

Artificial Intelligence

3. Adversarial Search

K. Buza, Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute of Economics and Information Systems & Institute of Computer Science University of Hildesheim http://www.ismll.uni-hildesheim.de

K. Buza, Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Course on Artifical Intelligence, summer term 2008

- Mulitagent environemts
 - Cooperative
 - Competitive
- Contingencies (unpedictability of other agents)
- Agents goals are in conflict: adversarial search (game)

K. Buza, Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Course on Artifical Intelligence, summer term 2008

Game Theory

- Branch of mathematic/economics
- Game
 - Multiagent environment, significant impact on each other
- AI: special kind of games
 - Deterministic
 - Turn-taking (alternating agents)
 - Two player
 - Zero sum (utility values are equal but opposite)
 - Perfect information (full observable)

K. Buza, Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Course on Artifical Intelligence, summer term 2008

Game as search problem

- Initial state
- Successor function (legal moves)
- Terminal test (terminal states ≈ goal states)
- Utility function

- Two players: MAX, MIN
- Game tree: half-move = ply

K. Buza, Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Course on Artifical Intelligence, summer term 2008

MINIMAX-ALGORITHM

- MINIMAX-VALUE(n) =
 - = UTILITY(n), if n is a terminal state
 - = max(MINIMAX-VALUE of the successors of *n*), if *n* is a MAX node
 - = min(MINIMAX-VALUE of the successors of *n*), if *n* is a MIN node
- Recursive counting of the minimax-value
- Gives optimal decision in games
- Space Complexity of the algorithm: O(m)
- Time Compelxity of the algorithm: $O(b^m)$

K. Buza, Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Course on Artifical Intelligence, summer term 2008

Optimal decisions in multiplayer games

- Modified MINIMAX-algorithm
 - Vector of utilities
- Collaboration, Alliances

K. Buza, Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Course on Artifical Intelligence, summer term 2008

Alpha-Beta Pruning

- α = best choice we have found so far for MAX
- β = best choice we have found so far for MIN
- Subtrees not improving the utility are not visited
- Reduces complexity
 - "ideal" ordering of child-nodes: $O(b^{m/2})$
 - random ordering: $O(b^{3m/4})$
 - Chess: the "ideal" complexity almost reachable

K. Buza, Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Course on Artifical Intelligence, summer term 2008

Real-time Decisions

- Evaluation functions
 - Expected value of utility
 - Features
 - $EVAL(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$
- Cutting off search
 - At a given depth d
 - Quiescene search
 - Horizon effect
 - Singular extensions
 - Forwald pruning

K. Buza, Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Course on Artifical Intelligence, summer term 2008

Games with element of chance

- EXPECT-MINIMAX-VALUE(*n*) =
 - = UTILITY(n), if n is a terminal state
 - = max(MINIMAX-VALUE of the successors of *n*), if *n* is a MAX node
 - = min(MINIMAX-VALUE of the successors of *n*), if *n* is a MIN node
 - = $\sum P(s)$ EXPECT-MINIMAX-VALUE(s), for all successors s of n, if n is a chance node

K. Buza, Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Course on Artifical Intelligence, summer term 2008