Example 1

It is a model A for a 4-element set of atomic formulas, where S:

$$A(A) = 1$$
, $A(B) = 1$, $A(C) = 0$, $A(D) = 1$.

- a) What is the smallest set F (S), which corresponds to the definition of a set of formulas? (see slide 5 of the current slide collection for this definition)?
- b) Determine whether the following theory follows from this model A:

$$((A \rightarrow B) \land (C \lor \sim D)) \lor \sim (D \lor \sim A)$$

 Determine whether by bullet proof this theory tautological, satisfiable or contradictory

Example 2

Place the following statements only by the two logical operators ^ and ¬ as well as By appropriate bracketing dar. Give to solve the inference rules used to

- a) $A \rightarrow B$
- b) *A*∨ *B*
- c) $(A \wedge B) \vee C$
- d) $(A \lor B) \lor C$
- e) $A \wedge B \rightarrow \sim C$

f) Which of the formulas a) - e) in conjunctive or disjunctive normal form?

Which of the following statements are tautological, satisfiable or contradictory?

- a) $A \rightarrow B$
- b) $(A \wedge B) \vee (B \wedge A)$
- c) *A* ∧ *A*
- d) $(A \wedge B) \vee (\sim (A \wedge B))$
- e) $((A \rightarrow B) \land (C \lor \sim D)) \lor \sim (\sim D \land \sim A)$
- f) $A \rightarrow (B \rightarrow C)$