var A ={Xy,..., X,,}

A consistent complete assignment is called solution.

Some CSPs additionally require an objective function to be
maximal.
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Artificial Intelligence / 1. Constraint Satisfaction Problems a.?“% A
Example / 8-Queens E Sviets

variables: Qh Q27 Q37 Q47 Q57 Q67 Q77 QB
domains: {1,2,3,4,5,6,7,8}.

constraints: Q; # Q2, Q1 # Q2 — 1,Q1 # Qo + 1,
Q# @3, #Q3+2,Q1 #Q3—2,...

consistent assignment:

Ql:17@2:37Q3:57Q4:77Q5:27Q6:47Q7:6
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Artificial Intelligence / 1. Constraint Satisfaction Problems g“‘i;“’%
Example / Map Coloring ® 2008
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variables: WA, NT, SA, Q, NSW, V, T
domains: { red, green, blue }
constraints: WA £ NT, WA = SA, NT # SA, NT #£Q, ...

solution:
WA =red, NT = green, SA = blue, Q =red, NSW = green, V =red, T = green
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Artificial Intelligence / 1. Constraint Satisfaction Problems

CSP as Search Problems

c_}'\,\\uﬂy

Incremental formulation:

states:
consistent assignments.

initial state:
empty assignment.

successor function:
assign any not yet assigned variable
s.t. the resulting assignment still is consistent.

goal test:
assignment is complete.

path cost:
constant cost 1 for each step.
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finite domains infinite domains
condition:| |dom X;| e N Vi otherwise
example:  8-queens: |dom Q;| = 8. scheduling: dom X; = N

map coloring: | dom X;| = 3. (number of days from now)
special | binary CSPs: |dom X;| = 2 integer domains: dom X; = N

continuous domains: dom X; = R

cases:
(or an interval)

constraintscan be provided by enumeration, must be specified using a
e.g., constraint language,
(WA,NT) € e.g.,
{(r,q),(r,b),(g,7),(g,b),(b,7), (b, g)}linear constraints.
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Artificial Intelligence / 1. Constraint Satisfaction Problems

Binary Constraints

Constraints can be classified by the number | var C;| of variables
they depend on:

unary constraint: depends on a single variable X;.

uninteresting: can be eliminated by inclusion in the domain
dom Xz

binary constraint: depends on two variables X; and X;.
can be represented as a constraint graph.

A .

Victoria

Tasmania @

original map constraint graph

Northern
Territory

Western
Australia
South
Australia
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n-ary Constraints

constraint of higher order / n-ary constraint: depends on
more than two variables.

can be represented as a constraint hypergraph.

allDiff(X,Y,2)

constraint hypergraph

.
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Artificial Intelligence / 1. Constraint Satisfaction Problems g% %
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n-ary Gonstraints % 200

n-ary constraints sometimes can be reduced to binary constraints
in a trivial way.

allDiff(X,Y,2)

constraint hypergraph

binarized constraint graph

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Atrtificial Intelligence, summer term 2007 9/31

Artificial Intelligence / 1. Constraint Satisfaction Problems i,’s’%
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n-ary Constraints 2002
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n-ary constraints always can be reduced to binary constraints

by introducing additional auxiliary variables

with the cartesian product of the original domains as new domain
and the original n-ary constraint as unary constraint on the
auxiliary variable.

X<Y

X+Y=Z

constraint hypergraph @

binarized constraint graph
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Artificial Intelligence / 1. Constraint Satisfaction Problems g% %
g 00l ¢

Auxiliary Variables % 200

Sometimes auxiliary variables also are necessary
to represent a problem as CSP.

Example: cryptarithmetic puzzle.
Assign each letter a figure
s.t. the resulting arithmetic expression is true.

O+0=R+10X;

Xi+W+W =U+ 10X,

Xo+T+T=0+10X;3
X;=F

o —

W
W
U

ml +
s ON®)
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Artificial Intelligence / 2. Backtracking Search 3 % %
Depth-First Search: Backtracking %

Uninformed Depth-First search is called backtracking for CSPs.

1 backtracking(variables X', constraints C, assignment A) :
2if X =0return Afi

3 X := choose(X)

4 A .= failure

5 for v € values(X, A, C) while A’ = failluredo

6 A" := backtracking(X' \ {X},C, AU {X = v})

7 od

8 return A’

where
values(X, A,C) .= {v € dom X |VC € C with varC C var AU {X} :
C(A, X =v) =true}

denotes the values for variable X consistent with assignment A
for constraints C.
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D

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2007 13/31



Artificial Intelligence / 2. Backtracking Search

Backtracking / Example
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Artificial Intelligence / 2. Backtracking Search g“v %
Backtracking / Example ® 2008 ¥
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Atrtificial Intelligence, summer term 2007 13/31
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® 2008 ¥

Variable Ordering / MRV

Which variable is selected in line 3 can be steered by heuristics:

minimum remaining values (MRV):
Select the variable with the smallest number of remaining

choices:
X :=argminy_, |values(X, A, C)|

SSEL SSEA SSEA S
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Artificial Intelligence / 2. Backtracking Search g% 3
Variable Ordering / Degree Heuristics B S

degree heuristic:
Select the variable that is involed in the largest number of

unresolved constraints:
X =argmaxy .y [{C eCl|X evarC,varC € var AU {X }}|

Usually one first applies MRV and breaks ties by degree
heuristics.
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Value Ordering
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The order in which values for the selected variable are tried can
also be steered by a heuristics:

least constraining value:
Order the values by descending number of choices for the

remaining variables:

> |values(Y,AU{X =v},C)|, v € values(X,A,C)
Yex\(X}

\ I* Allows 1 value for SA
o—4-—47 <
* Allows 0 values for SA

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Artificial Intelligence / 2. Backtracking Search e&‘w %
a

Forward Checking 2008
The minimum remaining values (MRV) heuristics can be
implemented efficiently by keeping track of the remaining values
values(X, A, C) of all unassigned variables.
— This is called forward checking.
1 backtracking-fc(variables X, (values(X)) xcx, constraints C, assignment A) :
2if X =0return Afi
3 X := argminy ., [vaues(X)|
4 A= failure
5 for v € values(X') while A’ = failure do
6 illega (V) := {w e vaues(Y)|IC € C: XY € varC,varC Cvar AU {X,Y},
7 CA X =v,Y=w)="fdse}, VY eX\{X}
8 A’ := backtracking(X' \ {X}, (values(Y') \ illegd(Y))yex\(x},C, AU{X = v})
o od
10 return A’
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Atrtificial Intelligence, summer term 2007 17/31
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Artificial Intelligence / 2. Backtracking Search

Forward Checking
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Forward Checking
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Artificial Intelligence / 2. Backtracking Search 3 % %
Forward Checking B S
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Constraint Propagation a0 ¥
|| - 1\
S e
WA NT NSW \% SA T
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Artificial Intelligence / 2. Backtracking Search g‘p %
Arc Consistency % a0 ¥
One also could use a stronger consistency check: if
e there is for some unassigned variable X a possible value v,
e there is a constraint C' linking X to another unassigned
variable Y, and
e setting X = v would rule out all remaining values for Y via C,
then we can remove v as possible value for X.
Example:
values(SA) = {b}, values(NSW) = {r,b}, C :NSW # SA
NSW = b is not possible as C would lead to values(SA) = (.
Removing such a value may lead to other inconsistent arcs, thus,
has to be done repeatedly.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Arc Consistency ® a0ce ¥
1 arc-consistendyariablest’, (value$ X)) xcx, constraintg) :
2 arcs:= ((X,Y,C) € X2 x C| varC' = {X,Y}) in any order
3 while arcs+# () do
4 (X.,Y, C) := remove-firstarcg
5 illegal := {v € valueg X) | Vw € valuegY) : C(X =v,Y = w) = false}
6 if illegal # ()
7 valuegX) := valueg X) \ illegal
8 appendarcs (Y, X',C") € X? x C| X' = X,Y' £ Y,varC' = {X',Y'}))
0 fi
10 od
1 return (valuegX))xex
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2007 20/31
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Arc Consistency
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Arc Consistency 2008
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Artificial Intelligence / 2. Backtracking Search
k-consistency

c_}'\,\\uﬂy

k-consistency:
any consistent assignment of any k£ — 1 variables can be extended

to a consistent assignment of £ variables with any k-th variable.

1-consistency: node consistency
same as forward checking.

2-consistency: arc consistency

3-consistency: path consistency

strong k-consistent: 1-consistent and 2-consistent and ... and
k-consistent.

strong n-concistency (where n is the number of variables)
renders a CSP ftrivial:

select a value for X, compute the remaining values for the other
variables, then pick on for X, etc. — strong n-consistency
guarantees that there is no step where backtracking is necessary.
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Artificial Intelligence / 3. Local Search 3

min conflicts

sort of greedy local search:

states: complete assignments
neighborhood: re-assigning a (randomly picked) conflicting variable
goal: no conflicts

1 min-conflict§variablesY, constraint&) :

2 A := random complete assignment far

3 for i :=1...maxstepsvhile3C € C : C'(A) = falsedo

4 X :=randon{{X € X |3C € C : C(A) = false andX € varC})
5 0= argmin, g, x |[{C € C|C(A, X =v) =false X € var C'}|
6 AIX =

7 od
8 return A,if VC € C : C(A) = true failure else

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Artificial Intelligence / 4. The Structure of Problems g‘% 3
Connected Components / Graphs %

Let G := (V, F) be an undirected graph.
A sequence p = (py,...,p,) € V* of vertices is called path of G if
(pi,le) eFE fori=1...,n—1

G* denotes the set of paths on G.

x,y € V are called connected if there is a path in G between z

and y,
i.e., it exists p € G* with p; = z and pj,| = y.

G is called connected if all pairs of vertices are connected.

A maximal connected subgraph G’ := (V' E’) of GG is called

connection component of G. \ / 5
©)

(F) @/@
NG \

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, summer term 2007

Artificial Intelligence / 4. The Structure of Problems
Connected Components / Graphs

Let G := (V, F) be an undirected graph.
A sequence p = (py1,...,pn) € V* of vertices is called path of G if
(pi,pﬂ_l) eFE fori=1...,n—1

G* denotes the set of paths on G.

x,y € V are called connected if there is a path in G between z

and y,
i.e., it exists p € G* with p; = z and pj, = y.

G is called connected if all pairs of vertices are connected.

of GG is called

A maximal connected subgraph G’ := (
connection component of G.
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Artificial Intelligence / 4. The Structure of Problems f“% %
Connected Components / Hypergraphs %
Let G := (V, E) be a hypergraph, i.e., E C P(V).
A sequence p = (p1,...,p,) € E* of edges is called path of G if
piNpi1#0 fori=1....n—1
G* denotes the set of paths on G.

x,y € V are called connected if there is a path in G between =
and y,
i.e., it exists p € G* with z € p; and y € py,.

G is called connected if all pairs of vertices are connected.

A maximal connected subgraph G’ := (V', E’) of GG is called
connection component of G. ® )
©

\i) @g@@
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Artificial Intelligence / 4. The Structure of Problems
Connected Components / Hypergraphs
Let G .= (V, E) be a hypergraph, i.e., E C P(V).
A sequence p = (p1,...,p,) € E* of edges is called path of G if
piNpi1#0 fori=1...,n—1
G* denotes the set of paths on G.

x,y € V are called connected if there is a path in G between z
and y,
l.e., it exists p € G* with x € p; and y € py,.

G is called connected if all pairs of vertices are connected.

A maximal connected subgraph G’ .= (V' E’) of GG is called
connection component of G.
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Independent Subproblems

Let (X, C) be a constraint satisfaction problem.

The CSP (X', ') with X' C X and
C':={Cel|varC C X'}

is called subproblem of (X', C) on the variables X"

Two subproblems on the variables X and X, are called
independent if there is no joining constraint, i.e., no C' € C with
var C N X} # 0 and var C' N X5 £ ()

(and thus X} N X7, = ().
l.e., if the respective constraint sub-hypergraphs are
unconnected. (1)

Queensland w ‘

Victoria

Tasmania @
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Independent Subproblems

Consistent assignments of independent subproblems can be
joined to consistent assignments of the whole problem.

The other way around:

if a probem decomposes into independent subproblems
we can solve each on separately

and joint the subproblem solutions afterwards.
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Artificial Intelligence / 4. The Structure of Problems g% %
Tree Constraint Graphs ey

The next simple case:
If the constraint graph is a tree,
there is a linear-time algorithm to solve the CSP:

1. choose any vertex as the root of the tree,

2. order the variables from root to leaves
s.t. parents precede their children in the ordering.
(topological ordering)
Denote variables by X 1), X(3),..., X().

3. For ¢ = n down to 2:
apply arc consistency to the edge (parent(X;), X(;)
i.e., eventually remove values from dom parent(.X;)).

4. Fori=1ton:
choose a value for X;) consistent with the value already
choosen for parent(X;)).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Artificial Intelligence / 4. The Structure of Problems g% %
General Constraint Graphs %o S

|dea: try to reduce problem to constraint trees.

Approach 1: cycle cutset
remove some vertices s.t. the remaining vertices form a tree.

for binary CSPs:

1. find a subset S C X’ of variables
s.t. the constraint graph of the subproblem on X\ S becomes a

tree.

2. for each consistent assignment A on S
(a) remove from the domains of A\ S all values not consistent
with A,

(b) search for a solution of the remaining CSP.
if there is one, an overall solution has been found.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Artificial Intelligence / 4. The Structure of Problems 3 % %
General Constraint Graphs / Cycle cutset B S

OIS
RO

The smaller the cutset, the better.

Finding the smallest cutset is NP-hard.
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Artificial Intelligence / 4. The Structure of Problems g% %
General Constraint Graphs / Tree Decompositions ey

Approach 2: tree decomposition

decompose the constraint graph in overlapping
subgraphs

s.t. the overlapping structure forms a tree

Tree decomposition (X;);—; ..

AR

nm-

1. each vertex appears in at least one subgraph.
2. each edge appears in at least one subgraph.
3. if a vertex appears in two subgraphs,

it must appear in every subgraph along the path
connecting those two vertices.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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General Constraint Graphs / Tree Decompositions 2008 ©

Artificial Intelligence / 4. The Structure of Problems
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Artificial Intelligence / 4. The Structure of Problems

General Constraint Graphs / Tree Decompositions

To solve the CSP:
view each subgraph as a new variable
and apply the algorithm for trees sketched earlier.

Example:
(WA,SA,NT) = (r,b,g) = (SA,NT,Q) = (b,g,r)

In general, many tree decompositions possible.

The treewidth of a tree decomposition is the size of the
largest subgraph minus 1.

The smaller the treewidth, the better.

Finding the tree decomposition with minimal treewidth is
NP-hard.
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