
Learning from observations

February 1, 2011

Motivation

an agent is acting in an environment

I is making observations
I How does the environment looks like?
I Which characteristics the current state has?

I is choosing an action
I What to do to act right?

I is getting some feedback
I Was the chosen action the right one?
I Was the chosen action useful?
I How to measure the usefulness?
I Who is giving a feedback?

Inductive Learning

Input

I Instance space X = X1 × . . .×Xk consisting of instances
xi = (xi1, . . . , xik)

I Labeling function c : X → C
I classification, if C = N
I regression, if C = R

I Train and Test set
I Dk = {x ∈ X |c(x) is known}
I Du ⊆ X \ Dk

Note, that c is given explicitly!

Inductive Learning

Given the input the aim is to find an approximation ĉ of c , such
that the error(ĉ , c,Du) is minimal.

I Du is a (test) set of instances for which labels are unknown
I How can we measure an error when one of the parameters is

unknown?

I error(ĉ , c ,Du) is an error measure computed on the test set
I How would You measure the error?

Error measures

Measured on a sample set Ds , is different for classification and
regression problems

I Mean Average Error

MAE (ĉ , c ,Ds) =
1

n

∑
x∈Ds

|c(x)− ĉ(x)|

I Root Mean Squared Error

RMSE (ĉ, c ,Ds) =

√∑
x∈Ds

(c(x)− ĉ(x))2

|Ds|

I Which one is for regression/classification?

I Other different error measures can be found...

Methods, Techniques, ...

Dozens of different approaches and settings

I supervised vs. unsupervised

I model-based vs. memory-based

I rule-based vs. analytical models

I etc.

We will mention just a few of them. If interested, please consider
to attend the Machine Learning lecture at the next winter term.

k-Nearest Neighbour

Memory-based/instance-based learning algorithm

I Also called as lazy learning because of no learning phase

I A test instance xt is classified according to the majority voting
of its k nearest neighbours

ĉ(xt) = argjmax |{x ∈ Nk
xt : c(x) = j}|

I The target value of the test instance xt is the average of its k
nearest neighbours

ĉ(xt) =

∑
x∈Nk

xt
c(x)

k

k-Nearest Neighbour

What are the advantages, disadvantages of this algorithm?

Several variations, improvements

I weighting, optimization by nearest-neighbour search
techniques, dimensionality reduction, etc.

There are two parameters needed for computation

I the number of neighbours k
I the distance measure

I Euclidean, Manhattan, . . .

How to estimate the best values for the parameters?

I underfitting vs. overfitting

Cross-validation

k-fold cross-validation

I set the parameters to some values
I split the train data into k folds; for each of them do the

following
I the actual fold is used for validation while the other k − 1 folds

are used for training

I average the the errors measured on k folds

I choose the parameters resulting in the lowest error for final
training of the model on the whole training set

Decision boundary

If the points can be separated using a linear hyperplane, than we
have a linearly separable problem.

Perceptron

A binary classifier

c(x) = sign(w · x + w0 > 0)

The aim is to estimate the parameters w, i.e. to find ŵ.
If treating the bias b as an extra attribute x0 with values 1, then

ĉ(x) = sign(ŵ · x)

with an error function

err(ĉ, c ,Ds) = −
∑

x∈Ds ;c(x) 6=ĉ(x)

c(x)(ŵ · x)

Perceptron

For minimizing

err(ĉ, c ,Ds) = −
∑

x∈Ds ;c(x) 6=ĉ(x)

c(x)(ŵ · x)

stochastic gradient descent with derivatives

∂err

∂ŵ
= −

∑
x∈Ds ;c(x) 6=ĉ(x)

c(x)x

can be used, thus an update at the iteration i + 1 for the example
(x, c(x)) will be

ŵ(i+1) = ŵ(i) + α(c(x)− ĉ(x))x

Perceptron

Algorithm

I initialize the weights ŵ
I until convergence do

I for each training example (x, c(x)) do
I compute ĉ(x)
I if ĉ(x) 6= c(x) update weights as

ŵ(new) = ŵ(old) + 2αc(x)x

If the instances are linearly separable, then the perceptron
converges.

Linear Regression

Suppose, data are generated as Y = βX + ε

I labels of instances are a linear combination of their attributes

 y1
...
yn

 =

β0
β1
...
βn

 1 x11 . . . x1k

...
...

...
...

1 xn1 . . . xnk

 +

 ε1
...
εn

The aim is to fit the instances instead of separating them.

I thus, we should minimize RMSE , what means to find a
minimum of ||Y − Ŷ ||2 = ||Y − β̂X ||2

I i.e. to solve a system of equations XTX β̂ = XTY

For more information, please refer to the Machine Learning lecture.

Naive Bayes

The probability that an instance x = (x1, . . . , xk) belongs to a class
c is, using the Bayes theorem, the following

p(c |x1, . . . , xk) =
p(c)p(x1, . . . , xk |c)

p(x1, . . . , xk)

Expecting that the Naive Bayes assumption holds

I p(x1, . . . , xk |c) = p(x1|c)p(x2, . . . , xk |c, x1) = . . . =
p(x1|c)p(x2|c , x1)p(x3|c , x1, x2) . . . p(xk |c , x1, . . . , xk−1) =
p(x1|c) . . . p(xk |c)

and leaving out the denominator since this is constant, we get

p(c |x1, . . . , xk) = p(c)
k∏

j=1

p(xj |c)

Naive Bayes

I fast computation even for large amount of features

p(xj |c) =
|{x′ : x ′j = xj ∧ c(x′) = c}|

|{x′ : c(x′) = c}|

I works well despite its “unrealistic“ independence assumptions

I easy to implement
I problem o zero probabilities

I if there is no object in the training data with a particular
feature and a particular label

I smoothing, e.g.

p(xj |c) =
|{x′ : x ′j = xj ∧ c(x′) = c}|+ 1

|{x′ : c(x′) = c}|+ n

Decision Tree

Usually “used” in decision making

Decision Tree

Example: training data

Decision Tree

Algorithm

Decision Tree

How to choose an attribute?

I Entropy

I (
p

p + n
,

n

p + n
) = − p

p + n
log2

p

p + n
− n

p + n
log2

n

p + n

I After choosing an attribute A

Remainder(A) =
v∑

i=1

pi + ni
p + n

I (
pi

pi + ni
,

ni
pi + ni

)

I Information gain

Gain(A) = I (
p

p + n
,

n

p + n
)− Remainder(A)

Decision Tree

How to choose an attribute?

Decision Tree

An induced tree from the example

Prunning

I against overfitting

