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Solving Problems by Searching



  

Problem-solving agent

● decides what to do by finding sequences of 
actions leading to desirable states - goals
● I. Goal formulation

– What do we want to “reach”?
● II. Problem formulation

– What actions and states to “consider”, given a goal?
– abstraction

● the level of states and actions

● Looking for such sequences is called SEARCH



  

Problem-solving agent

● what type of an environment is this agent working in?
● static? observable? discrete? deterministic?



  

Example



  

Problem definition
● initial state
● successor function

● possible actions available from the current state 
(operators applied to a current state)

● goal test
● determines whether a given state is a goal state

● path cost
● assigns a number to each path
● step costs

● solution
● a path from the initial state to a goal state

define a state space



  

Toy examples

● vacuum cleaner
● states

– 8 possible world states
● two locations which could be clean or dirty

● any state can be initial
● successor function generates the legal states 

resulting from trying the three possible actions
– Left, Right, Suck

● goal test checks whether all the squares are clean
● path cost is the number of step

– the number of steps, each step costs 1



  

Toy examples



  

Toy example

● 8 puzzle
● states

– the location of each of the 8 tiles and the blank
● initial state

– any state
● successor function

– Left, Right, Up or Down
● goal test

– tests whether the state matches the goal configuration
● path cost

– the number of steps, each step costs 1



  

Toy example



  

Toy example

● 8-queens problem
● How the specification looks like?



  

Real-world problems

● route finding, touring, traveling problems
– get from the location A to the location B
– visit every city at least once
– visit every city at least once

● VLSI layout problem
● positioning millions of components and connections 

on a chip to minimize area

● Internet searching problem
● looking for related information by going through the 

links on the web sites seen



  

Searching
● search tree, search graph

● generated by the initial state and the successor function
● search node

– an instantiation of a world state

– main components are
● state (in the state space to which the node corresponds)
● parent node
● action (which was applied to the parent to generate the node)
● path-cost
● depth (the number of steps along the path from the initial state)

● search strategy
● the choice of which state to expand
● fringe

– the collection of nodes that have been generated but not yet expanded



  

Search tree/graph



  

Search



  

Measuring the performance

● completeness
● Is the algorithm guaranteed to find a solution when there is one?

● optimality
● Does the strategy find the optimal solution?

● time complexity
● how long does it take to find a solution?

● space complexity
● how much memory is needed to perform the search?

● important factors
● branching factor (b)
● depth of the shallowest node (d)
● the maximum length of any path in the state space (m)



  

Breadth-first search



  

Breadth-first search

● what is the total number of nodes generated?
● suppose that the solution is at depth d and
● each node generates b more nodes...



  

Uniform-cost search



  

Depth-first search



  

Depth-first search

● similar to breadth-first search
● using LIFO

● Backtracking search
● a variant of depth-first search
● only one successor is generated at a time

– nodes should remember which successor to generate next

● what is the drawback of depth-first search?



  

Depth-limited search



  

Iterative deepening depth-first 
search

● in general, iterative deepening is the preferred 
uninformed search method when there is a 
large space and the depth of the solution is not 
known
● why?
● what is the total number of nodes generated?



  

Iterative deepening depth-first 
search



  

Bidirectional search



  

Comparison



  

Avoiding repeated states

● we can smartly formulate a problem to avoid 
repeated states
● how we can do it in 8-queen problem?

● cut the search tree - remembering visited states
– find a trade-off between space and time
– closed list - expanded nodes
– open list - not yet expanded nodes



  

Searching with partial information

● sensorless problem
● if an agent has no sensors at all, it could be in one 

of several possible initial states, and each action 
might therefore lead to one of several possible 
successor states

● contingency problem
● if the environment is partially observable or if 

actions are uncertain, then the agent's percepts 
provide new information after each iteration. Each 
possible percept defines a contingency that must be 
planned for



  

Searching with partial information



  

Sensorless problems

● an agent knows all the effects of its actions but 
has no sensors
● initial state is one of the set {1,2,3,4,5,6,7,8}
● Right will cause to be in one of the states {2,4,6,8}
● [Right, Suck] will cause to be in one of {4,8}
● [Right, suck, Left, Suck] guarantees to reach the 

goal state 7

● belief states



  

Sensorless problems



  

Contingency problems

● assume Murphy's law
● Suck sometimes deposits dirt only if there is no dirt

– percept [L,Dirty] means that an agent is in one of the 
states {1,3}

– executing [Suck, Right] will lead to one of the states {6,8}
– executing the final Suck action in state 6 leads to a goal 

state but executing Suck in state 8 might take us back to 
the state 6 (Murphy's law}, in which case the plan fails

● [Suck, Right, if [R,Dirty] then Suck] is a solution



  

Thanks for your attention!
Questions?
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