
  

Artificial Intelligence

Information Systems and Machine Learning Lab (ISMLL)
Tomáš Horváth

16rd November, 2011



  

Informed Search and Exploration



  

Example (again)



  

Informed strategy

● we use a problem-specific knowledge beyond 
the definition of a problem itself

● evaluation function f(n)
● the node with the lowest f(n) will be selected first
● BEST-FIRST search

● heuristic function h(n)
● the estimated cost of the cheapest path from the 

node n to a goal node
● somehow imparts an additional knowledge
● if n is a goal node, then h(n) = 0



  

An example heuristic function

● if it correlates with actual road distances then it 
is a useful heuristic.



  

Greedy best-first search

● expand the node that is closest to the goal
● f(n) = h(n)

● After seeing an example, try to answer
● Is this search optimal?
● What are the drawbacks?
● What complexity does it have?



  

Greedy best-first search

is this the best solution?
- what about the way from Iasi to Fagaras?



  

A* search

● f(n) = g(n) + h(n)
● cost for reach the node + cost to get to the goal
● estimated cost of the cheapest solution through n

● admissible heuristic h(n)
● never overestimates the cost to reach the goal
● Is the straight-line distance admissible?

● A* is optimal
● if it is used with TREE-SEARCH and
● if h(n) is admissible

– How can it be proved?



  

A* example

Bucharest is not selected,
 it might be a shorter path

 from Pitesti



  

A* proof (tree-search)

● since g(n) is the exact cost and h(n) is admissible, f(n) 
never overestimates

● suboptimal goal G2, cost C* for optimal solution
● h(G2) = 0

– f(G2) = g(G2) + h(G2) = g(G2) > C*

● consider a node n on an optimal path
● if a solution exists, n exists too
● h(n) does not overestimate

– f(n) = g(n) + h(n) <= C*
● f(n) <= C* < f(G2)

– G2 will not be expanded and A* must return an optimal solution



  

A* (graph-search)

● graph-search can discard the optimal path to a repeated state 
if it is not the first one generated

● discarding the more expensive of any two paths found to 
the same node

– such an extra bookkeeping is messy, even if guarantees 
optimality

● ensuring that the optimal path to any repeated state is 
always the first one followed 

– as is in the case of uniform-cost search
– h(n) needs to be consistent (monotone)

● for every n and every successor n' of n generated by 
any action a
– h(n) <= c(n,a,n') + h(n')



  

A* (graph-search)

● n, n' and the closest goal to n form a triangle (triangle inequality)

● every consistent heuristic is also admissible
● if h(n) is consistent then the values of f(n) along any path are 

nondecreasing

● g(n') = g(n) + c(n,a,n')
● h(n) <= c(n,a,n') + h(n')

– f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') >= g(n) + h(n) = f(n)

● A* using graph-search is optimal if h(n) is consistent

● sequence of nodes expanded by A* using graph-search is in 
nondecreasing order of f(n)

– the first goal node selected for expansion must be optimal 
since all later nodes will be at least as expensive



  

A* - contours
uniform cost search: h(n) = 0

all the nodes within this contour have 
f(n) less than or equal than 400

nodes are added/explored in a concentric bands



  

A* - large-scale problems

● expand no nodes with f(n) > C*
● such nodes are pruned

● however, the number of nodes within the goal 
contour is for most problems still exponential
● unless |h(n) – h*(n)| <= O(log h*(n))

– h*(n) is the true cost of getting from n to the goal
● keeps all generated nodes in the memory

– as all graph-search algorithms
● impractical to insist on finding an optimal solution

– variants of A* for finding suboptimal solutions quickly



  

Memory-bounded heuristic search

● we can simply adapt the idea of iterative-
deepening (IDA*)
● use the smallest f-cost of any node that exceeded 

the cutoff in the previous iteration as a new cutoff

● RBFS
● MA*



  

Recursive best-first search

● a simple recursive algorithm but
● it keeps track of the f-value of the best alternative 

path available from any ancestor of the current node
● if the current node exceeds the limit the recursion 

unwinds back to the alternative path
– replaces the f-value of each node along the path with the 

best f-value of its children

● remembers the f-value of the best leaf in the 
forgotten subtree



  

Recursive best-first search



  

Recursive best-first search



  

IDA* and RBFS

● like A*, is optimal if h(n) is admissible
● excessive node regeneration
● space complexity is linear in depth of the 

deepest optimal solution
● hard to characterize it's time complexity

● they may explore the same state many times

● IDA* and RBFS suffers from too little memory
● it seems sensible to use all available memory 



  

Simplified memory-bounded A*

● proceeds like A* until the memory is full
● if the memory is full SMA* drops the worst leaf 

node (with the highest value)
● however, the ancestor of a forgotten subtree knows 

the value of the best path in that subtree
● SMA* regenerates the subtree only when all other 

paths have been shown to look worse than the path 
it has forgotten

● SMA* is complete if the depth of the shallowest goal is 
less than the memory size

● extra time needed for repeated regeneration



  

Simplified memory-bounded A*

● What if all the leaf nodes have the same value?

● it might select the same node for deletion and 
expansion

● expanding the newest best leaf and deleting the 
oldest worst leaf

● the same node if there is only 1 leaf

– the current search tree is a single path from root 
to leaf that fills all of the memory



  

A short note on heuristics

● 8-puzzle example
● start: (7, 2, 4, 5, null, 6, 8, 3, 1), goal: (null, 1, 2, 3, 4, 5, 6, 7, 8)
● h1 = the number of misplaced tiles
● h2 = the sum of the distances of the tiles from their goal position 

(Manhattan distance)
● Which one is better?

● effective branching factor b*
● that a uniform tree of depth d would have when containing N+1 

total nodes generated
● N+1 = 1 + (b*) + (b*)^2 + … + (b*)^d
● a well-designed heuristic would have b* close to 1

– test it on a small set of of problems generated which gives us a good 
guide of the usefulness of a given heuristic



  

A short note on heuristics

Search Cost Effective branching factor
d IDS A*(h1) A*(h2) IDS A*(h1) A*(h2)
2 10 6 6 2.45 1.79 1.79
4 112 13 12 2.87 1.48 1.45

10 47127 93 39 2.79 1.38 1.22
14 -- 539 113 -- 1.44 1.23
20 -- 7276 676 -- 1.47 1.27
24 -- 39135 1641 -- 1.48 1.26



  

A short note on heuristics

● h2 is better than h1 for an 8-puzzle problem
● Is it always better?

● h2 dominates h1
● if for any node n, h2(n) >= h1(n)

– using h2 will never expand more nodes than h1
● every node with f(n) < C* will surely be expanded
● every node with h(n) < C* - g(n) will surely be expanded
● since h2 is at least as big as h1 for all nodes, every node surely 

expanded with h2 will also be surely expanded with h1

● it is always better to use heuristic with higher values
– just if the heuristic does not overestimate



  

Local search and Optimization

● sometimes the path to the goal is irrelevant
● e.g. 8-queen

● Local search algorithms
● not systematic

– use a single current state
– generally, move only to neighbors
– typically, the paths are not retained

● use very little memory
● often find reasonable solutions in large spaces

● Optimization problems
● find the best state according to an objective function



  

Hill-climbing search

● What are the drawbacks of this algorithm?

complete-state formulation:

- each state has 8 queens 
on the board

- successor function returns all
possible states generated by 
moving a single queen to another
position in the same column
(8 x 7 = 56 successors)

heuristic function:
number of pairs of
queens attacking

each other



  

Hill-climbing search

● The state space landscape



  

Hill-climbing search

● Sideways moves
● allow when a plateau is reached



  

Hill-climbing search

● variations
● stochastic

– chooses at random from among the uphill moves
● first-choice

– stochastic HC by generating successors randomly until 
one is generated that is better than the current state

● random-restart
– perform a series of HC with randomly generated initial 

states



  

Simulated Annealing

● HC never makes “downhill” move
● it can stuck in the local maximum

● random-walk
● choosing a successor uniformly at random from the 

set of successors
● complete but inefficient

● it seems reasonable to combine HC and RW
● simulated annealing

– motivated by a process of annealing in metallurgy which 
is a process to temper or harden metals and glass



  

Simulated Annealing
for lowering T

if the move improves
the current situation
it is always accepted

otherwise, the move is
accepted with some

probability exponentially 
decreasing in time (as

the temperature decreases)

if T is lowered slowly enough
then the algorithm will find the

global optimum



  

Local Beam Search

● keep track on k states
● begin with k random states
● at each step

● all the successors of the k states are generated
– if any is a goal, then halt
– select the k best successors and repeat

● how it differs from running k random 
restarts in sequence?



  

Local Beam Search

● useful information is passed among the k parallel 
search threads
● e.g. 1 state generates several good successors while 

other states generates bad successors
● moves the resources to prospective areas of the search 

space

● the k successors can quickly become concentrated 
in a small area of the space
● stochastic beam search

– choose successors at random
– the probability of choosing a successor grows with its value

● a “natural” selection



  

Genetic Algorithms

● a variant of stochastic beam search
● successor states are generated by combining two 

parent states
● analogy to natural selection

● begins with the randomly generated population
● an individual is represented by a string over a finite 

alphabet
– 0-1 or digits (the two encodings behave differently)
– fitness function

● e.g. the number of nonattacking pairs of queens



  

Genetic Algorithms
fitness score probability of being chosen for reproduction



  

Genetic Algorithms



  

Genetic Algorithms

● the crossover operation has the ability to 
combine large blocks that have evolved 
independently
● doing crossover in a random order, however, makes 

no advantage
● schema

– for example 246*****
– instances of the schema
– makes sense, if adjacent bits are related each other, i.e. 

when schemas correspond to meaningful components of 
a solution

as in SA, at the beginning
larger steps are taken the population is quite diverse at the beginning

if the average fitness of instances of a schema is above
the mean, then the number of instances of the schema 

within the population will grow over the time



  

Local search in continuous spaces

● none of the algorithms before can handle continuous 
spaces

● the successor function would return infinitely many 
cases

● example - we have to place 3 airports on “our” map 
such that the sum of squared distances from each 
city to the closest airport is minimized
– coordinates (x1,y1), (x2,y2), (x3,y3)

● six variables (six dimensional space)
● objective function f(x1,y1,x2,y2,x3,y3) is tricky to express
● how could we apply e.g. hill climbing?

– can we discretize the neighborhood of the states (move only 
one airport in x or y direction by +- delta)?

can we apply
SA directly by

generating
random
vectors?



  

Local search in continuous spaces

● gradient ascent algorithms
● ▽f = (∂f/∂x1,∂f/∂y1,∂f/∂x2,∂f/∂y2,∂f/∂x3,∂f/∂y3)

– we can compute the gradient only locally
● perform steepest-ascent hill climbing

– x_new = x_old + α f(x)▽
– α is a “small” constant

● if too small, many steps are needed
● if too large, it can overshoot the maximum

– line search
● doubling α until f starts to decrease
● this point becames the new state

What does the
gradient represent?



  

Local search in continuous spaces

● sometimes an objective function is not available 
in a differentiable form

– for example is computed by some other (external) tools
– in this case use empirical gradient

● evaluating the response to small increments and decrements in 
each coordinate

● there are several variations of the gradient 
ascent algorithm



  

On-line search

● can be solved only by an agent executing actions 
rather than by a purely computational process

● an agent knows just
● ACTION(s)
● c(s,a,s')
● GOAL_TEST(s)

● an agent can expand 

only the node that it 

physically occupies!

get from S to G
without knowing
the environment

only if
s' is

known



  

On-line DFS agent

We assume a safely explorable state space 
where are no dead-ends, i.e. that some goal
state is reachable from any reachable state.

works only if the
actions are reversible



  

Random Walk

● hill-climbing is already an on-line search (why?)
● can stuck sitting in the local maximum

– random restarts cannot be performed since an agent 
cannot transport itself to a new state

● Random walk
● selecting at random one of the available actions

– best if the selected action has been not tried yet
● very slow in each step, backward progress is more likely than forward



  

LRTA* - learning real-time A*

● augmenting HC with memory rather than 
randomness
● store the current best estimate H(s) of the cost to 

reach the goal from each state that has been visited
– H(s) is updated as the agent gains experience



  

LRTA*



  

LRTA*



  

Thanks for your attention!
Questions?
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