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What should be discussed today

● deterministic games
● environment of competitive agents
● as search problem

● minimax algorithm
● properties

● α−β prunning
● some heuristics

● elements of chance



  

Games in AI

● mathematical game theory
● a branch of economics
● multi-agent environment as a game where agents 

have significant influence on each other
– competitive or cooperative

● Why are games interesting for AI?
● hard problems to solve



  

zero-sum games

● deterministic, fully observable environments
● two competitive agents (i.e. two players)
● alternate actions
● the utility values are sum to zero at the end

– winner (+1), loser (-1), equal (0)
– if one agent wins the other necessarily loses

● adversarial situation

● find a strategy specifying the move for every 
possible opponent reply



  

problem formulation

● initial state
● board position and player to move

● successor function
● returns a list of (move, state) pairs which indicate a legal 

move and the resulting action

● terminal test
● determines when the game is over, i.e. the game 

reached one of a so-called terminal states

● utility function
● gives numeric value for terminal states (-1, 0, +1)



  

problem formulation

● two players called “MIN” and “MAX”
● names “Stan” & “Pan” were already booked by Hollywood :-)

● MAX is playing a strategy for maximizing its utility
– MAX moves first

● MIN is trying to minimize MAX's utility

● How can we represent this problem?
● e.g. for the game TIC-TAC-TOE



  

game tree

● represents the happening in the 
game

● each level in the tree

● belongs to one player to move
● half turn = ply



  

strategy

● in a normal search problem
● optimal solution is a sequence of moves to a 

terminal state with utility value = +1

● but in a game
● MIN has impact on the moves of MAX

● an optimal strategy is determined by examining 
a “value” of each node
● we call this value minimax value



  

minimax value

● computed for every node in the game tree

● MINIMAX-VALUE(n) =
– UTILITY(n)

● if n is a terminal state

– maxs∈Successors(n) MINIMAX-VALUE(s)
● if n is a MAX node

– mins∈Successors(n) MINIMAX-VALUE(s)
● if n is a MIN node



  

optimal decisions

● MAX moves to states with highest minimal values
● MIN moves to states with lowest maximal values



  

minimax algorithm



  

minimax algorithm

● properties
● performs a complete depth-first exploration of a 

game tree
● time complexity O(b^m)

● m = maximal depth
● b = legal moves at each point

● space complexity
– O(b*m)

● if generates all successors at once

– O(m)
● if generates successors one at a time



  

more players

● vector of values in the nodes
● instead of single values
● gives utility of the state for each player

● which state a given player chooses?



  

more players



  

alliances

● when the players in weak positions attack the 
player(s) in strong positions.
● is it a natural consequence of optimal strategies?
● in case of two players

– consider a terminal state (1000,1000) with 1000 as the 
highest possible utility value for each player

● the optimal strategy for both players is to reach this state, i.e. 
they will automatically cooperate



  

alpha-beta prunning

● basic idea
● eliminate nodes which will be never reached in the 

actual play

m is better than n

never reached in a play

α



  

alpha-beta prunning

● MINIMAX-VALUE(root) =

= max(min(3,12,8), min(2,x,y), min(14,5,2)

= max(3, min(2,x,y), 2)

= max(3, z, 2) where z ≤ 2

= 3

unevaluated values, pruned leaves

the min of x and y



  

alpha-beta prunning

● two parameters (α,β)
● bounds on the backed-up values 

● α = the value of the best choice we have found so 
far at any choice point along the path for MAX

● best choice = the highest value
● β = the value of the best choice we have found so 

far at any choice point along the path for MIN
● best choice = the lowest value



  

alpha-beta algorithm



  

alpha-beta algorithm



  

alpha-beta algorithm

● properties
● finds the same strategy as the minimax algorithm

– the effectiveness is dependent on the order in which the 
successors are examined

● time complexity
– „ideal“ ordering of child-nodes: O(b^(m/2))
– random ordering: O(b^(3m/4))



  

real-time decisions

computer on the move...



  

transpositions

● different permutations of the move sequence 
that end up in the same position
● eliminating the transpositions
● transpositions table

– a hash table of previously seen positions
– is it practical if evaluating many nodes to keep all of them 

in a transposition table?



  

evaluation function

● estimate of the expected utility of the game 
from a given position
● UTILITY function ⇒ heuristic EVALuation function

● terminal test ⇒  cutoff test

● how to design EVAL
● EVAL should order terminal states in the same way 

as the UTILITY function
● computation of EVAL must be effective
● EVAL should be strongly correlated with the actual 

chances of winning in case of complete search there is a clear outcome,
in case of cutting we deal with a chance of winning



  

evaluation function

● features of the state
● define various categories of states

– each category contain states that leads to win, to draws 
and to losses

● expected value
● weighted average of the outcomes of the states in 

the category
– (0.72 * (+1)) + (0.20 * (-1)) + (0.08 * 0) = 0.52

72% of states in a given category leads to win, 20% to loose and 8% to draw



  

evaluation function

● material value
● numerical contributions from each feature

– chess: pawn = 1; knight, bishop = 3; rook = 5; queen = 9
● evaluation function as a weighted linear function

– EVAL(s) = w1*f1(s) + ... + wn*fn(s)
● wi ... weight
● fi ... feature

– non-linear combination can be also used



  

cutting off the search

● cutoff test
● determines when to use EVAL

● if CUTOFF-TEST(state, depth) then return EVAL(s)

● problem
– may be applied when it is unfavorable, e.g. we cut the 

search before a “critical” situation could/would happen



  

quiescence search

● when material values are used
● quiescent position

– where is unlikely to exhibit wild swings in value in the 
near future

● only apply EVAL in quiescent positions



  

horizon effect

● arises when the program is facing a move by 
the opponent that causes serious damage and 
is ultimately unavoidable



  

other considerations

● singular extension
● move that is clearly better than all other moves in a 

given position
– branching factor of such a search is 1

● idea: expand just the “better” moves
● quite effective in avoiding the horizon effect

● forward pruning
● some moves at a given node are pruned immediately 

without further consideration
– there is no guarantee that the best move won't be pruned
– recommended in safe situations, e.g. symmetric moves



  

games with elements of chance

● random element included in a game
● throwing the dice
● backgammon

● we can't construct the standard game tree
● a tree for such a game includes chance nodes

– labeled with
● the roll
● the chance the roll occurs



  

chance nodes



  

backgammon

● white has rolled 
6-5 and have four 
legal moves:
● 5-10, 5-11
● 5-11, 19-24
● 5-10, 10-16
● 5-11, 11-16



  

backgammon tree
why 1/36 and 1/18?



  

expectiminimax value

● expected values instead of definite minimax values

● EXPECTIMINIMAX(n) =

– UTILITY(n)
● if n is a terminal state

– maxs∈Successors(n) EXPECTIMINIMAX(s)
● if n is a MAX node

– mins∈Successors(n) EXPECTIMINIMAX(s)
● if n is a MIN node

–Σs∈Successors(n) P(s) * EXPECTIMINIMAX(s)
● if n is a chance node



  

digression

● exact values do matter in case of chance nodes
● EVAL could be a positive linear transformation of 

the expected utility of the position



  

games with imperfect information

● belief states
● Day 1: Road A leads to a heap of gold pieces; Road B leads to 

fork. Take the left fork and you'll find a mound of jewels, but take 
the right fork and you'll be run over by a bus.

● Day 2: Road A leads to a heap of gold pieces; Road B leads to 
fork. Take the right fork and you'll find a mound of jewels, but take 
the left fork and you'll be run over by a bus.

● Day 3: Road A leads to a heap of gold pieces; Road B leads to 
fork. Guess correctly and you'll find a mound of jewels, but guess 
incorrectly and you'll be run over by a bus.

● road B is optimal on day 1 and on day 2

– is road B therefore optimal on day 3?
● averaging over clairvoyance suggests the road B... 



  

Summary

● games as search problems

● minimax
● assumes that opponent plays optimally
● utility function
● pruning

● real-time decisions
● cutoff
● EVAL functions as search heuristics

● elements of chance
● expected values of chance

● games with imperfect information
● optimal decisions depend on information state, not real state
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