

Artificial Intelligence

Adversarial Search

Tomáš Horváth

[Stuart Russell, Peter Norvig: Artificial Intelligence – A Modern Approach, Prentice Hall, 2003]

What should be discussed today

● deterministic games
● environment of competitive agents
● as search problem

● minimax algorithm
● properties

● α−β prunning
● some heuristics

● elements of chance

Games in AI

● mathematical game theory
● a branch of economics
● multi-agent environment as a game where agents

have significant influence on each other
– competitive or cooperative

● Why are games interesting for AI?
● hard problems to solve

zero-sum games

● deterministic, fully observable environments
● two competitive agents (i.e. two players)
● alternate actions
● the utility values are sum to zero at the end

– winner (+1), loser (-1), equal (0)
– if one agent wins the other necessarily loses

● adversarial situation

● find a strategy specifying the move for every
possible opponent reply

problem formulation

● initial state
● board position and player to move

● successor function
● returns a list of (move, state) pairs which indicate a legal

move and the resulting action

● terminal test
● determines when the game is over, i.e. the game

reached one of a so-called terminal states

● utility function
● gives numeric value for terminal states (-1, 0, +1)

problem formulation

● two players called “MIN” and “MAX”
● names “Stan” & “Pan” were already booked by Hollywood :-)

● MAX is playing a strategy for maximizing its utility
– MAX moves first

● MIN is trying to minimize MAX's utility

● How can we represent this problem?
● e.g. for the game TIC-TAC-TOE

game tree

● represents the happening in the
game

● each level in the tree

● belongs to one player to move
● half turn = ply

strategy

● in a normal search problem
● optimal solution is a sequence of moves to a

terminal state with utility value = +1

● but in a game
● MIN has impact on the moves of MAX

● an optimal strategy is determined by examining
a “value” of each node
● we call this value minimax value

minimax value

● computed for every node in the game tree

● MINIMAX-VALUE(n) =
– UTILITY(n)

● if n is a terminal state

– maxs∈Successors(n) MINIMAX-VALUE(s)
● if n is a MAX node

– mins∈Successors(n) MINIMAX-VALUE(s)
● if n is a MIN node

optimal decisions

● MAX moves to states with highest minimal values
● MIN moves to states with lowest maximal values

minimax algorithm

minimax algorithm

● properties
● performs a complete depth-first exploration of a

game tree
● time complexity O(b^m)

● m = maximal depth
● b = legal moves at each point

● space complexity
– O(b*m)

● if generates all successors at once

– O(m)
● if generates successors one at a time

more players

● vector of values in the nodes
● instead of single values
● gives utility of the state for each player

● which state a given player chooses?

more players

alliances

● when the players in weak positions attack the
player(s) in strong positions.
● is it a natural consequence of optimal strategies?
● in case of two players

– consider a terminal state (1000,1000) with 1000 as the
highest possible utility value for each player

● the optimal strategy for both players is to reach this state, i.e.
they will automatically cooperate

alpha-beta prunning

● basic idea
● eliminate nodes which will be never reached in the

actual play

m is better than n

never reached in a play

α

alpha-beta prunning

● MINIMAX-VALUE(root) =

= max(min(3,12,8), min(2,x,y), min(14,5,2)

= max(3, min(2,x,y), 2)

= max(3, z, 2) where z ≤ 2

= 3

unevaluated values, pruned leaves

the min of x and y

alpha-beta prunning

● two parameters (α,β)
● bounds on the backed-up values

● α = the value of the best choice we have found so
far at any choice point along the path for MAX

● best choice = the highest value
● β = the value of the best choice we have found so

far at any choice point along the path for MIN
● best choice = the lowest value

alpha-beta algorithm

alpha-beta algorithm

alpha-beta algorithm

● properties
● finds the same strategy as the minimax algorithm

– the effectiveness is dependent on the order in which the
successors are examined

● time complexity
– „ideal“ ordering of child-nodes: O(b^(m/2))
– random ordering: O(b^(3m/4))

real-time decisions

computer on the move...

transpositions

● different permutations of the move sequence
that end up in the same position
● eliminating the transpositions
● transpositions table

– a hash table of previously seen positions
– is it practical if evaluating many nodes to keep all of them

in a transposition table?

evaluation function

● estimate of the expected utility of the game
from a given position
● UTILITY function ⇒ heuristic EVALuation function

● terminal test ⇒ cutoff test

● how to design EVAL
● EVAL should order terminal states in the same way

as the UTILITY function
● computation of EVAL must be effective
● EVAL should be strongly correlated with the actual

chances of winning in case of complete search there is a clear outcome,
in case of cutting we deal with a chance of winning

evaluation function

● features of the state
● define various categories of states

– each category contain states that leads to win, to draws
and to losses

● expected value
● weighted average of the outcomes of the states in

the category
– (0.72 * (+1)) + (0.20 * (-1)) + (0.08 * 0) = 0.52

72% of states in a given category leads to win, 20% to loose and 8% to draw

evaluation function

● material value
● numerical contributions from each feature

– chess: pawn = 1; knight, bishop = 3; rook = 5; queen = 9
● evaluation function as a weighted linear function

– EVAL(s) = w1*f1(s) + ... + wn*fn(s)
● wi ... weight
● fi ... feature

– non-linear combination can be also used

cutting off the search

● cutoff test
● determines when to use EVAL

● if CUTOFF-TEST(state, depth) then return EVAL(s)

● problem
– may be applied when it is unfavorable, e.g. we cut the

search before a “critical” situation could/would happen

quiescence search

● when material values are used
● quiescent position

– where is unlikely to exhibit wild swings in value in the
near future

● only apply EVAL in quiescent positions

horizon effect

● arises when the program is facing a move by
the opponent that causes serious damage and
is ultimately unavoidable

other considerations

● singular extension
● move that is clearly better than all other moves in a

given position
– branching factor of such a search is 1

● idea: expand just the “better” moves
● quite effective in avoiding the horizon effect

● forward pruning
● some moves at a given node are pruned immediately

without further consideration
– there is no guarantee that the best move won't be pruned
– recommended in safe situations, e.g. symmetric moves

games with elements of chance

● random element included in a game
● throwing the dice
● backgammon

● we can't construct the standard game tree
● a tree for such a game includes chance nodes

– labeled with
● the roll
● the chance the roll occurs

chance nodes

backgammon

● white has rolled
6-5 and have four
legal moves:
● 5-10, 5-11
● 5-11, 19-24
● 5-10, 10-16
● 5-11, 11-16

backgammon tree
why 1/36 and 1/18?

expectiminimax value

● expected values instead of definite minimax values

● EXPECTIMINIMAX(n) =

– UTILITY(n)
● if n is a terminal state

– maxs∈Successors(n) EXPECTIMINIMAX(s)
● if n is a MAX node

– mins∈Successors(n) EXPECTIMINIMAX(s)
● if n is a MIN node

–Σs∈Successors(n) P(s) * EXPECTIMINIMAX(s)
● if n is a chance node

digression

● exact values do matter in case of chance nodes
● EVAL could be a positive linear transformation of

the expected utility of the position

games with imperfect information

● belief states
● Day 1: Road A leads to a heap of gold pieces; Road B leads to

fork. Take the left fork and you'll find a mound of jewels, but take
the right fork and you'll be run over by a bus.

● Day 2: Road A leads to a heap of gold pieces; Road B leads to
fork. Take the right fork and you'll find a mound of jewels, but take
the left fork and you'll be run over by a bus.

● Day 3: Road A leads to a heap of gold pieces; Road B leads to
fork. Guess correctly and you'll find a mound of jewels, but guess
incorrectly and you'll be run over by a bus.

● road B is optimal on day 1 and on day 2

– is road B therefore optimal on day 3?
● averaging over clairvoyance suggests the road B...

Summary

● games as search problems

● minimax
● assumes that opponent plays optimally
● utility function
● pruning

● real-time decisions
● cutoff
● EVAL functions as search heuristics

● elements of chance
● expected values of chance

● games with imperfect information
● optimal decisions depend on information state, not real state

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

