

Artificial Intelligence

Information Systems and Machine Learning Lab (ISMLL)
Tomáš Horváth

16rd November, 2011

Informed Search and Exploration

Example (again)

Informed strategy

● we use a problem-specific knowledge beyond
the definition of a problem itself

● evaluation function f(n)
● the node with the lowest f(n) will be selected first
● BEST-FIRST search

● heuristic function h(n)
● the estimated cost of the cheapest path from the

node n to a goal node
● somehow imparts an additional knowledge
● if n is a goal node, then h(n) = 0

An example heuristic function

● if it correlates with actual road distances then it
is a useful heuristic.

Greedy best-first search

● expand the node that is closest to the goal
● f(n) = h(n)

● After seeing an example, try to answer
● Is this search optimal?
● What are the drawbacks?
● What complexity does it have?

Greedy best-first search

is this the best solution?
- what about the way from Iasi to Fagaras?

A* search

● f(n) = g(n) + h(n)
● cost for reach the node + cost to get to the goal
● estimated cost of the cheapest solution through n

● admissible heuristic h(n)
● never overestimates the cost to reach the goal
● Is the straight-line distance admissible?

● A* is optimal
● if it is used with TREE-SEARCH and
● if h(n) is admissible

– How can it be proved?

A* example

Bucharest is not selected,
 it might be a shorter path

 from Pitesti

A* proof (tree-search)

● since g(n) is the exact cost and h(n) is admissible, f(n)
never overestimates

● suboptimal goal G2, cost C* for optimal solution
● h(G2) = 0

– f(G2) = g(G2) + h(G2) = g(G2) > C*

● consider a node n on an optimal path
● if a solution exists, n exists too
● h(n) does not overestimate

– f(n) = g(n) + h(n) <= C*
● f(n) <= C* < f(G2)

– G2 will not be expanded and A* must return an optimal solution

A* (graph-search)

● graph-search can discard the optimal path to a repeated state
if it is not the first one generated

● discarding the more expensive of any two paths found to
the same node

– such an extra bookkeeping is messy, even if guarantees
optimality

● ensuring that the optimal path to any repeated state is
always the first one followed

– as is in the case of uniform-cost search
– h(n) needs to be consistent (monotone)

● for every n and every successor n' of n generated by
any action a
– h(n) <= c(n,a,n') + h(n')

A* (graph-search)

● n, n' and the closest goal to n form a triangle (triangle inequality)

● every consistent heuristic is also admissible
● if h(n) is consistent then the values of f(n) along any path are

nondecreasing

● g(n') = g(n) + c(n,a,n')
● h(n) <= c(n,a,n') + h(n')

– f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') >= g(n) + h(n) = f(n)

● A* using graph-search is optimal if h(n) is consistent

● sequence of nodes expanded by A* using graph-search is in
nondecreasing order of f(n)

– the first goal node selected for expansion must be optimal
since all later nodes will be at least as expensive

A* - contours
uniform cost search: h(n) = 0

all the nodes within this contour have
f(n) less than or equal than 400

nodes are added/explored in a concentric bands

A* - large-scale problems

● expand no nodes with f(n) > C*
● such nodes are pruned

● however, the number of nodes within the goal
contour is for most problems still exponential
● unless |h(n) – h*(n)| <= O(log h*(n))

– h*(n) is the true cost of getting from n to the goal
● keeps all generated nodes in the memory

– as all graph-search algorithms
● impractical to insist on finding an optimal solution

– variants of A* for finding suboptimal solutions quickly

Memory-bounded heuristic search

● we can simply adapt the idea of iterative-
deepening (IDA*)
● use the smallest f-cost of any node that exceeded

the cutoff in the previous iteration as a new cutoff

● RBFS
● MA*

Recursive best-first search

● a simple recursive algorithm but
● it keeps track of the f-value of the best alternative

path available from any ancestor of the current node
● if the current node exceeds the limit the recursion

unwinds back to the alternative path
– replaces the f-value of each node along the path with the

best f-value of its children

● remembers the f-value of the best leaf in the
forgotten subtree

Recursive best-first search

Recursive best-first search

IDA* and RBFS

● like A*, is optimal if h(n) is admissible
● excessive node regeneration
● space complexity is linear in depth of the

deepest optimal solution
● hard to characterize it's time complexity

● they may explore the same state many times

● IDA* and RBFS suffers from too little memory
● it seems sensible to use all available memory

Simplified memory-bounded A*

● proceeds like A* until the memory is full
● if the memory is full SMA* drops the worst leaf

node (with the highest value)
● however, the ancestor of a forgotten subtree knows

the value of the best path in that subtree
● SMA* regenerates the subtree only when all other

paths have been shown to look worse than the path
it has forgotten

● SMA* is complete if the depth of the shallowest goal is
less than the memory size

● extra time needed for repeated regeneration

Simplified memory-bounded A*

● What if all the leaf nodes have the same value?

● it might select the same node for deletion and
expansion

● expanding the newest best leaf and deleting the
oldest worst leaf

● the same node if there is only 1 leaf

– the current search tree is a single path from root
to leaf that fills all of the memory

A short note on heuristics

● 8-puzzle example
● start: (7, 2, 4, 5, null, 6, 8, 3, 1), goal: (null, 1, 2, 3, 4, 5, 6, 7, 8)
● h1 = the number of misplaced tiles
● h2 = the sum of the distances of the tiles from their goal position

(Manhattan distance)
● Which one is better?

● effective branching factor b*
● that a uniform tree of depth d would have when containing N+1

total nodes generated
● N+1 = 1 + (b*) + (b*)^2 + … + (b*)^d
● a well-designed heuristic would have b* close to 1

– test it on a small set of of problems generated which gives us a good
guide of the usefulness of a given heuristic

A short note on heuristics

Search Cost Effective branching factor
d IDS A*(h1) A*(h2) IDS A*(h1) A*(h2)
2 10 6 6 2.45 1.79 1.79
4 112 13 12 2.87 1.48 1.45

10 47127 93 39 2.79 1.38 1.22
14 -- 539 113 -- 1.44 1.23
20 -- 7276 676 -- 1.47 1.27
24 -- 39135 1641 -- 1.48 1.26

A short note on heuristics

● h2 is better than h1 for an 8-puzzle problem
● Is it always better?

● h2 dominates h1
● if for any node n, h2(n) >= h1(n)

– using h2 will never expand more nodes than h1
● every node with f(n) < C* will surely be expanded
● every node with h(n) < C* - g(n) will surely be expanded
● since h2 is at least as big as h1 for all nodes, every node surely

expanded with h2 will also be surely expanded with h1

● it is always better to use heuristic with higher values
– just if the heuristic does not overestimate

Local search and Optimization

● sometimes the path to the goal is irrelevant
● e.g. 8-queen

● Local search algorithms
● not systematic

– use a single current state
– generally, move only to neighbors
– typically, the paths are not retained

● use very little memory
● often find reasonable solutions in large spaces

● Optimization problems
● find the best state according to an objective function

Hill-climbing search

● What are the drawbacks of this algorithm?

complete-state formulation:

- each state has 8 queens
on the board

- successor function returns all
possible states generated by
moving a single queen to another
position in the same column
(8 x 7 = 56 successors)

heuristic function:
number of pairs of
queens attacking

each other

Hill-climbing search

● The state space landscape

Hill-climbing search

● Sideways moves
● allow when a plateau is reached

Hill-climbing search

● variations
● stochastic

– chooses at random from among the uphill moves
● first-choice

– stochastic HC by generating successors randomly until
one is generated that is better than the current state

● random-restart
– perform a series of HC with randomly generated initial

states

Simulated Annealing

● HC never makes “downhill” move
● it can stuck in the local maximum

● random-walk
● choosing a successor uniformly at random from the

set of successors
● complete but inefficient

● it seems reasonable to combine HC and RW
● simulated annealing

– motivated by a process of annealing in metallurgy which
is a process to temper or harden metals and glass

Simulated Annealing
for lowering T

if the move improves
the current situation
it is always accepted

otherwise, the move is
accepted with some

probability exponentially
decreasing in time (as

the temperature decreases)

if T is lowered slowly enough
then the algorithm will find the

global optimum

Local Beam Search

● keep track on k states
● begin with k random states
● at each step

● all the successors of the k states are generated
– if any is a goal, then halt
– select the k best successors and repeat

● how it differs from running k random
restarts in sequence?

Local Beam Search

● useful information is passed among the k parallel
search threads
● e.g. 1 state generates several good successors while

other states generates bad successors
● moves the resources to prospective areas of the search

space

● the k successors can quickly become concentrated
in a small area of the space
● stochastic beam search

– choose successors at random
– the probability of choosing a successor grows with its value

● a “natural” selection

Genetic Algorithms

● a variant of stochastic beam search
● successor states are generated by combining two

parent states
● analogy to natural selection

● begins with the randomly generated population
● an individual is represented by a string over a finite

alphabet
– 0-1 or digits (the two encodings behave differently)
– fitness function

● e.g. the number of nonattacking pairs of queens

Genetic Algorithms
fitness score probability of being chosen for reproduction

Genetic Algorithms

Genetic Algorithms

● the crossover operation has the ability to
combine large blocks that have evolved
independently
● doing crossover in a random order, however, makes

no advantage
● schema

– for example 246*****
– instances of the schema
– makes sense, if adjacent bits are related each other, i.e.

when schemas correspond to meaningful components of
a solution

as in SA, at the beginning
larger steps are taken the population is quite diverse at the beginning

if the average fitness of instances of a schema is above
the mean, then the number of instances of the schema

within the population will grow over the time

Local search in continuous spaces

● none of the algorithms before can handle continuous
spaces

● the successor function would return infinitely many
cases

● example - we have to place 3 airports on “our” map
such that the sum of squared distances from each
city to the closest airport is minimized
– coordinates (x1,y1), (x2,y2), (x3,y3)

● six variables (six dimensional space)
● objective function f(x1,y1,x2,y2,x3,y3) is tricky to express
● how could we apply e.g. hill climbing?

– can we discretize the neighborhood of the states (move only
one airport in x or y direction by +- delta)?

can we apply
SA directly by

generating
random
vectors?

Local search in continuous spaces

● gradient ascent algorithms
● ▽f = (∂f/∂x1,∂f/∂y1,∂f/∂x2,∂f/∂y2,∂f/∂x3,∂f/∂y3)

– we can compute the gradient only locally
● perform steepest-ascent hill climbing

– x_new = x_old + α f(x)▽
– α is a “small” constant

● if too small, many steps are needed
● if too large, it can overshoot the maximum

– line search
● doubling α until f starts to decrease
● this point becames the new state

What does the
gradient represent?

Local search in continuous spaces

● sometimes an objective function is not available
in a differentiable form

– for example is computed by some other (external) tools
– in this case use empirical gradient

● evaluating the response to small increments and decrements in
each coordinate

● there are several variations of the gradient
ascent algorithm

On-line search

● can be solved only by an agent executing actions
rather than by a purely computational process

● an agent knows just
● ACTION(s)
● c(s,a,s')
● GOAL_TEST(s)

● an agent can expand

only the node that it

physically occupies!

get from S to G
without knowing
the environment

only if
s' is

known

On-line DFS agent

We assume a safely explorable state space
where are no dead-ends, i.e. that some goal
state is reachable from any reachable state.

works only if the
actions are reversible

Random Walk

● hill-climbing is already an on-line search (why?)
● can stuck sitting in the local maximum

– random restarts cannot be performed since an agent
cannot transport itself to a new state

● Random walk
● selecting at random one of the available actions

– best if the selected action has been not tried yet
● very slow in each step, backward progress is more likely than forward

LRTA* - learning real-time A*

● augmenting HC with memory rather than
randomness
● store the current best estimate H(s) of the cost to

reach the goal from each state that has been visited
– H(s) is updated as the agent gains experience

LRTA*

LRTA*

Thanks for your attention!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

