Artificial Intelligence

Information Systems and Machine Learning Lab (ISMLL)
Tomas Horvath

3% November, 2010

Solving Problems by Searching

Problem-solving agent

» decides what to do by finding sequences of
actions leading to desirable states - goals

e |. Goal formulation
- What do we want to “reach”?
e |l. Problem formulation

- What actions and states to “consider”, given a goal?

— abstraction
* the level of states and actions

» Looking for such sequences is called SEARCH

Problem-solving agent

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
persistent: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state —— UPDATE-STATE(state, percept)
if seq is empty then
goal — FORMULATE-GOAL(state)
problem +— FORMULATE-PROBLEM(state, goal)
seq +— SEARCH(problem)
if seq = failure then return a null action
action +— FIRST(seq)
seq +— REST(seq)
return action

Example

Neamt
87
Tasi
Arad
92
Sibiu 99 Fagaras
118 Vaslui
80
. . Rimnicu Vilcea
Timisoara
11 142
111 . i i
Lugoj 97 Pitesti
8
70 25 | 9 Hirsova
Mehadia 146 101 Urziceni
86
75 138 Bucharest
Drobeta 120
90

Craiova Giurgiu Eforie

Problem definition

Initial state
successor function

* possible actions avallable from the current state
goal test
e determines whether a given state is a goal state
path cost

e assigns a number to each path
» Step costs

solution
* a path from the initial state to a goal state

Toy examples

vacuum cleaner

e states

- 8 possible world states
 two locations which could be clean or dirty

any state can be initial

successor function generates the legal states
resulting from trying the three possible actions

- Left, Right, Suck
goal test checks whether all the squares are clean

path cost is the number of step
- the number of steps, each step costs 1

Toy examples

Toy example

e 8 puzzle

* sStates
- the location of each of the 8 tiles and the blank
initial state
- any state
successor function
- Left, Right, Up or Down
goal test
- tests whether the state matches the goal configuration
path cost
- the number of steps, each step costs 1

Toy example

3 1 6 7 3

Start State Goal State

Toy example

e 8-queens problem
 How the specification looks like?

Real-world problems

 route finding, touring, traveling problems

- get from the location A to the location B
— Visit every city at least once
— Visit every city at least once

* VLSI layout problem

 positioning millions of components and connections
on a chip to minimize area

* |nternet searching problem
 |looking for related information

Searching

« search tree, search graph

e generated by the initial state and the successor function

e search node

— an instantiation of a world state

- main components are

« state (in the state space to which the node corresponds)

« parent node

« action (which was applied to the parent to generate the node)

« path-cost

« depth (the number of steps along the path from the initial state)

e Search strategy
 the choice of which state to expand
 fringe

- the collection of nodes that have been generated but not yet expanded

Search tree/graph

(a) The initial state

(b) After EXpandW
CSibiu D Climisoars CZerind

(c) After expanding Sibiu

Search

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier

only if not in the frontier or explored set

Measuring the performance

completeness

o |s the algorithm guaranteed to find a solution when there is one?
optimality

« Does the strategy find the optimal solution?

time complexity

« how long does it take to find a solution?

space complexity

« how much memory is needed to perform the search?

Important factors

« branching factor (b)
« depth of the shallowest node (d)
« the maximum length of any path in the state space (m)

Breadth-first search

function BREADTH-FIRST-SEARCH(problemn) returns a solution, or failure

node +— a node with STATE = problem .INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier — a FIFO queue with node as the only element
explored <+ an empty set
loop do
if EMPTY?(frontier) then return failure
node < POP(frontier) /* chooses the shallowest node in frontier */
add node.STATE to explored
for each action in problem . ACTIONS(node.STATE) do
child «— CHILD-NODE(problem, node, action)
if child .STATE is not in explored or frontier then
if problem .GOAL-TEST(child.STATE) then return SOLUTION(child)
frontier «— INSERT(child, frontier)

Breadth-first search

 what is the total number of nodes generated?

e suppose that the solution is at depth d and
e each node generates b more nodes...

>®
>(B) © >O
O @& PO ® G @

Uniform-cost search

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node +— a node with STATE = problem .INITIAL-STATE, PATH-COST =0
frontier < a priority queue ordered by PATH-COST, with node as the only element
explored «— an empty set
loop do
if EMPTY?(frontier) then return failure
node < POP(frontier) /* chooses the lowest-cost node in frontier */
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
add node.STATE to explored
for each action in problem . ACTIONS(node.STATE) do
child — CHILD-NODE(problem, node, action)
if child .STATE is not in explored or frontier then
frontier «— INSERT(child, frontier)
else if child.STATE is in frontier with higher PATH-COST then
replace that frontier node with child

Depth -first search

ﬁ
n
b

z}/”’}@ }

ISR

Depth-first search

e similar to breadth-first search
e using LIFO

» Backtracking search

e a variant of depth-first search

* only one successor Is generated at a time
- nodes should remember which successor to generate next

 what is the drawback of depth-first search?

Depth-limited search

function DEPTH-LIMITED-SEARCH(problem, limnit) returns a solution, or failure/cutoff
return RECURSIVE-DLS(MAKE-NODE(problem . INITIAL-STATE), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns a solution, or failure/cutoff
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
else if [imit = 0 then return cutoff
else
cutoff_occurred? — false
for each action in problem . ACTIONS(node.STATE) do
child — CHILD-NODE(problem, node, action)
result «— RECURSIVE-DLS(child, problem, limit — 1)
if result = cutoff then cutoff_occurred? «— true
else if result = failure then return result
if cutoff_occurred’? then return cutoff else return failure

lterative deepening depth-first
search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution, or failure
for depth =0 to oo do
result «— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

* In general, iterative deepening Is the preferred
uninformed search method when there is a
large space and the depth of the solution is not
known

 why?
 what is the total number of hodes generated?

lterative deepening depth-first
search

D

L
ZVE
L

Bidirectional search

Comparison

Method Completeness Time complexity Space complexity Optimality
Breadth-first yes” o+ O(h*+) ves©
Uniform-Cost yes®P O+ /ey O(pr1e/ely ves
Depth-first no O(b™) O(bm) 1o
Depth-limited no O(b) O(bl) no
Iterative-deepening yes” O(b%) O(bd) yes©
Bi-directional (if applicable) yes®d O(b4/?) O(b4/?) yes©d

il

b

complete if b is finite

complete if step costs > e for positive €
¢ optimal if step costs are all identical

? hoth directions nuse breadth-first search

Avolding repeated states

+F

(a) (b) ©

 we can smartly formulate a problem to avoid
repeated states

 how we can do it in 8-queen problem?

e cut the search tree - remembering visited states

- find a trade-off between space and time
- closed list - expanded nodes
— open list - not yet expanded nodes

Searching with partial information

* sensorless problem

 If an agent has no sensors at all, it could be in one
of several possible initial states, and each action
might therefore lead to one of several possible
successor states

e contingency problem

* If the environment is partially observable or if
actions are uncertain, then the agent's percepts

provide new information after each iteration. Each

nossible percept defines a contingency that must be

nlanned for

Searching with partial information

%%
030
o

Sensorless problems

* an agent knows all the effects of its actions but
has No sensors

 |nitial state is one of the set {1,2,3,4,5,6,7,8}
* Right will cause to be in one of the states {2,4,6,8}
* [Right, Suck] will cause to be in one of {4,8}

* [Right, suck, Left, Suck] guarantees to reach the
goal state 7

e belief states

Sensorless problems

L
Y R Y
1|=4 3 |=# 1 [=4 2 =4l 3|=A o| |=A| 4| |=B
o |05k it 58 | efis o5p |om 2% o3 |om %
L R
5#1;}“ 7 |=A) 4 =)| 5 |=A) 6 =) > 6 =l 8 =)
28 %5R %2R %2R
7 | =4 8 =)
S
Y
402°$ég Sdgoé’ﬁ
S S
7 | =4 8 =)
Y L | | R Y
L
54@5 S 5%@ 37§Q ° 6 ‘éﬁd'wﬁgﬁ S k"'%dg
7 | =4 7|=4 Sl8| |=A 8 =)
R
A A
L L R
Y Y
=4 L =]
6 3 |=
= S > 8 =] P :74 < S <
8 =) D R 7 |[=8

Contingency problems

e assume Murphy's law

* Suck sometimes deposits dirt only if there is no dirt

- percept [L,Dirty] means that an agent is in one of the
states {1,3}
- executing [Suck, Right] will lead to one of the states {6,8}

— executing the final Suck action in state 6 leads to a goal
state but executing Suck in state 8 might take us back to
the state 6 (Murphy's law}, in which case the plan fails

e [Suck, Right, if [R,Dirty] then Suck] is a solution

Thanks for your attention!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

