Artificial Intelligence

Adversarial Search I.

December 1st, 2009

Tomáš Horváth

[Stuart Russell, Peter Norvig: Artificial Intelligence – A Modern Approach, Prentice Hall, 2003]

What should be *discussed* today

- deterministic games
 - environment of competitive agents
 - as search problem
- minimax algorithm
 - properties
 - $\alpha \beta$ prunning
 - some heuristics
- elements of chance

Games in Al

- mathematical game theory
 - a branch of economics
 - multi-agent environment as a game where agents have significant influence on each other
 - <u>competitive</u> or cooperative
- Why are games interesting for AI?
 - hard problems to solve

zero-sum games

- deterministic, fully observable environments
 - two competitive agents (i.e. two players)
 - alternate actions
 - the utility values are sum to zero at the end
 - winner (+1), loser (-1), equal (0)
 - if one agent wins the other necessarily loses
 - adversarial situation
- find a strategy specifying the move for every possible opponent reply

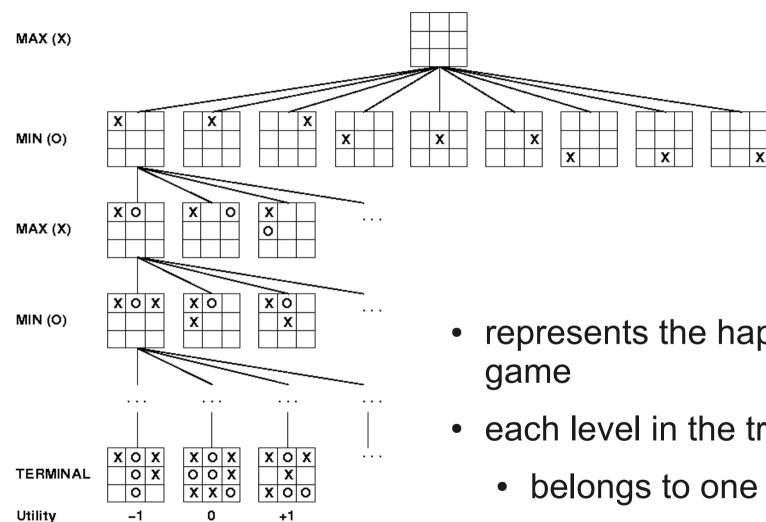
problem formulation

- initial state
 - board position and player to move
- successor function
 - returns a list of (move, state) pairs which indicate a legal move and the resulting action
- terminal test
 - determines when the game is over, i.e. the game reached one of a so-called <u>terminal states</u>
- utility function
 - gives numeric value for terminal states (-1, 0, +1)

problem formulation

- two players called "MIN" and "MAX"
 - names "Stan" & "Pan" were already booked by Hollywood :-)
 - MAX is playing a strategy for maximizing its utility
 MAX moves first
 - MIN is trying to minimize MAX's utility
- How can we represent this problem?
 - e.g. for the game TIC-TAC-TOE

game tree



- represents the happening in the
- each level in the tree
 - belongs to one player to move
 - half turn = ply•

strategy

- in a normal search problem
 - optimal solution is a sequence of moves to a terminal state with utility value = +1
- but in a game
 - MIN has impact on the moves of MAX

- an optimal strategy is determined by examining a "value" of each node
 - we call this value minimax value

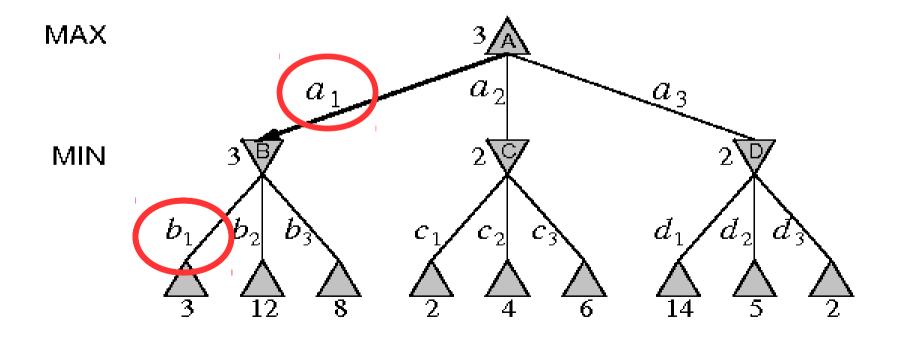
minimax value

• computed for every node in the game tree

- MINIMAX-VALUE(n) =
 - UTILITY(n)
 - if n is a terminal state
 - $\max_{s \in Successors(n)} MINIMAX-VALUE(s)$
 - if *n* is a MAX node
 - $-\min_{s \in Successors(n)} MINIMAX-VALUE(s)$
 - if *n* is a MIN node

optimal decisions

- MAX moves to states with highest minimal values
- MIN moves to states with lowest maximal values



minimax algorithm

function MINIMAX-DECISION(state) returns an action inputs: state, current state in game

return the *a* in ACTIONS(*state*) maximizing MIN-VALUE(RESULT(*a*, *state*))

function MAX-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) $v \leftarrow -\infty$ for a, s in SUCCESSORS(state) do $v \leftarrow MAX(v, MIN-VALUE(s))$ return v

function MIN-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) $v \leftarrow \infty$ for a, s in SUCCESSORS(state) do $v \leftarrow MIN(v, MAX-VALUE(s))$ return v

minimax algorithm

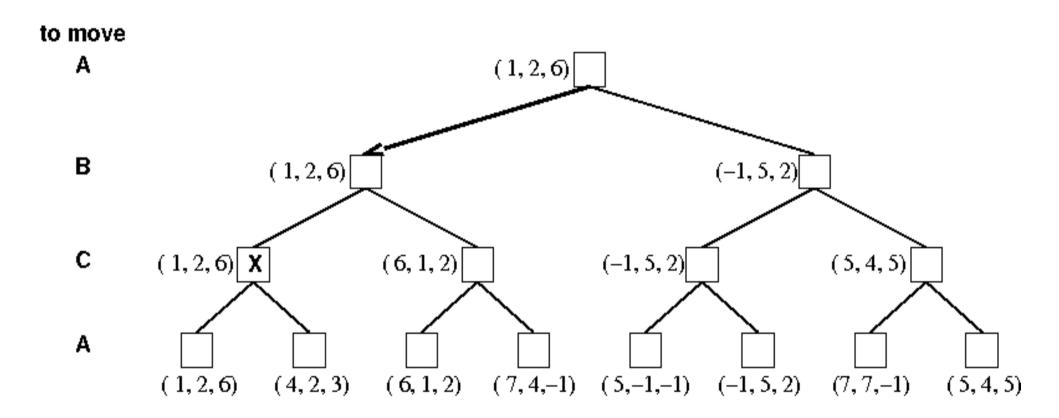
- properties
 - performs a complete depth-first exploration of a game tree
 - time complexity O(b^m)
 - m = maximal depth
 - b = legal moves at each point
 - space complexity
 - O(b*m)
 - if generates all successors at once
 - O(m)
 - if generates successors one at a time

more players

- <u>vector</u> of values in the nodes
 - instead of single values
 - gives utility of the state for each player

• which state a given player chooses?

more players



alliances

- when the players in weak positions attack the player(s) in strong positions.
 - is it a natural consequence of optimal strategies?
 - in case of two players
 - consider a terminal state (1000,1000) with 1000 as the highest possible utility value for each player
 - the optimal strategy for both players is to reach this state, i.e. they will automatically cooperate

alpha-beta prunning

- basic idea
 - eliminate nodes which will be never reached in the actual play



alpha-beta prunning

- MINIMAX-VALUE(root) =
 - $= \max(\min(3, 12, 8), \min(2, x, y), \min(14, 5, 2))$
 - $= \max(3, \min(2,x,y), 2)$
 - $= \max(3, z, 2)$ where $z \le 2$
 - = 3

alpha-beta prunning

- two parameters (α,β)
 - bounds on the backed-up values
 - α = the value of the best choice we have found so far at any choice point along the path for MAX

• best choice = the highest value

- β = the value of the best choice we have found so far at any choice point along the path for MIN
 - best choice = the lowest value

alpha-beta algorithm

function ALPHA-BETA-DECISION(state) returns an action
return the a in ACTIONS(state) maximizing MIN-VALUE(RESULT(a, state))

function MAX-VALUE(state, α , β) returns a utility value

inputs: *state*, current state in game

 $\alpha,$ the value of the best alternative for $~{\rm MAX}$ along the path to state

 $\beta,$ the value of the best alternative for $\ {\rm MIN}$ along the path to state

if TERMINAL-TEST(*state*) then return UTILITY(*state*)

$$v \leftarrow -\infty$$

for a, s in SUCCESSORS(state) do

 $v \leftarrow Max(v, MIN-VALUE(s, \alpha, \beta))$

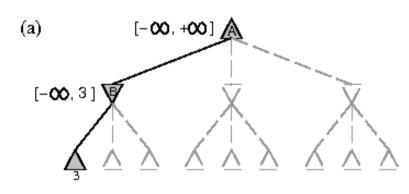
if $v \geq \beta$ then return v

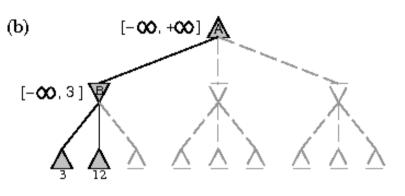
$$\alpha \leftarrow Max(\alpha, v)$$

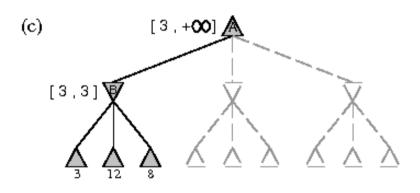
return v

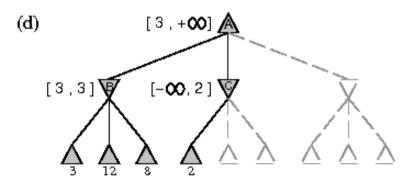
function MIN-VALUE(state, α , β) returns a utility value same as MAX-VALUE but with roles of α , β reversed

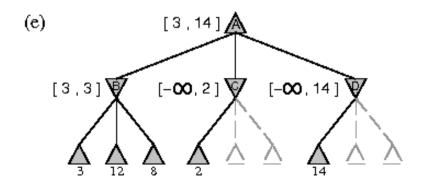
alpha-beta algorithm

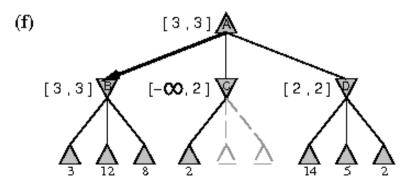








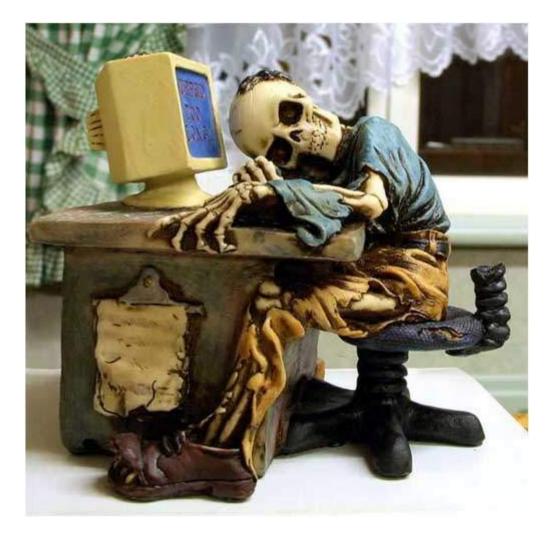




alpha-beta algorithm

- properties
 - finds the same strategy as the minimax algorithm
 - the effectiveness is dependent on the order in which the successors are examined
 - time complexity
 - "ideal" ordering of child-nodes: O(b^(m/2))
 - random ordering: O(b^(3m/4))

real-time decisions



computer on the move...

transpositions

- different permutations of the move sequence that end up in the same position
 - eliminating the transpositions
 - transpositions table
 - a hash table of previously seen positions
 - is it practical if evaluating many nodes to keep all of them in a transposition table?

evaluation function

- estimate of the expected utility of the game from a given position
 - UTILITY function \Rightarrow heuristic EVALuation function
 - terminal test \Rightarrow cutoff test
- how to design EVAL
 - EVAL should order terminal states in the same way as the UTILITY function
 - computation of EVAL must be effective
 - EVAL should be strongly correlated with the actual chances of winning

evaluation function

- features of the state
 - define various categories of states
 - each category contain states that leads to win, to draws and to losses
- expected value
 - weighted average of the outcomes of the states in the category

-(0.72 * (+1)) + (0.20 * (-1)) + (0.08 * 0) = 0.52

evaluation function

- material value
 - numerical contributions from each feature

- chess: pawn = 1; knight, bishop = 3; rook = 5; queen = 9

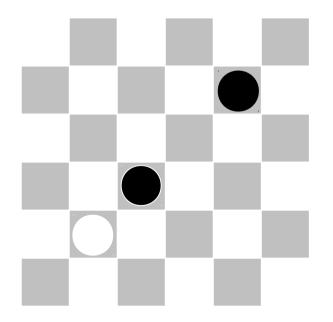
- weighted linear function
 - $EVAL(s) = w_1 f_1(s) + ... + w_n f_n(s)$
 - wi ... weight
 - fi ... feature
- non-linear combination can be also used

cutting off the search

- cutoff test
 - determines when to use EVAL
 - if CUTOFF-TEST(state, depth) then return EVAL(s)
 - problem
 - may be applied when it is unfavorable

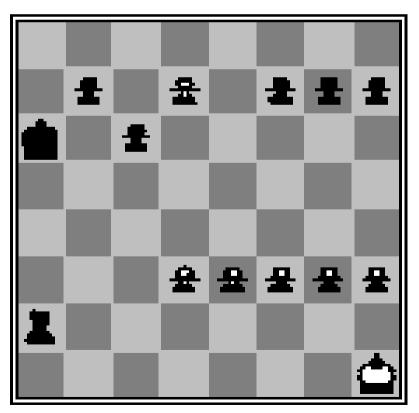
quiescence search

- when material values are used
 - quiescent position
 - where is unlikely to exhibit wild swings in value in the near future
 - only apply EVAL in quiescent positions



horizon effect

 arises when the program is facing a move by the opponent that causes serious damage and is ultimately unavoidable



Black to move

other considerations

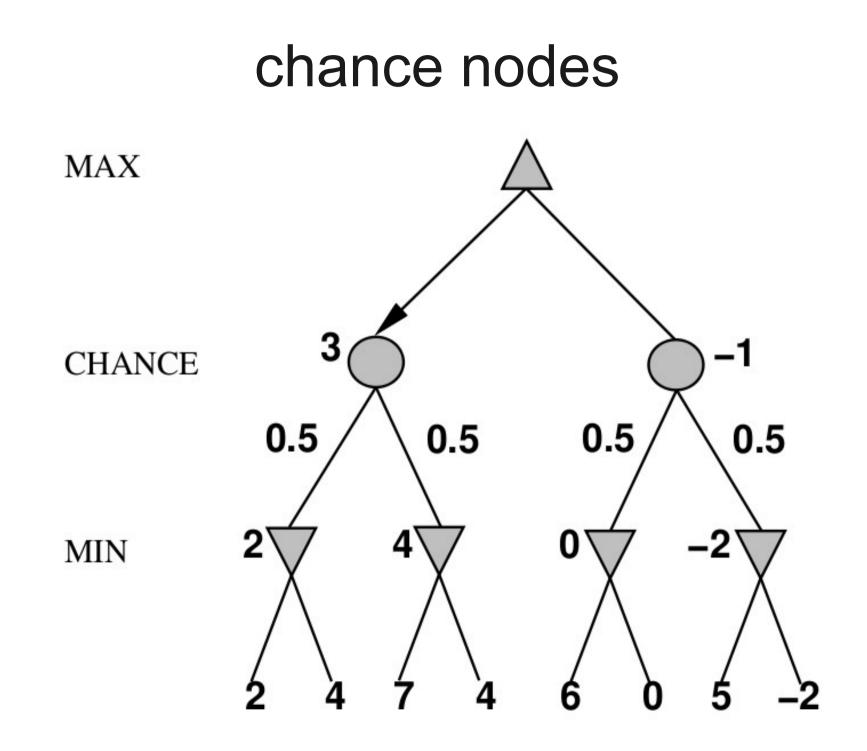
- singular extension
 - move that is clearly better than all other moves in a given position
 - idea: expand just the "better" moves

- forward pruning
 - some moves at a given node are pruned immediately without further consideration
 - e.g. symmetric moves

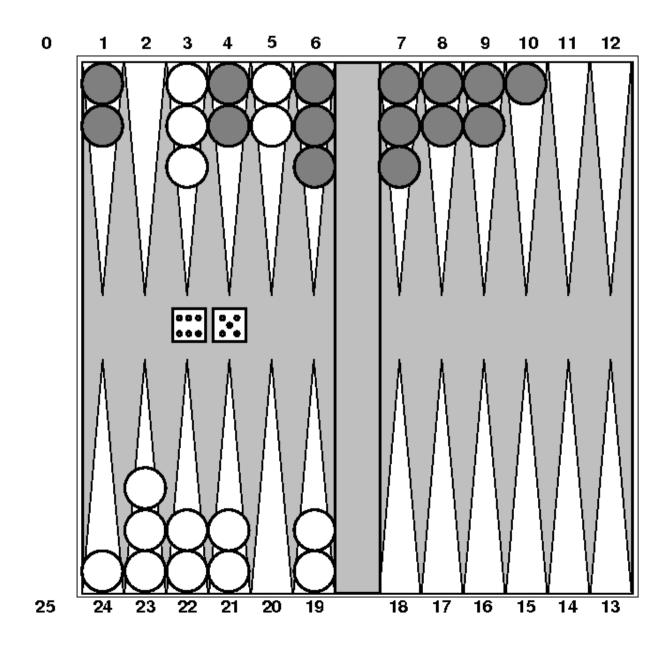
games with elements of chance

- random element included in a game
 - throwing the dice
 - backgammon

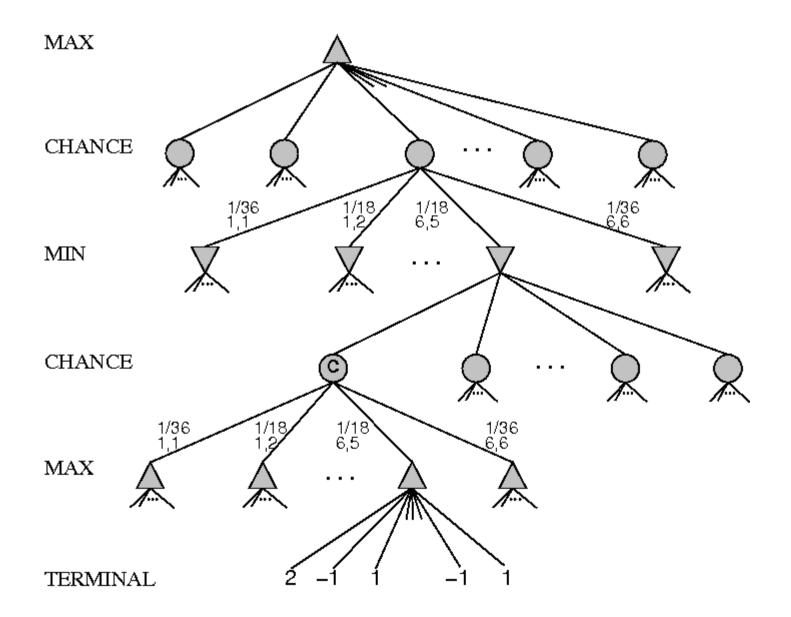
- we can't construct the standard game tree
 - a tree for such a game includes <u>chance nodes</u>
 - labeled with
 - the roll
 - the chance the roll occurs



backgammon



backgammon tree



expectiminimax value

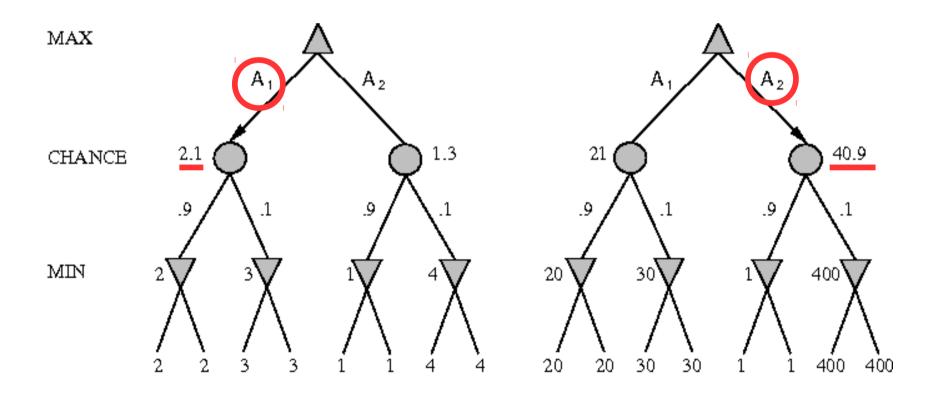
- expected values instead of definite minimax values
- EXPECTIMINIMAX(n) =
 - UTILITY(n)
 - if n is a terminal state
 - $max_{s \in Successors(n)} EXPECTIMINIMAX(s)$
 - if *n* is a MAX node
 - $-\min_{s \in Successors(n)} EXPECTIMINIMAX(s)$
 - if *n* is a MIN node

 $-\sum_{s \in Successors(n)} P(s) * EXPECTIMINIMAX(s)$

• if *n* is a chance node

digression

- exact values do matter in case of chance nodes
 - EVAL could be a positive linear transformation of the expected utility of the position



games with imperfect information

belief states

- Day 1: Road A leads to a heap of gold pieces; Road B leads to fork. Take the left fork and you'll find a mound of jewels, but take the right fork and you'll be run over by a bus.
- Day 2: Road A leads to a heap of gold pieces; Road B leads to fork. Take the right fork and you'll find a mound of jewels, but take the left fork and you'll be run over by a bus.
- Day 3: Road A leads to a heap of gold pieces; Road B leads to fork. Guess correctly and you'll find a mound of jewels, but guess incorrectly and you'll be run over by a bus.
- road B is optimal on day 1 and on day 2
 - is road B therefore optimal on day 3?
 - averaging over clairvoyance suggests the road B...

Summary

- games as search problems
- minimax
 - assumes that opponent plays optimally
 - utility function
 - pruning
- real-time decisions
 - cutoff
 - EVAL functions as search heuristics
- elements of chance
 - expected values of chance
- games with imperfect information
 - optimal decisions depend on information state, not real state