Artificial Intelligence

Information Systems and Machine Learning Lab (ISMLL) Tomáš Horváth

16rd November, 2011

Informed Search and Exploration

Example (again)

Informed strategy

- we use a problem-specific knowledge beyond the definition of a problem itself
- evaluation function f(n)
 - the node with the lowest f(n) will be selected first
 - BEST-FIRST search
- <u>heuristic function</u> h(n)
 - the estimated cost of the cheapest path from the node n to a goal node
 - somehow imparts an additional knowledge
 - if n is a goal node, then h(n) = 0

An example heuristic function

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

• if it correlates with actual road distances then it is a useful heuristic.

Greedy best-first search

- expand the node that is closest to the goal
- f(n) = h(n)
- After seeing an example, try to answer
 - Is this search optimal?
 - What are the drawbacks?
 - What complexity does it have?

Greedy best-first search

- what about the way from Iasi to Fagaras?

A* search

- f(n) = g(n) + h(n)
 - cost for reach the node + cost to get to the goal
 - estimated cost of the cheapest solution through n
- <u>admissible heuristic</u> h(n)
 - never overestimates the cost to reach the goal
 - Is the straight-line distance admissible?
- A* is optimal
 - if it is used with TREE-SEARCH and
 - if h(n) is admissible
 - How can it be proved?

A* example

A* proof (tree-search)

- since g(n) is the exact cost and h(n) is admissible, f(n) never overestimates
- suboptimal goal G2, cost C* for optimal solution
 - h(G2) = 0

- $f(G2) = g(G2) + h(G2) = g(G2) > C^*$

- consider a node n on an optimal path
 - if a solution exists, n exists too
 - h(n) does not overestimate
 - $f(n) = g(n) + h(n) \le C^*$
 - f(n) <= C* < f(G2)
 - G2 will not be expanded and A* must return an optimal solution

A* (graph-search)

- graph-search can discard the optimal path to a repeated state if it is not the first one generated
 - discarding the more expensive of any two paths found to the same node
 - such an extra bookkeeping is messy, even if guarantees optimality
 - ensuring that the optimal path to any repeated state is always the first one followed
 - as is in the case of uniform-cost search
 - h(n) needs to be <u>consistent</u> (monotone)
 - for every *n* and every successor *n*' of *n* generated by any action *a*
 - $-h(n) \le c(n,a,n') + h(n')$

A* (graph-search)

- *n*, *n*' and the closest goal to *n* form a triangle (triangle inequality)
 - every consistent heuristic is also admissible
- if h(n) is consistent then the values of f(n) along any path are nondecreasing
 - g(n') = g(n) + c(n,a,n')
 - h(n) <= c(n,a,n') + h(n')

 $- f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') \ge g(n) + h(n) = f(n)$

- A* using graph-search is optimal if h(n) is consistent
 - sequence of nodes expanded by A* using graph-search is in nondecreasing order of f(n)
 - the first goal node selected for expansion must be optimal since all later nodes will be at least as expensive

A* - large-scale problems

- expand no nodes with $f(n) > C^*$
 - such nodes are <u>pruned</u>
- however, the number of nodes within the goal contour is for most problems still exponential
 - unless |h(n) h*(n)| <= O(log h*(n))
 - h*(n) is the true cost of getting from n to the goal
 - keeps all generated nodes in the memory
 - as all graph-search algorithms
 - impractical to insist on finding an optimal solution
 - variants of A* for finding suboptimal solutions quickly

Memory-bounded heuristic search

- we can simply adapt the idea of iterativedeepening (IDA*)
 - use the smallest f-cost of any node that exceeded the cutoff in the previous iteration as a new cutoff
- RBFS
- MA*

Recursive best-first search

- a simple recursive algorithm but
 - it keeps track of the f-value of the best alternative path available from any ancestor of the current node
 - if the current node exceeds the limit the recursion <u>unwinds</u> back to the alternative path
 - replaces the f-value of each node along the path with the best f-value of its children
- remembers the f-value of the best leaf in the forgotten subtree

Recursive best-first search

Recursive best-first search

- function RECURSIVE-BEST-FIRST-SEARCH(*problem*) returns a solution, or failure return RBFS(*problem*, MAKE-NODE(*problem*.INITIAL-STATE), ∞)
- function RBFS(problem, node, f_limit) returns a solution, or failure and a new f-cost limit
 if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
 successors ← []
 - for each action in problem.ACTIONS(node.STATE) do

```
add CHILD-NODE(problem, node, action) into successors
```

if successors is empty then return failure, ∞

```
for each s in successors do /* update f with value from previous search, if any */
```

```
s.f \leftarrow \max(s.g + s.h, node.f))
```

loop do

```
best \leftarrow the lowest f-value node in successors
```

```
if best.f > f_limit then return failure, best.f
```

```
alternative \leftarrow the second-lowest f-value among successors
```

```
result, best. f \leftarrow \text{RBFS}(problem, best, \min(f\_limit, alternative))
```

```
if result \neq failure then return result
```

IDA* and RBFS

- like A*, is optimal if h(n) is admissible
- excessive node regeneration
- space complexity is linear in depth of the deepest optimal solution
- hard to characterize it's time complexity
 - they may explore the same state many times
- IDA* and RBFS suffers from too little memory
 - it seems sensible to use all available memory

Simplified memory-bounded A*

- proceeds like A* until the memory is full
- if the memory is full SMA* drops the worst leaf node (with the highest value)
 - however, the ancestor of a forgotten subtree knows the value of the best path in that subtree
 - SMA* regenerates the subtree only when all other paths have been shown to look worse than the path it has forgotten
- SMA* is complete if the depth of the shallowest goal is less than the memory size
- extra time needed for repeated regeneration

Simplified memory-bounded A*

- What if all the leaf nodes have the same value?
 - it might select the same node for deletion and expansion
 - expanding the newest best leaf and deleting the oldest worst leaf
 - the same node if there is only 1 leaf
 - the current search tree is a single path from root to leaf that fills all of the memory

A short note on heuristics

• 8-puzzle example

- start: (7, 2, 4, 5, null, 6, 8, 3, 1), goal: (null, 1, 2, 3, 4, 5, 6, 7, 8)
- h1 = the number of misplaced tiles
- h2 = the sum of the distances of the tiles from their goal position (Manhattan distance)
- Which one is better?
- effective branching factor b*
 - that a uniform tree of depth d would have when containing N+1 total nodes generated
 - $N+1 = 1 + (b^*) + (b^*)^2 + \dots + (b^*)^d$
 - a well-designed heuristic would have b* close to 1
 - test it on a small set of of problems generated which gives us a good guide of the usefulness of a given heuristic

A short note on heuristics

	Search Cost			Effective branching factor		
d	IDS	A*(h1)	A*(h2)	IDS	A*(h1)	A*(h2)
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
10	47127	93	39	2.79	1.38	1.22
14		539	113		1.44	1.23
20		7276	676		1.47	1.27
24		39135	1641		1.48	1.26

A short note on heuristics

- h2 is better than h1 for an 8-puzzle problem
 - Is it always better?
- h2 dominates h1
 - if for any node n, $h2(n) \ge h1(n)$
 - using h2 will never expand more nodes than h1
 - every node with $f(n) < C^*$ will surely be expanded
 - every node with $h(n) < C^* g(n)$ will surely be expanded
 - since h2 is at least as big as h1 for all nodes, every node surely expanded with h2 will also be surely expanded with h1
 - it is always better to use heuristic with higher values
 - just if the heuristic does not overestimate

Local search and Optimization

- sometimes the path to the goal is irrelevant
 - e.g. 8-queen
- Local search algorithms
 - not systematic
 - use a single current state
 - generally, move only to neighbors
 - typically, the paths are not retained
 - use very little memory
 - often find reasonable solutions in large spaces
- Optimization problems
 - find the best state according to an objective function

function HILL-CLIMBING(problem) returns a state that is a local maximum

```
current \leftarrow Make-Node(problem.Initial-State)
loop do
```

 $\begin{array}{l} \textit{neighbor} \leftarrow a \text{ highest-valued successor of } \textit{current} \\ \textbf{if neighbor}. \texttt{VALUE} \leq \texttt{current}. \texttt{VALUE then return } \textit{current}. \texttt{STATE} \\ \textit{current} \leftarrow \textit{neighbor} \end{array}$

heuristic function: number of pairs of queens attacking each other

complete-state formulation:

- each state has 8 queens on the board
- successor function returns all possible states generated by moving a single queen to another position in the same column $(8 \times 7 = 56 \text{ successors})$

What are the drawbacks of this algorithm?

• The state space landscape

- Sideways moves
 - allow when a plateau is reached

- variations
 - stochastic
 - chooses at random from among the uphill moves
 - first-choice
 - stochastic HC by generating successors randomly until one is generated that is better than the current state
 - random-restart
 - perform a series of HC with randomly generated initial states

Simulated Annealing

- HC never makes "downhill" move
 - it can stuck in the local maximum
- random-walk
 - choosing a successor uniformly at random from the set of successors
 - complete but inefficient
- it seems reasonable to combine HC and RW
 - simulated annealing
 - motivated by a process of annealing in metallurgy which is a process to temper or harden metals and glass

Simulated Annealing

for lowering T

function SIMULATED-ANNEALING (problem, schedule) returns a solution state inputs. problem, a problem schedule, a mapping from time to "temperature" $current \leftarrow MAKE-NODE(problem.INITIAL-STATE)$ for t = 1 to ∞ do $T \leftarrow schedule(t)$ if T = 0 then return *current* if the move improves $next \leftarrow a$ randomly selected successor of currentthe current situation $\Delta E \leftarrow next. VALUE - current. VALUE$ it is always accepted if $\Delta E > 0$ then $current \leftarrow next$. else $current \leftarrow next$ only with probability $e^{\Delta E/T}$

if T is lowered slowly enough then the algorithm will find the global optimum otherwise, the move is accepted with some probability exponentially decreasing in time (as the temperature decreases)

Local Beam Search

- keep track on k states
- begin with k random states
- at each step
 - all the successors of the k states are generated
 - if any is a goal, then halt
 - select the k best successors and repeat
- how it differs from running k random restarts in sequence?

Local Beam Search

- useful information is passed among the k parallel search threads
 - e.g. 1 state generates several good successors while other states generates bad successors
 - moves the resources to prospective areas of the search space
- the k successors can quickly become concentrated in a small area of the space
 - stochastic beam search
 - choose successors at random
 - the probability of choosing a successor grows with its value
 - a "natural" selection

- a variant of stochastic beam search
 - successor states are generated by combining two parent states
 - analogy to natural selection
- begins with the randomly generated population
 - an <u>individual</u> is represented by a string over a finite alphabet
 - 0-1 or digits (the two encodings behave differently)
 - fitness function
 - e.g. the number of nonattacking pairs of queens

function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual inputs: population, a set of individuals

FITNESS-FN, a function that measures the fitness of an individual

repeat

 $new_population \leftarrow empty set$ for i = 1 to SIZE(population) do $x \leftarrow RANDOM-SELECTION(population, FITNESS-FN)$ $y \leftarrow RANDOM-SELECTION(population, FITNESS-FN)$ $child \leftarrow REPRODUCE(x, y)$ if (small random probability) then $child \leftarrow MUTATE(child)$ add child to $new_population$ $population \leftarrow new_population$ until some individual is fit enough, or enough time has elapsed

return the best individual in *population*, according to FITNESS-FN

function REPRODUCE(x, y) returns an individual inputs: x, y, parent individuals

 $n \leftarrow \text{LENGTH}(x)$; $c \leftarrow \text{random number from 1 to } n$ return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))

as in SA, at the beginning larger steps are taken

the population is quite diverse at the beginning

- the crossover operation has the ability to combine large blocks that have evolved independently
 - doing crossover in a random order, however, makes no advantage
 - <u>schema</u>
 - for example 246****
 - instances of the schema
 - makes sense, if adjacent bits are related each other, i.e. when schemas correspond to meaningful components of a solution

if the average fitness of instances of a schema is above the mean, then the number of instances of the schema within the population will grow over the time

Local search in continuous spaces

- none of the algorithms before can handle continuous spaces
 - the successor function would return infinitely many cases
 - example we have to place 3 airports on "our" map such that the sum of squared distances from each city to the closest airport is minimized
 - coordinates (x1,y1), (x2,y2), (x3,y3)
 - six <u>variables</u> (six dimensional space)

objective function f(x1,y1,x2,y2,x3,y3) is tricky to express

- how could we apply e.g. hill climbing?
 - can we discretize the neighborhood of the states (move only one airport in x or y direction by +- delta)?

can we apply SA directly by generating random vectors?

Local search in continuous spaces

gradient ascent algorithms

What does the gradient represent?

- $\nabla f = (\partial f/\partial x 1, \partial f/\partial y 1, \partial f/\partial x 2, \partial f/\partial y 2, \partial f/\partial x 3, \partial f/\partial y 3)$
 - we can compute the gradient only locally
- perform steepest-ascent hill climbing
 - x_new = x_old + $\alpha \bigtriangledown f(x)$
 - α is a "small" constant
 - if too small, many steps are needed
 - if too large, it can overshoot the maximum
 - line search
 - doubling $\boldsymbol{\alpha}$ until f starts to decrease
 - this point becames the new state

Local search in continuous spaces

- sometimes an objective function is not available in a differentiable form
 - for example is computed by some other (external) tools
 - in this case use empirical gradient
 - evaluating the response to small increments and decrements in each coordinate
- there are several variations of the gradient ascent algorithm

On-line search

- can be solved only by an agent executing actions rather than by a purely computational process
- an agent knows just

On-line DFS agent

works only if the function ONLINE-DFS-AGENT(s') returns an action actions are reversible **inputs**: s', a percept that identifies the current state persistent: result, a table indexed by state and action, initially empty untried, a table that lists, for each state, the actions not yet tried *unbacktracked*, a table that lists, for each state, the backtracks not yet tried s, a, the previous state and action, initially null if GOAL-TEST(s') then return stop if s' is a new state (not in *untried*) then *untried*[s'] \leftarrow ACTIONS(s') if s is not null then $result[s, a] \leftarrow s'$ add s to the front of unbacktracked[s']if untried[s'] is empty then **if** *unbacktracked* [s'] **is** empty **then return** *stop* else $a \leftarrow$ an action b such that result[s', b] = POP(unbacktracked[s'])else $a \leftarrow POP(untried[s'])$ $s \leftarrow s'$ We assume a **safely explorable** state space where are no dead-ends, i.e. that some goal return a state is reachable from any reachable state.

Random Walk

- hill-climbing is already an on-line search (why?)
 - can stuck sitting in the local maximum
 - random restarts cannot be performed since an agent cannot transport itself to a new state
- Random walk
 - selecting at random one of the available actions
 - best if the selected action has been not tried yet

LRTA* - learning real-time A*

- augmenting HC with memory rather than randomness
 - store the current best estimate H(s) of the cost to reach the goal from each state that has been visited
 - H(s) is updated as the agent gains experience

LRTA*

LRTA*

```
if GOAL-TEST(s') then return stop

if s' is a new state (not in H) then H[s'] \leftarrow h(s')

if s is not null

result[s, a] \leftarrow s'

H[s] \leftarrow \min_{b \in \text{ACTIONS}(s)} \text{LRTA*-COST}(s, b, result[s, b], H)

a \leftarrow \text{an action } b \text{ in ACTIONS}(s') \text{ that minimizes LRTA*-COST}(s', b, result[s', b], H)

s \leftarrow s'

return a
```

```
function LRTA*-COST(s, a, s', H) returns a cost estimate
if s' is undefined then return h(s)
else return c(s, a, s') + H[s']
```

Thanks for your attention! Questions?