
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 0/50

Artificial Intelligence

Artificial Intelligence

1. Uninformed Search

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute of Economics and Information Systems

& Institute of Computer Science
University of Hildesheim

http://www.ismll.uni-hildesheim.de

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 1/50

Artificial Intelligence

1. The Agent Metaphor

2. Problem Descriptions

3. Uninformed Tree Search

4. Uninformed Graph Search

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 1/50

Artificial Intelligence / 1. The Agent Metaphor

Agent, Environment, Perceptions, and Actions

ENVIRON
MENT

AGENT
SENSOR

ACTUATOR

Perception

Action

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 1/50

Artificial Intelligence / 1. The Agent Metaphor

Perception Sequence and Action Sequence

ENVIRON
MENT

AGENT
SENSOR

ACTUATOR

Perception

Action

ENVIRON
MENT

AGENT
SENSOR

ACTUATOR

Perception

Action

TIME

t_1

t_2

t_3

ENVIRON
MENT

AGENT
SENSOR

ACTUATOR

Perception

Action

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 2/50

Artificial Intelligence / 1. The Agent Metaphor

Silly Example: The vacuum-cleaner world

A B

Perceptions: pairs of

• location of the vacuum-cleaner: square A or square B

• content at that location: clean or dirty

Actions: move left, move right, suck dirt, do nothing.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 3/50

Artificial Intelligence / 1. The Agent Metaphor

Silly Example: The vacuum-cleaner world

Perception sequence action sequence
(A, clean) right
(A, dirty) suck
(B, clean) left
(B, dirty) suck
(A, clean), (A, clean) ?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 4/50

Artificial Intelligence / 1. The Agent Metaphor

Silly Example: The vacuum-cleaner world

Perception sequence action sequence
(A, dirty) suck
(A, clean) right
(B, dirty) suck
(B, clean) left
(A, clean), (B, clean) noop
(B, clean), (A, clean) noop

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 5/50

Artificial Intelligence / 1. The Agent Metaphor

Components of Environments

Environements consist of four components
(so-called “PEAS” model):

Performance measure:
describes successful behavior of an agent; the goal.

Environment:
describes what other entities there are to interact with.

Actuators:
describes the actions an agent can take and how they
influence the environment.

Sensors:
describes the perceptions available to an agent.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 6/50

Artificial Intelligence / 1. The Agent Metaphor

Properties of Environments (1/2)

deterministic – stochastic:
deterministic: the next state is completely determined by the
previous state and the action.

static – dynamic:
static: the state of the environment does not change while the
agent deliberates,
e.g., a turn-based game.

fully observable – partially observable:
fully observable: all properties of the true state that are
relevant to take the optimal action are perceived, e.g., in
chess.
partially observable: e.g., the vacuum world with information
just about the actual location.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 7/50

Artificial Intelligence / 1. The Agent Metaphor

Properties of Environments (2/2)

discrete – continuous:
discrete time: e.g., measured in steps.
discrete states: e.g., counts; locations on a grid; etc.
discrete perceptions: e.g., counts; locations on a grid; etc.
(same as for states).
discrete actions: e.g., just steering left/right (but not by a
continuous angle).

Episodic – sequential:
episodic: actions influence only the next state, but not any
later states.

Single agent – multiagent:
multiagent: several agents act in the environment.
(cooperative vs. competitive scenarios)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 8/50

Artificial Intelligence

1. The Agent Metaphor

2. Problem Descriptions

3. Uninformed Tree Search

4. Uninformed Graph Search

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 9/50

Artificial Intelligence / 2. Problem Descriptions

Problems

A problem consists of six components (here 1–4):

super state space: set X#

a set of entities that describe the state of the environment, i.e.,
the actual configuration at a given point in time.

action space: set A
a set of entities that describe the actions that an agent may
perform.

initial state: element x0 ∈ X#

the state the agent starts in.

successor function: partial function succ : X# × A→ X#

triples x, a, x′ consisting of
– previous state x,
– possible action a in that state and
– follow up state x′

(for deterministic environments)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 9/50

Artificial Intelligence / 2. Problem Descriptions

Problems / State space

Initial states and successor function implicitely define the state
space X by enumeration:

X :=
⋃

n∈N
succn(x0) ⊆ X#

where succn denotes the n-th power of succ(·, A), i.e.,

succ0(x) = x,

succ1(x) = succ(x,A) =
⋃

a∈A
succ(x, a),

succ2(x) = succ(succ(x,A), A) =
⋃

a∈A

⋃

a′∈A
succ(succ(x, a′), a) etc.

Obviously,
x0 ∈ X

and succ can be restricted to

succ ⊆ X × A×X

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 10/50

Artificial Intelligence / 2. Problem Descriptions

Problems

A problem consists of six components (here 5–6):

goal test: g : X → {0, 1}
a function that evaluates if a given state is a goal or not.

Sometimes the set of goals g−1(1) is enumerated explicitely,
e.g., g−1(1) = {In(Bucharest)}.

path costs: c : (A×X)∗ → R
the cost of performing the sequence of actions a1, a2, . . . , an to
move from x0 to x1, from x1 to x2, etc., and finally from xn−1 to
xn.

Path costs often are assumed to be just the sum of single step
costs:

c(a1, x1, a2, x2, . . . , an, xn) =

n∑

i=1

cstep(xi−1, ai, xi)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 11/50

Artificial Intelligence / 2. Problem Descriptions

Problems / State graph

Problems can be represented as directed graphs with labeled
edges:

vertices: states X.

edges: there is an edge from vertex x to x′ if there is an action a
with succ(x, a) = x′.

edge labels: edges are labeled twofold:
– with the action a and
– with the step costs c(x, a, x′).

If from each state each successor state can be reached by at
most one action, the action label often is omitted
(as it is fully determined by the two states).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 12/50

Artificial Intelligence / 2. Problem Descriptions

Problems / State graph / Example

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 13/50

Artificial Intelligence / 2. Problem Descriptions

Solutions

A path in the state space can be described either by a sequence

(a1, x1, a2, x2, . . . , an, xn) ∈ (A×X)∗, with succ(xi−1, ai) = xi, i = 1, . . . , n

or equivalently by a pure action sequence

(a1, a2, . . . , an) ∈ A∗

where
xi := succ(xi−1, ai), i = 1, . . . , n

A solution is a path that reaches a goal, i.e., with g(xn) = 1.

An optimal solution is a solution with smallest cost
c(a1, x1, a2, x2, . . . , an, xn) among all solutions.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 14/50

Artificial Intelligence / 2. Problem Descriptions

Examples / Vacuum cleaner

A B

state space X := {A,B} × {dirty, clean}{A,B}, |X| = 8.
initial state any.
successor function

succ((A, {(A,dirty), (B, dirty)}), suck) = (A, {(A, clean), (B, dirty)})
etc. (see next slide).

goal function: g((∗, {(A, clean), (B, clean)})) = 1, else 0.
path cost: c(x, a, x′) = 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 15/50

Artificial Intelligence / 2. Problem Descriptions

Examples / Vacuum cleaner

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

L R

R

R

R

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 16/50

Artificial Intelligence / 2. Problem Descriptions

Examples / 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

state space X := {f : {1, 2, . . . , 8} → {1, 2, . . . , 9} | f injective}.
initial state any.
successor function effect of moving the blank (see next slide).
goal function: g(designated goal state) = 1, else 0.
path cost: c(x, a, x′) = 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 17/50

Artificial Intelligence / 2. Problem Descriptions

Examples / 8-puzzle

succ(

7 2 4
5 6
8 3 1

 ,move blank left) =

7 2 4
5 6

8 3 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 18/50

Artificial Intelligence / 2. Problem Descriptions

Examples / 8-puzzle

8-puzzle is an instance of the sliding-block puzzle class,
a NP-complete problem class.

name board reachable states difficulty
8-puzzle 3× 3 9!/2 = 181, 440 solved easily

15-puzzle 4× 4 ≈ 1.3 · 1018 solved in a few milliseconds

24-puzzle 5× 5 ≈ 1025 difficult to solve

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 19/50

Artificial Intelligence / 2. Problem Descriptions

Examples / 8-queens problem

state space

X := {x ⊂ {1, . . . , 64} | |x| ≤ 8}, |X| =
(
64
8

)
= 4.4 · 109

initial state x = ∅.
successor function add a queen to any empty square.
goal function: goal reached if 8 queens on the board, none

attacked.
path cost: c(x, a, x′) = 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 20/50

Artificial Intelligence / 2. Problem Descriptions

Examples / 8-queens problem

A better problem formulation:

state space n queens (n = 0, . . . , 8) in the n left-most columns,
one per column, non attacked. |X| = 2057.

initial state x = ∅.
successor function add a queen to the left-most empty column,

not attacked.
goal function: goal reached if 8 queens on the board, none

attacked.
path cost: c(x, a, x′) = 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 21/50

Artificial Intelligence

1. The Agent Metaphor

2. Problem Descriptions

3. Uninformed Tree Search

4. Uninformed Graph Search

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 22/50

Artificial Intelligence / 3. Uninformed Tree Search

The Problem (1/3)

Algorithmics / Graph theory:
Given a directed graph G := (V,E) with edge weights w : E → R
and two vertices x, y ∈ V , find a shortest path from x to y, i.e., a
path P ∈ V ∗ with P1 = x, Pn = y and

w(P) :=

n−1∑

i=1

w(Pi, Pi+1)

minimal among all paths from x to y.

Artificial Intelligence:
If from each state any other state can be reached by at most one
action and costs decompose in single step costs, then

V :=X (the states)
E :={(x, y) ∈ X2 | ∃a ∈ A : succ(x, a) = y}

w(x, y) :=cost(x, a, y) (a unique with succ(x, a) = y)

x :=x0 (initial state)
y :=any x ∈ X with g(x) = 1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 22/50

Artificial Intelligence / 3. Uninformed Tree Search

The Problem (2/3)

But:

• X often is not finite, so it cannot be stored, but relevant
portions must be constructed by succ recursively.

• g−1(1) may not be easy to compute (although for each specific
x it may be easy to check if g(x) = 1, e.g., check-mate).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 23/50

Artificial Intelligence / 3. Uninformed Tree Search

The Problem (3/3)

For this section, assume:

Each state can be reached by at most one sequence of actions.

I.e., the search space is a tree.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 24/50

Artificial Intelligence / 3. Uninformed Tree Search

Breadth-First Search

Idea:

• start with initial state as border.

• iteratively replace border by all states reachable from the old
border.

1 breadth-first-search(X, succ, border, g) :
2 newborder:= ∅
3 for x ∈ borderdo
4 for y ∈ succ(x,A) do
5 if g(y) = 1
6 return y
7 else
8 newborder:= newborder∪ {y}
9 fi

10 od
11 od
12 if newborder6= ∅
13 return breadth-first-search(X, succ, newborder, g)
14 else
15 return ∅
16 fi

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 25/50

Artificial Intelligence / 3. Uninformed Tree Search

Breadth-First Search / Example

3

1

5

6
7

5

5
3 7

5

2

4

7

G

A

N

H

C

D

B

E

I

L

K

J

F

M

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 25/50

Artificial Intelligence / 3. Uninformed Tree Search

Breadth-First Search / Example

3

1

5

6
7

5

5
3 7

5

2

4

7

G

A

N

H

C

D

B

E

I

L

K

J

F

M

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 25/50

Artificial Intelligence / 3. Uninformed Tree Search

Breadth-First Search / Example

3

1

5

6
7

5

5
3 7

5

2

4

7

G

A

N

H

C

D

B

E

I

L

K

J

F

M

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 25/50

Artificial Intelligence / 3. Uninformed Tree Search

Breadth-First Search

1 breadth-first-search(X, succ, border, g) :
2 newborder:= ∅
3 for x ∈ borderdo
4 for y ∈ succ(x,A) do
5 if g(y) = 1
6 return y
7 else
8 newborder:= newborder∪ {y}
9 fi

10 od
11 od
12 if newborder6= ∅
13 return breadth-first-search(X, succ, newborder, g)
14 else
15 return ∅
16 fi

1 breadth-first-search(X, succ, x0, g) :
2 border:= {x0}
3 while border6= ∅ do
4 x := border[1]
5 if g(x) = 1
6 return x
7 fi
8 for y ∈ succ(x,A) do
9 append(border, y);

10 od
11 remove(border, x)
12 od
13 return ∅

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 26/50

Artificial Intelligence / 3. Uninformed Tree Search

Characteristics of Problems & Algorithms

In algorithmics, the complexity of (shortest path) algorithms is
measured as number of steps as function of the characteristics
of the problem measured as number of vertices and edges
(big-O notation).

For problems with infinite number of vertices or edges this is not
possible.

Use instead as problem characteristics:

maximum branching factor b:
maximum number of successors of a state.

depth of least-cost solution d:
length of least cost path to a goal state.

maximum depth of state space m
length of longest path, also called diameter; evtl. ∞.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 27/50

Artificial Intelligence / 3. Uninformed Tree Search

Characteristics of Problems / Example

Example 8-queens problem:

state space X := {x ⊂ {1, . . . , 64} | |x| ≤ 8}
|X| =

(
64
8

)
= 4.4 · 109

initial state x = ∅.
successor function add a queen to any empty square.

goal function: goal reached if 8 queens on the board, none attacked.

path cost: c(x, a, x′) = 1

Problem characteristics of 8-queens:

maximum branching factor b = 64.

depth of least-cost solution d = 8.

maximum depth of state space m = 8.

type of state graph: general graph.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 28/50

Artificial Intelligence / 3. Uninformed Tree Search

Characteristics of Problems / Example

Example 8-queens problem (better formulation):

state space n queens (n = 0, . . . , 8) in the n left-most columns,
one per column, non attacked.
|X| = 2057.

initial state x = ∅.
successor function add a queen to the left-most empty column, not attacked.

goal function: goal reached if 8 queens on the board, none attacked.

path cost: c(x, a, x′) = 1

Problem characteristics of 8-queens (better formulation):

maximum branching factor b = 8.

depth of least-cost solution d = 8.

maximum depth of state space m = 8.

type of state graph: tree.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 29/50

Artificial Intelligence / 3. Uninformed Tree Search

Characteristics of Algorithms

Characterize by:

Completeness
does the algorithm always find a solution if one exists?

Optimality
does the algorithm always find an optimal solution?

Time complexity
size of the visited part of the search tree

Space complexity
size of the search tree in memory

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 30/50

Artificial Intelligence / 3. Uninformed Tree Search

Breadth-First Search

Completeness
yes (if b is finite)

Optimality
no (unless all step costs are the same, e.g., 1)

Time complexity
1 + b + b2 + · · · + bd + b(bd − 1) = O(bd+1)

Space complexity
same as time complexity as whole search tree is kept in
memory.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 31/50

Artificial Intelligence / 3. Uninformed Tree Search

Uniform Cost Search

Idea:

• as breadth-first search.

• but visit state with minimal path cost first.

1 uniform-cost-search(X, succ, cost, x0, g) :
2 border := {x0}
3 c(x0) := 0
4 while border 6= ∅ do
5 x := argminx∈borderc(x)
6 if g(x) = 1
7 return x
8 fi
9 for y ∈ succ(x,A) do

10 border := border ∪ {y}
11 c(y) := c(x) + cost(x, y)
12 od
13 border := border \ {x}
14 od
15 return ∅

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 32/50

Artificial Intelligence / 3. Uninformed Tree Search

Uniform Cost Search / Example

3

1

5

6
7

5

5
3 7

5

2

4

7

G

A

N

H

C

D

B

E

I

L

K

J

F

M

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 32/50

Artificial Intelligence / 3. Uninformed Tree Search

Uniform Cost Search / Example

3

1

5

6
7

5

5
3 7

5

2

4

7

G

A

N

H

C

D

B

E

I

L

K

J

F

M

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 32/50

Artificial Intelligence / 3. Uninformed Tree Search

Uniform Cost Search / Example

3

1

5

6
7

5

5
3 7

5

2

4

7

G

A

N

H

C

D

B

E

I

L

K

J

F

M

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 32/50

Artificial Intelligence / 3. Uninformed Tree Search

Uniform Cost Search / Example

3

1

5

6
7

5

5
3 7

5

2

4

7

G

A

N

H

C

D

B

E

I

L

K

J

F

M

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 32/50

Artificial Intelligence / 3. Uninformed Tree Search

Uniform Cost Search / Example

3

1

5

6
7

5

5
3 7

5

2

4

7

G

A

N

H

C

D

B

E

I

L

K

J

F

M

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 32/50

Artificial Intelligence / 3. Uninformed Tree Search

Uniform Cost Search

Completeness
yes (if step costs are ≥ ε > 0).

Optimality
yes

Time complexity
O(b1+b

cost(P∗)
ε c), where P ∗ is an optimal solution.

Space complexity
same as time complexity as whole search tree is kept in
memory.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 33/50

Artificial Intelligence / 3. Uninformed Tree Search

Depth-First Search

Idea:

• start with initial state.

• iteratively visit successors one by one.

1 depth-first-search(X, succ, x0, g) :
2 for y ∈ succ(x0, A) do
3 if g(y) = 1
4 return y
5 else
6 z := depth-first-search(X, succ, y, g);
7 if z 6= ∅
8 return z
9 fi

10 fi
11 od
12 return ∅

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 34/50

Artificial Intelligence / 3. Uninformed Tree Search

Depth First Search / Example

3

1

5

6
7

5

5
3 7

5

2

4

7

G

A

N

H

C

D

B

E

I

L

K

J

F

M

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 34/50

Artificial Intelligence / 3. Uninformed Tree Search

Depth First Search / Example

3

1

5

6
7

5

5
3 7

5

2

4

7

G

A

N

H

C

D

B

E

I

L

K

J

F

M

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 34/50

Artificial Intelligence / 3. Uninformed Tree Search

Depth First Search / Example

3

1

5

6
7

5

5
3 7

5

2

4

7

G

A

N

H

C

D

B

E

I

L

K

J

F

M

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 34/50

Artificial Intelligence / 3. Uninformed Tree Search

Depth First Search / Example

3

1

5

6
7

5

5
3 7

5

2

4

7

G

A

N

H

C

D

B

E

I

L

K

J

F

M

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 34/50

Artificial Intelligence / 3. Uninformed Tree Search

Depth First Search / Example

3

1

5

6
7

5

5
3 7

5

2

4

7

G

A

N

H

C

D

B

E

I

L

K

J

F

M

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 34/50

Artificial Intelligence / 3. Uninformed Tree Search

Depth First Search / Example

3

1

5

6
7

5

5
3 7

5

2

4

7

G

A

N

H

C

D

B

E

I

L

K

J

F

M

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 34/50

Artificial Intelligence / 3. Uninformed Tree Search

Depth First Search / Example

3

1

5

6
7

5

5
3 7

5

2

4

7

G

A

N

H

C

D

B

E

I

L

K

J

F

M

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 34/50

Artificial Intelligence / 3. Uninformed Tree Search

Depth-First Search

1 depth-first-search(X, succ, x0, g) :
2 for y ∈ succ(x0, A) do
3 if g(y) = 1
4 return y
5 else
6 z := depth-first-search(X, succ, y, g);
7 if z 6= ∅
8 return z
9 fi

10 fi
11 od
12 return ∅

1 depth-first-search(X, succ, x0, g) :
2 border:= {x0}
3 while border6= ∅ do
4 x := border[1]
5 if g(x) = 1
6 return x
7 fi
8 for y ∈ succ(x,A) do
9 insert-at-beginning(border, y);

10 od
11 remove(border, x)
12 od
13 return ∅

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 35/50

Artificial Intelligence / 3. Uninformed Tree Search

Depth First Search

Completeness
no (if m =∞, e.g., due to loops).

Optimality
no

Time complexity
O(bm) — bad, if m >> d, but great for dense solutions.

Space complexity
O(bm).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 36/50

Artificial Intelligence / 3. Uninformed Tree Search

Depth-Limited Search

Idea:

• as depth-first search.

• stop at given maximum depth maxdepth.

1 depth-limited-search(X, succ, x0, g,maxdepth) :
2 for y ∈ succ(x0, A) do
3 if g(y) = 1
4 return y
5 elsif maxdepth> 0
6 z := depth-limited-search(X, succ, y, g,maxdepth− 1);
7 if z 6= ∅ andz 6= “cutoff”
8 return z
9 fi

10 fi
11 od
12 if maxdepth= 0
13 return “cutoff”
14 else
15 return ∅
16 fi

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 37/50

Artificial Intelligence / 3. Uninformed Tree Search

Depth-Limited Search

Completeness
no (if d > maxdepth).

Optimality
no

Time complexity
O(bmaxdepth).

Space complexity
O(b ·maxdepth).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 38/50

Artificial Intelligence / 3. Uninformed Tree Search

Iterative Deepening Search

Idea:

• as depth-limited search.

• but repeat for increasing maximal depth maxdepth.

1 iterative-deepening-search(X, succ, x0, g,maxdepth) :
2 for d = 1 . . .maxdepthdo
3 P := depth-limited-search(X, succ, x0, g, d);
4 if P 6= “cutoff”
5 return P
6 fi
7 od
8 return “cutoff”

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 39/50

Artificial Intelligence / 3. Uninformed Tree Search

Iterative Deepening Search

Completeness
yes

Optimality
no (unless all step costs are equal, e.g., 1; but can be
modified).

Time complexity
O((d + 1) + db + (d− 1)b2 + . . . + bd) = O(bd)

Space complexity
O(bd)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 40/50

Artificial Intelligence / 3. Uninformed Tree Search

Overview

search method Completeness Optimality Time complexity Memory complexity
Breadth First Search yes (b <∞) no O(bd+1) O(bd+1)

(unless c = 1)

Uniform Cost Search yes (c ≥ ε) yes O(b1+b
cost(P∗)

ε c) O(b1+b
cost(P∗)

ε c)

Depth First Search no (unless m <∞) no O(bm) O(bm)

Depth-Limited Search no (unless d < maxdepth) no O(bmaxdepth) O(b ·maxdepth)
Iterative Deepening yes no O(bd) O(bd)

Search (unless c = 1)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 41/50

Artificial Intelligence

1. The Agent Metaphor

2. Problem Descriptions

3. Uninformed Tree Search

4. Uninformed Graph Search

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 42/50

Artificial Intelligence / 4. Uninformed Graph Search

Uniform Cost Search / Explicit branch bookkeeping

1 uniform-cost-search(X, succ, cost, x0, g) :
2 border := {x0}
3 c(x0) := 0
4 while border 6= ∅ do
5 x := argminx∈borderc(x)
6 if g(x) = 1
7 return x
8 fi
9 for y ∈ succ(x,A) do

10 border := border ∪ {y}
11 c(y) := c(x) + cost(x, y)
12 od
13 border := border \ {x}
14 od
15 return ∅

If succ is expensive to invert (or not
possible to invert, because the search
space is not a tree), branches must be
stored explicitely.

1 uniform-cost-search(X, succ, cost, x0, g) :
2 border := {x0}
3 c(x0) := 0
4 while border 6= ∅ do
5 x := argminx∈borderc(x)
6 if g(x) = 1
7 return branch(x, previous)
8 fi
9 for y ∈ succ(x,A) do

10 border := border ∪ {y}
11 c(y) := c(x) + cost(x, y)
12 previous(y) := x
13 od
14 border := border \ {x}
15 od
16 return ∅
17

18 branch(x, previous) :
19 P := ∅
20 while x 6= ∅ do
21 insert-at-beginning(P, x)
22 x := previous(x)
23 od
24 return P

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 42/50

Artificial Intelligence / 4. Uninformed Graph Search

Uniform Cost Search / Duplicate states

If duplicate states can occur
(i.e., there are several paths to the same state,
i.e., the search space is not a tree),

and if still a tree search should be applied,
states cannot be used as index anymore,
but have to be wrapped in “nodes”.

The same modifications have to be applied to all other search
algorithms.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 43/50

Artificial Intelligence / 4. Uninformed Graph Search

Uniform Cost Search / Duplicate states

1 uniform-cost-search(X, succ, cost, x0, g) :
2 border := {x0}
3 c(x0) := 0
4 while border 6= ∅ do
5 x := argminx∈borderc(x)
6 if g(x) = 1
7 return branch(x, previous)
8 fi
9 for y ∈ succ(x,A) do

10 border := border ∪ {y}
11 c(y) := c(x) + cost(x, y)
12 previous(y) := x
13 od
14 border := border \ {x}
15 od
16 return ∅
17

18 branch(x, previous) :
19 P := ∅
20 while x 6= ∅ do
21 insert-at-beginning(P, x)
22 x := previous(x)
23 od
24 return P

1 uniform-cost-search(X, succ, cost, x0, g) :
2 N := new node(state = x0, c = 0, previous = ∅)
3 border := {N}
4 while border 6= ∅ do
5 N := argminN∈borderN.c
6 if g(N.state) = 1
7 return branch(N)
8 fi
9 for y ∈ succ(N.state, A) do

10 N ′ := new node(state = y,
12 c = N.c+ cost(N.state, y),
14 previous := N)
15 border := border ∪ {N ′}
16 od
17 border := border \ {N}
18 od
19 return ∅
20

21 branch(N) :
22 P := ∅
23 while N ! = ∅ do
24 insert-at-beginning(P,N.state)
25 N := N.previous
26 od
27 return P

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 44/50

Artificial Intelligence / 4. Uninformed Graph Search

Several paths blow up the search tree

3

1

5

6
7

5

5
3 7

5

2

4

7

1

G

A

N

H

C

D

B

E

I

L

K

J

F

M
A

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 44/50

Artificial Intelligence / 4. Uninformed Graph Search

Several paths blow up the search tree

3

1

5

6
7

5

5
3 7

5

2

4

7

1

G

A

N

H

C

D

B

E

I

L

K

J

F

M
A

3
1

5

A

B C D

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 44/50

Artificial Intelligence / 4. Uninformed Graph Search

Several paths blow up the search tree

3

1

5

6
7

5

5
3 7

5

2

4

7

1

G

A

N

H

C

D

B

E

I

L

K

J

F

M
A

3
1

5

A

B C D

3
1

5

6
7

1
5

3 7
1

2 4 7

A

B C D

E F D’ G H I B’ J K L

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 44/50

Artificial Intelligence / 4. Uninformed Graph Search

Closed list

The tree search algorithms must be modified s.t. they keep track
of all the nodes visited so far (so-called closed list).

If the current state is already in the closed list, it is discarded
instead of expanded.

This means that all algorithms have to keep the whole visited part
of the state space in memory, i.e., the space complexity always is
the one of breadth first search..

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 45/50

Artificial Intelligence / 4. Uninformed Graph Search

Uniform Cost Search in Graph State Spaces (1/2)

1 uniform-cost-search(X, succ, cost, x0, g) :
2 border := {x0}
3 c(x0) := 0
4 while border 6= ∅ do
5 x := argminx∈borderc(x)
6 if g(x) = 1
7 return x
8 fi
9 for y ∈ succ(x,A) do

10 border := border ∪ {y}
11 c(y) := c(x) + cost(x, y)
12 od
13 border := border \ {x}
14 od
15 return ∅

1 uniform-cost-search-graph(X, succ, cost, x0, g) :
2 visited := ∅
3 border := {x0}
4 c(x0) := 0
5 while border 6= ∅ do
6 x := argminx∈borderc(x)
7 if g(x) = 1
8 return x
9 fi

10 for y ∈ succ(x,A) do
11 if y 6∈ visited
12 border := border ∪ {y}
13 c(y) := c(x) + cost(x, y)
14 previous(y) := x
15 fi
16 od
17 border := border \ {x}
18 visited := visited ∪ {x}
19 od
20 return ∅

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 46/50

Artificial Intelligence / 4. Uninformed Graph Search

Uniform Cost Search in Graph State Spaces (2/2)

1 uniform-cost-search-graph(X, succ, cost, x0, g) :
2 visited := ∅
3 border := {x0}
4 c(x0) := 0
5 while border 6= ∅ do
6 x := argminx∈borderc(x)
7 if g(x) = 1
8 return x
9 fi

10 for y ∈ succ(x,A) do
11 if y 6∈ visited
12 border := border ∪ {y}
13 c(y) := c(x) + cost(x, y)
14 previous(y) := x
15 fi
16 od
17 border := border \ {x}
18 visited := visited ∪ {x}
19 od
20 return ∅

1 uniform-cost-search-graph(X, succ, cost, x0, g) :
2 notvisited := X

3 c(x) :=

{
0, if x = x0

∞, else
4 while notvisited 6= ∅ do
5 x := argminx∈notvisitedc(x)
6 if g(x) = 1
7 return x
8 fi
9 for y ∈ succ(x,A) do

10 c(y) := c(x) + cost(x, y)
11 previous(y) := x
12 od
13 notvisited := notvisited \ {x}
14 od
15 return ∅

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 47/50

Artificial Intelligence / 4. Uninformed Graph Search

Summary (1/3) – The Agent Metaphor

• The agent metaphor describes intelligent systems as agents
acting in an environment perceived through sensors and
remembered as perception sequences from which an action
sequence is derived that is executed with actuators.
Performance measures describe how successful an agent
behaves.

• Action tables can describe simple reactive agent behavior.

• Environments can be characterized along many characteristics
such as deterministic–stochastic, static–dynamic,
fully–partially observable, discrete–continuous.
episodic–sequential, single–multi agent.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 48/50

Artificial Intelligence / 4. Uninformed Graph Search

Summary (2/3) – Search Problems

• More formally, many AI problems can be described as finding
a path in a graph with lowest cost where often (i) the graph is
not finite but generated by a successor function and (ii) the
goal states are not enumerated explicitely but characterized by
a goal test.

• The same problem can be represented more or less nicely as
a formal search problem (see 8 queens example).

• The complexity of search problems can be described by the
maximum branching factor, depth of least-cost solution
and maximum depth of state space, and the (runtime and
memory) complexity of search algorithms as function in these
characteristics.

• Furthermore algorithms can be characterized by
completeness and optimality.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 49/50

Artificial Intelligence / 4. Uninformed Graph Search

Summary (3/3) – Uninformed Search Algorithms

• Breadth-First Search is complete and can be modified to be
optimal (Uniform Cost Search). Depth First Search is not
complete, but can be modified to be complete (Iterative
Deepending Search). BFS suffers from memory complexity,
while DFS suffers from time complexity.

• If the search space is not a tree, but a general graph, a closed
list of all already visited states needs to be maintained.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 50/50

	to1. The Agent Metaphor
	to2. Problem Descriptions
	to3. Uninformed Tree Search
	to4. Uninformed Graph Search

