

Artificial Intelligence

Information Systems and Machine Learning Lab (ISMLL)
Tomáš Horváth

3rd November, 2011

Solving Problems by Searching

Problem-solving agent

● decides what to do by finding sequences of
actions leading to desirable states - goals
● I. Goal formulation

– What do we want to “reach”?
● II. Problem formulation

– What actions and states to “consider”, given a goal?
– abstraction

● the level of states and actions

● Looking for such sequences is called SEARCH

Problem-solving agent

● what type of an environment is this agent working in?
● static? observable? discrete? deterministic?

Example

Problem definition
● initial state
● successor function

● possible actions available from the current state
(operators applied to a current state)

● goal test
● determines whether a given state is a goal state

● path cost
● assigns a number to each path
● step costs

● solution
● a path from the initial state to a goal state

define a state space

Toy examples

● vacuum cleaner
● states

– 8 possible world states
● two locations which could be clean or dirty

● any state can be initial
● successor function generates the legal states

resulting from trying the three possible actions
– Left, Right, Suck

● goal test checks whether all the squares are clean
● path cost is the number of step

– the number of steps, each step costs 1

Toy examples

Toy example

● 8 puzzle
● states

– the location of each of the 8 tiles and the blank
● initial state

– any state
● successor function

– Left, Right, Up or Down
● goal test

– tests whether the state matches the goal configuration
● path cost

– the number of steps, each step costs 1

Toy example

Toy example

● 8-queens problem
● How the specification looks like?

Real-world problems

● route finding, touring, traveling problems
– get from the location A to the location B
– visit every city at least once
– visit every city at least once

● VLSI layout problem
● positioning millions of components and connections

on a chip to minimize area

● Internet searching problem
● looking for related information by going through the

links on the web sites seen

Searching
● search tree, search graph

● generated by the initial state and the successor function
● search node

– an instantiation of a world state

– main components are
● state (in the state space to which the node corresponds)
● parent node
● action (which was applied to the parent to generate the node)
● path-cost
● depth (the number of steps along the path from the initial state)

● search strategy
● the choice of which state to expand
● fringe

– the collection of nodes that have been generated but not yet expanded

Search tree/graph

Search

Measuring the performance

● completeness
● Is the algorithm guaranteed to find a solution when there is one?

● optimality
● Does the strategy find the optimal solution?

● time complexity
● how long does it take to find a solution?

● space complexity
● how much memory is needed to perform the search?

● important factors
● branching factor (b)
● depth of the shallowest node (d)
● the maximum length of any path in the state space (m)

Breadth-first search

Breadth-first search

● what is the total number of nodes generated?
● suppose that the solution is at depth d and
● each node generates b more nodes...

Uniform-cost search

Depth-first search

Depth-first search

● similar to breadth-first search
● using LIFO

● Backtracking search
● a variant of depth-first search
● only one successor is generated at a time

– nodes should remember which successor to generate next

● what is the drawback of depth-first search?

Depth-limited search

Iterative deepening depth-first
search

● in general, iterative deepening is the preferred
uninformed search method when there is a
large space and the depth of the solution is not
known
● why?
● what is the total number of nodes generated?

Iterative deepening depth-first
search

Bidirectional search

Comparison

Avoiding repeated states

● we can smartly formulate a problem to avoid
repeated states
● how we can do it in 8-queen problem?

● cut the search tree - remembering visited states
– find a trade-off between space and time
– closed list - expanded nodes
– open list - not yet expanded nodes

Searching with partial information

● sensorless problem
● if an agent has no sensors at all, it could be in one

of several possible initial states, and each action
might therefore lead to one of several possible
successor states

● contingency problem
● if the environment is partially observable or if

actions are uncertain, then the agent's percepts
provide new information after each iteration. Each
possible percept defines a contingency that must be
planned for

Searching with partial information

Sensorless problems

● an agent knows all the effects of its actions but
has no sensors
● initial state is one of the set {1,2,3,4,5,6,7,8}
● Right will cause to be in one of the states {2,4,6,8}
● [Right, Suck] will cause to be in one of {4,8}
● [Right, suck, Left, Suck] guarantees to reach the

goal state 7

● belief states

Sensorless problems

Contingency problems

● assume Murphy's law
● Suck sometimes deposits dirt only if there is no dirt

– percept [L,Dirty] means that an agent is in one of the
states {1,3}

– executing [Suck, Right] will lead to one of the states {6,8}
– executing the final Suck action in state 6 leads to a goal

state but executing Suck in state 8 might take us back to
the state 6 (Murphy's law}, in which case the plan fails

● [Suck, Right, if [R,Dirty] then Suck] is a solution

Thanks for your attention!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

