Artificial Intelligence

Information Systems and Machine Learning Lab (ISMLL) Tomáš Horváth

27th October, 2011

Philosophically about AI

What is Artificial Intelligence?

- Systems, that
 - THINK
 - Like humans
 - Rationally
 - ACT
 - Like humans
 - Rationally

Thinking humanly

- If we would have a precise theory of the mind
 - We could express it as a computer program
- Cognitive science brings together
 - Computer models
 - Techniques from psychology

Acting humanly

- Turing test
 - a satisfactory operational definition of intelligence
 - (How long) Can a machine fool a human?
 - Instead of qualitative definition of requirements
 - Natural language processing, knowledge representation, automated reasoning, machine learning
 - www.jabberwacky.com

Thinking & Acting Rationally

- "Laws of thought" approach
 - Making correct, logical inferences

- The world cannot be always described by correct logical notation
- Difference between solving a problem "in principle" and doing it in practice
- There are often situation with no correctly provable thing to do
- Sometimes involving inference is not an advantage (hands on a hot stove)
- "Rational agent" approach
 - A rational agent is one that acts so as to achieve the best (or the best expected) outcome

Main disciplines contributing to Al

- Philosophy (428 B.C. present)
 - Can formal rules be used to draw valid conclusions?
- Mathematics (800 present)
 - What can be computed?
- Economics (1776 present)
 - How should we make decisions to maximize payoff?
- Neuroscience (1861 present)
 - How do brains process information?
- Psychology (1879 present)
 - How do humans and animals think and act?
- Computer engineering (1940 present)
 - How can we build an efficient computer?

Overview of the lecture

Find the shortest way from Arad to Bucharest

• Several strategies

Informed

Informed

Adversarial Search

• Game against an opponent

Propositional Logic

Propositional knowledge base:

$$P \implies Q$$

$$L \land M \implies P$$

$$B \land L \implies M$$

$$A \land P \implies L$$

$$A \land B \implies L$$

$$A$$

$$B$$

First-order Logic

FOL knowledge base:

First-order Logic

Logic Programming (Prolog)

- Programming in
 - Procedural languages (Java, C++, ...)
 - "tell" the computer "what to do", i.e. what steps to provide, to achieve a desired result

for (Student student : students)

if (student.age > 21 && student.sex == "f")

System.out.println(student.id + "\t" + student.name);

- Declarative languages (Prolog, SQL, ...)
 - "tell" the computer "what information we want to get"
 without telling the exact steps to get it.
 provide(X,Y) :- student(X,Y,V,Z), V > 21, Z = f.
 SELECT id, name FROM students WHERE age > 21 AND sex = 'f'

Machine Learning (basics only)

- ML is a research area "combining"
 - statistics
 - optimization theory
- how can we derive some patterns (rules) from the observed data?
 - what is a pattern?
 - how to measure the accuracy?
 - how those patterns ease the decision process?

Inductive Logic Programming

Learning daughter/2

INPUT

Training examples		Background knowledge	
daughter(mary, ann).	\oplus	mother(ann, mary).	female(ann).
daughter(eve, tom).	\oplus	mother(ann, tom).	female(mary).
daughter(tom, ann).	\ominus	father(tom, eve).	female(eve).
daughter(eve, ann).	\ominus	father(tom, ian).	
		$parent(X,Y) \leftarrow mother(X,Y)$	
		$parent(X,Y) \leftarrow father(X,Y)$	

OUTPUT

 $daughter(X,Y) \leftarrow female(X), parent(Y,X)$

Textbook

 Stuart Russell and Peter Norvig, Artificial Intelligence – A Modern Approach, Prentice Hall 2003.

Stuart Russell • Peter Norvig

Prentice Hall Series in Artificial Intelligence

Administrative things

Lectures

- Lectures
 - Wednesday 8:00 10:00
 - Thursday 10:00 12:00 (bi-weekly)
 - Final examination (test) grade A
- Lectures in english

Tutorials

- Tutorials
 - Monday 16:00 18:00 (bi-weekly)
 - Final grade for the exercises B

• Tutorials in english

Final Grade

- Final grade from the course will be computed as (9.A + B) / 10
 - successful, but unsatised students will be recommended to make an additional work, e.g. a project, paper presentation, . . .
 - unsuccessful students will be recommended to study better in the future

Thanks for Your attention!

Questions?