

Artificial Intelligence

3. Constraint Satisfaction Problems

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute of Economics and Information Systems & Institute of Computer Science University of Hildesheim http://www.ismll.uni-hildesheim.de

1. Constraint Satisfaction Problems

- 2. Backtracking Search
- 3. Local Search
- 4. The Structure of Problems

Problem Definition

A constraint satisfaction problem consists of

variables $X_1, X_2, \ldots X_n$ with values from given domains dom X_i $(i = 1, \ldots n)$.

constraints C_1, C_2, \ldots, C_m i.e., functions defined on some variables $\operatorname{var} C_j \subseteq \{X_1, \ldots, X_n\}$:

$$C_j: \prod_{X \in \operatorname{var} C_j} \operatorname{dom} X \to \{\operatorname{true}, \operatorname{false}\}, \quad j = 1, \dots, m$$

Assignments

assignment: assignment *A* of values to some variables var $A \subseteq \{X_1, \dots, X_n\}$, i.e., $A: X_3 = 7, X_5 = 1, X_6 = 2$

An assignment A that does not violate any constraint is called **consistent** / **legal**:

 $C_j(A) =$ true for C_j with $\operatorname{var} C_j \subseteq \operatorname{var} A, j = 1, \dots, m$

An assignment A for all variables is called **complete**:

 $\operatorname{var} A = \{X_1, \dots, X_n\}$

A consistent complete assignment is called **solution**.

Some CSPs additionally require an objective function to be maximal.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

Example / 8-Queens

variables: $Q_1, Q_2, Q_3, Q_4, Q_5, Q_6, Q_7, Q_8$ domains: $\{1, 2, 3, 4, 5, 6, 7, 8\}$. constraints: $Q_1 \neq Q_2, Q_1 \neq Q_2 - 1, Q_1 \neq Q_2 + 1,$ $Q_1 \neq Q_3, Q_1 \neq Q_3 + 2, Q_1 \neq Q_3 - 2, \dots$

consistent assignment:

 $Q_1 = 1, Q_2 = 3, Q_3 = 5, Q_4 = 7, Q_5 = 2, Q_6 = 4, Q_7 = 6$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

Example / Map Coloring

domains: { red, green, blue } constraints: WA \neq NT, WA \neq SA, NT \neq SA, NT \neq Q, ...

solution: <u>WA = red, NT = green, SA = blue, Q = red, NSW = green, V = red, T = green</u>

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

CSP as Search Problems

Incremental formulation:

states:

consistent assignments.

initial state:

empty assignment.

successor function:

assign any not yet assigned variable s.t. the resulting assignment still is consistent.

goal test:

assignment is complete.

path cost:

constant cost 1 for each step.

Types of Variables & Constraints

	finite domains	infinite domains
condition:	$ \operatorname{dom} X_i \in \mathbb{N} \forall i$	otherwise
example:	8-queens: $ \operatorname{dom} Q_i = 8$. map coloring: $ \operatorname{dom} X_i = 3$.	scheduling: dom $X_i = \mathbb{N}$ (number of days from now)
special cases:	binary CSPs: $ \operatorname{dom} X_i = 2$	integer domains: $\operatorname{dom} X_i = \mathbb{N}$ continuous domains: $\operatorname{dom} X_i = \mathbb{R}$ (or an interval)
constraint	scan be provided by enumeration, e.g., $(WA, NT) \in$ $\{(r, g), (r, b), (g, r), (g, b), (b, r), (b, g)\}$	must be specified using a constraint language , e.g., linear constraints.

Binary Constraints

Constraints can be classified by the number $|\operatorname{var} C_j|$ of variables they depend on:

- **unary constraint:** depends on a single variable X_i . uninteresting: can be eliminated by inclusion in the domain $\operatorname{dom} X_i$.
- **binary constraint:** depends on two variables X_i and X_j . can be represented as a constraint graph.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

constraint of higher order / n-ary constraint: depends on

more than two variables. can be represented as a constraint hypergraph.

n-ary Constraints

n-ary constraints sometimes can be reduced to binary constraints in a trivial way.

n-ary Constraints

young 2003

n-ary constraints always can be reduced to binary constraints by introducing additional **auxiliary variables** with the cartesian product of the original domains as new domain and the original *n*-ary constraint as unary constraint on the auxiliary variable.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

Auxiliary Variables

Sometimes auxiliary variables also are necessary to represent a problem as CSP.

Example: cryptarithmetic puzzle. Assign each letter a figure s.t. the resulting arithmetic expression is true.

 $O + O = R + 10X_1$ $X_1 + W + W = U + 10X_2$ $X_2 + T + T = O + 10X_3$ $X_3 = F$

1. Constraint Satisfaction Problems

2. Backtracking Search

3. Local Search

4. The Structure of Problems

Depth-First Search: Backtracking

Uninformed Depth-First search is called **backtracking** for CSPs.

1 backtracking(variables
$$\mathcal{X}$$
, constraints \mathcal{C} , assignment A) :
2 if $\mathcal{X} = \emptyset$ return A fi
3 $X := \text{choose}(\mathcal{X})$
4 $A' := \text{failure}$
5 for $v \in \text{values}(X, A, \mathcal{C})$ while $A' = \text{failure}$ do
6 $A' := \text{backtracking}(\mathcal{X} \setminus \{X\}, \mathcal{C}, A \cup \{X = v\})$
7 od
8 return A'

where

 $\mathsf{values}(X, A, \mathcal{C}) := \{ v \in \operatorname{dom} X \, | \, \forall C \in \mathcal{C} \text{ with } \operatorname{var} C \subseteq \operatorname{var} A \cup \{X\} : \\ C(A, X = v) = \mathsf{true} \}$

denotes the values for variable X consistent with assignment A for constraints C.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

Variable Ordering / MRV

Which variable is selected in line 3 can be steered by heuristics:

minimum remaining values (MRV):

Select the variable with the smallest number of remaining choices:

 $X := \operatorname{argmin}_{X \in \mathcal{X}} |\operatorname{values}(X, A, \mathcal{C})|$

Variable Ordering / Degree Heuristics

degree heuristic:

Select the variable that is involed in the largest number of unresolved constraints:

 $X := \operatorname{argmax}_{X \in \mathcal{X}} |\{C \in \mathcal{C} \mid X \in \operatorname{var} C, \operatorname{var} C \not\subseteq \operatorname{var} A \cup \{X\}\}|$

Usually one first applies MRV and breaks ties by degree heuristics.

Value Ordering

The order in which values for the selected variable are tried can also be steered by a heuristics:

least constraining value:

Order the values by descending number of choices for the remaining variables:

 $\sum_{Y \in \mathcal{X} \setminus \{X\}} |\mathsf{values}(Y, A \cup \{X = v\}, \mathcal{C})|, \quad v \in \mathsf{values}(X, A, \mathcal{C})$

The minimum remaining values (MRV) heuristics can be implemented efficiently by keeping track of the remaining values values (X, A, C) of all unassigned variables.

— This is called **forward checking**.

$$\begin{array}{l} \text{i backtracking-fc}(\text{variables } \mathcal{X}, (\text{values}(X))_{X \in \mathcal{X}}, \text{constraints } \mathcal{C}, \text{assignment } A): \\ \text{2 } \underbrace{\text{if } \mathcal{X} = \emptyset \ \underline{\text{return}} \ A \ \underline{\text{fi}}}_{X = \operatorname{argmin}_{X \in \mathcal{X}}} | \text{values}(X) | \\ \text{3 } X := \operatorname{argmin}_{X \in \mathcal{X}} | \text{values}(X) | \\ \text{4 } A' := \operatorname{failure} \\ \text{5 } \underbrace{\underline{\text{for}} \ v \in \text{values}(X) \ \underline{\text{while}} \ A' = \operatorname{failure} \ \underline{\text{do}}}_{6} \\ \text{6 } \quad \operatorname{illegal}(Y) := \{w \in \operatorname{values}(Y) \mid \exists C \in \mathcal{C} : X, Y \in \operatorname{var} C, \operatorname{var} C \subseteq \operatorname{var} A \cup \{X, Y\}, \\ \text{7 } \qquad C(A, X = v, Y = w) = \operatorname{false}\}, \quad \forall Y \in \mathcal{X} \setminus \{X\} \\ \text{8 } \quad A' := \operatorname{backtracking}(\mathcal{X} \setminus \{X\}, (\operatorname{values}(Y) \setminus \operatorname{illegal}(Y))_{Y \in \mathcal{X} \setminus \{X\}}, \mathcal{C}, A \cup \{X = v\}) \\ \text{9 } \underbrace{\underline{\text{od}}}_{10} \\ \underline{\text{return}} \ A' \end{array}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

Constraint Propagation

One also could use a stronger consistency check: if

- there is for some unassigned variable X a possible value v,
- there is a constraint C linking X to another unassigned variable Y, and
- setting X = v would rule out all remaining values for Y via C,

then we can remove v as possible value for X.

Example:

 $\mathsf{values}(\mathsf{SA}) = \{b\}, \quad \mathsf{values}(\mathsf{NSW}) = \{r, b\}, \quad C: \mathsf{NSW} \neq \mathsf{SA}$

NSW = b is not possible as C would lead to values $(SA) = \emptyset$.

Removing such a value may lead to other inconsistent arcs, thus, has to be done repeatedly.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

i arc-consistency(variables \mathcal{X} , (values(X)) $_{X \in \mathcal{X}}$, constraints \mathcal{C}) : 2 arcs := $((X, Y, C) \in \mathcal{X}^2 \times \mathcal{C} | \operatorname{var} C = \{X, Y\})$ in any order ³ <u>while</u> arcs $\neq \emptyset$ <u>do</u> (X, Y, C) :=remove-first(arcs) 4 $illegal := \{ v \in values(X) \mid \forall w \in values(Y) : C(X = v, Y = w) = false \}$ 5 **if** illegal $\neq \emptyset$ 6 $values(X) := values(X) \setminus illegal$ 7 append(arcs, $((Y', X', C') \in \mathcal{X}^2 \times \mathcal{C} \mid X' = X, Y' \neq Y, \text{var } C' = \{X', Y'\}))$ 8 fi 9 10 **od** 11 <u>**return**</u> (values(X))_{X \in \mathcal{X}}

k-consistency

k-consistency:

any consistent assignment of any k-1 variables can be extended to a consistent assignment of k variables with any k-th variable.

1-consistency: node consistency

same as forward checking.

2-consistency: arc consistency

3-consistency: path consistency

strong k-consistent: 1-consistent and 2-consistent and ... and k-consistent.

strong *n***-consistency** (where *n* is the number of variables) renders a CSP trivial: select a value for X_1 , compute the remaining values for the other variables, then pick on for X_2 etc. — strong *n*-consistency guarantees that there is no step where backtracking is necessary.

1. Constraint Satisfaction Problems

2. Backtracking Search

3. Local Search

4. The Structure of Problems

min conflicts

sort of greedy local search: states: complete assignments neighborhood: re-assigning a (randomly picked) conflicting variable goal: no conflicts

 $\begin{array}{l} nin-conflicts(variables \mathcal{X}, constraints \mathcal{C}) :\\ 2 \ A := random complete assignment for \mathcal{X} \\ 3 \ \underline{for} \ i := 1 \dots maxsteps \ \underline{while} \ \exists C \in \mathcal{C} : C(A) = false \ \underline{do} \\ 4 \ X := random(\{X \in \mathcal{X} \mid \exists C \in \mathcal{C} : C(A) = false \ and \ X \in var \ C\}) \\ 5 \ v := \operatorname{argmin}_{v \in \operatorname{dom} X} |\{C \in \mathcal{C} \mid C(A, X = v) = false, \ X \in var \ C\}| \\ 6 \ A|_X := v \\ 7 \ \underline{od} \\ 8 \ \underline{return} \ A, \text{if } \forall C \in \mathcal{C} : C(A) = true, failure \ else \end{array}$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

min conflicts / performance

min conflicts finds solution for *n*-queens problem very quickly even for very large *n*, e.g., n = 10,000,000 (starting from a random initial state).

min conflicts also can solve large randomly-generated CSPs very quickly

except in a narrow range of the constraints / variables ratio

 $R := \frac{\text{number of constraints}}{\text{number of variables}}$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

- **1. Constraint Satisfaction Problems**
- 2. Backtracking Search
- 3. Local Search
- 4. The Structure of Problems

Connected Components / Graphs

Let G := (V, E) be an undirected graph. A sequence $p = (p_1, \dots, p_n) \in V^*$ of vertices is called **path** of *G* if $(p_i, p_{i+1}) \in E$ for $i = 1 \dots, n-1$

 G^* denotes the set of paths on G.

 $x, y \in V$ are called **connected** if there is a path in *G* between *x* and *y*,

i.e., it exists $p \in G^*$ with $p_1 = x$ and $p_{|p|} = y$.

G is called **connected** if all pairs of vertices are connected.

Connected Components / Graphs

Let G := (V, E) be an undirected graph. A sequence $p = (p_1, \dots, p_n) \in V^*$ of vertices is called **path** of *G* if $(p_i, p_{i+1}) \in E$ for $i = 1 \dots, n-1$

 G^* denotes the set of paths on G.

 $x, y \in V$ are called **connected** if there is a path in G between x and y,

i.e., it exists $p \in G^*$ with $p_1 = x$ and $p_{|p|} = y$.

G is called **connected** if all pairs of vertices are connected.

Connected Components / Hypergraphs

Let G := (V, E) be a hypergraph, i.e., $E \subseteq \mathcal{P}(V)$. A sequence $p = (p_1, \dots, p_n) \in E^*$ of edges is called **path** of *G* if $p_i \cap p_{i+1} \neq \emptyset$ for $i = 1 \dots, n-1$

 G^* denotes the set of paths on G.

 $x, y \in V$ are called **connected** if there is a path in G between x and y,

i.e., it exists $p \in G^*$ with $x \in p_1$ and $y \in p_{|p|}$.

G is called **connected** if all pairs of vertices are connected.

Connected Components / Hypergraphs

Let G := (V, E) be a hypergraph, i.e., $E \subseteq \mathcal{P}(V)$. A sequence $p = (p_1, \dots, p_n) \in E^*$ of edges is called **path** of *G* if $p_i \cap p_{i+1} \neq \emptyset$ for $i = 1 \dots, n-1$

 G^* denotes the set of paths on G.

 $x, y \in V$ are called **connected** if there is a path in G between x and y,

i.e., it exists $p \in G^*$ with $x \in p_1$ and $y \in p_{|p|}$.

G is called **connected** if all pairs of vertices are connected.

Independent Subproblems

Let $(\mathcal{X}, \mathcal{C})$ be a constraint satisfaction problem. The CSP $(\mathcal{X}', \mathcal{C}')$ with $\mathcal{X}' \subseteq \mathcal{X}$ and

 $\mathcal{C}' := \{ C \in \mathcal{C} \mid \operatorname{var} C \subseteq \mathcal{X}' \}$

is called subproblem of $(\mathcal{X}, \mathcal{C})$ on the variables \mathcal{X}' .

Two subproblems on the variables \mathcal{X}'_1 and \mathcal{X}'_2 are called **independent** if there is no joining constraint, i.e., no $C \in \mathcal{C}$ with

$$\operatorname{var} C \cap \mathcal{X}'_1 \neq \emptyset$$
 and $\operatorname{var} C \cap \mathcal{X}'_2 \neq \emptyset$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

Independent Subproblems

Consistent assignments of independent subproblems can be joined to consistent assignments of the whole problem.

The other way around: if a probem decomposes into independent subproblems we can solve each one separately and joint the subproblem solutions afterwards.

Tree Constraint Graphs

The next simple case: If the constraint graph is a tree, there is a linear-time algorithm to solve the CSP:

1. choose any vertex as the root of the tree,

- 2. order the variables from root to leaves s.t. parents precede their children in the ordering. (topological ordering) Denote variables by $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$.
- 3. For i = n down to 2: apply arc consistency to the edge $(parent(X_{(i)}), X_{(i)})$ i.e., eventually remove values from dom $parent(X_{(i)})$.
- **4.** For i = 1 to n:

choose a value for $X_{(i)}$ consistent with the value already choosen for parent $(X_{(i)})$.

Tree Constraint Graphs

General Constraint Graphs

2003

Idea: try to reduce problem to constraint trees.

Approach 1: cycle cutset

remove some vertices s.t. the remaining vertices form a tree.

for binary CSPs:

- 1. find a subset $S \subseteq \mathcal{X}'$ of variables s.t. the constraint graph of the subproblem on $\mathcal{X} \setminus S$ becomes a tree.
- 2. for each consistent assignment A on S:
 - (a) remove from the domains of $\mathcal{X} \setminus S$ all values not consistent with A,
 - (b) search for a solution of the remaining CSP. if there is one, an overall solution has been found.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

General Constraint Graphs / Cycle cutset

General Constraint Graphs / Cycle cutset

The smaller the cutset, the better.

Finding the smallest cutset is NP-hard.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

Journal 2003

General Constraint Graphs / Tree Decompositions

Approach 2: tree decomposition

decompose the constraint graph in overlapping subgraphs

s.t. the overlapping structure forms a tree

Tree decomposition $(\mathcal{X}_i)_{i=1,...,m}$:

- 1. each vertex appears in at least one subgraph.
- 2. each edge appears in at least one subgraph.
- if a vertex appears in two subgraphs, it must appear in every subgraph along the path connecting those two vertices.

General Constraint Graphs / Tree Decompositions

General Constraint Graphs / Tree Decompositions

General Constraint Graphs / Tree Decompositions

To solve the CSP: view each subgraph as a new variable and apply the algorithm for trees sketched earlier.

Example: (WA,SA,NT) = (r,b,g) \Rightarrow (SA,NT,Q) = (b,g,r)

In general, many tree decompositions possible.

The **treewidth** of a tree decomposition is the size of the largest subgraph minus 1.

The smaller the treewidth, the better.

Finding the tree decomposition with minimal treewidth is NP-hard.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

Summary

- CSPs allow to describe problems by **variables** and **constraints** between them.
- Depth-first search assigning one variable a time (called backtracking) can be used to solve CSPs.
- Heuristics for choosing the next variable to assign (MRV; degree heuristics) and for ordering the values (least constraining value) can accelerate backtracking.
- MRV can be efficiently implemented keeping book of the remaining values for each unassigned variable (**forward checking**).
- More complex methods of constraint propagation (such as arc consistency) can be used to lower the risk of having to backtrack.
- Local search (min conflicts) can be used to solve CSPs quickly.

Tree-structured CSPs can be solved in linear time.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013