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Artificial Intelligence / 1. Constraint Satisfaction Problems

Problem Definition

A constraint satisfaction problem consists of

variables X1, X2, . . . Xn with values from given domains domXi

(i = 1, . . . .n).

constraints C1, C2, . . . , Cm i.e., functions defined on some
variables varCj ⊆ {X1, . . . , Xn}:

Cj :
∏

X∈varCj

domX → {true, false}, j = 1, . . . ,m
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Artificial Intelligence / 1. Constraint Satisfaction Problems

Assignments

assignment: assignment A of values to some variables
varA ⊆ {X1, . . . , Xn}, i.e.,

A : X3 = 7, X5 = 1, X6 = 2

An assignment A that does not violate any constraint is called
consistent / legal:

Cj(A) = true for Cj with varCj ⊆ varA, j = 1, . . . ,m

An assignment A for all variables is called complete:

varA = {X1, . . . , Xn}

A consistent complete assignment is called solution.

Some CSPs additionally require an objective function to be
maximal.
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Artificial Intelligence / 1. Constraint Satisfaction Problems

Example / 8-Queens

variables: Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8

domains: {1, 2, 3, 4, 5, 6, 7, 8}.
constraints: Q1 6= Q2, Q1 6= Q2 − 1, Q1 6= Q2 + 1,

Q1 6= Q3, Q1 6= Q3 + 2, Q1 6= Q3 − 2, . . .

consistent assignment:
Q1 = 1, Q2 = 3, Q3 = 5, Q4 = 7, Q5 = 2, Q6 = 4, Q7 = 6
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Artificial Intelligence / 1. Constraint Satisfaction Problems

Example / Map Coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

variables: WA, NT, SA, Q, NSW, V, T
domains: { red, green, blue }
constraints: WA 6= NT, WA 6= SA, NT 6= SA, NT 6= Q, . . .

solution:
WA = red, NT = green, SA = blue, Q = red, NSW = green, V = red, T = green
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Artificial Intelligence / 1. Constraint Satisfaction Problems

CSP as Search Problems

Incremental formulation:

states:
consistent assignments.

initial state:
empty assignment.

successor function:
assign any not yet assigned variable
s.t. the resulting assignment still is consistent.

goal test:
assignment is complete.

path cost:
constant cost 1 for each step.
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Artificial Intelligence / 1. Constraint Satisfaction Problems

Types of Variables & Constraints

finite domains infinite domains

condition: | domXi| ∈ N ∀i otherwise

example: 8-queens: | domQi| = 8.
map coloring: | domXi| = 3.

scheduling: domXi = N
(number of days from now)

special
cases:

binary CSPs: | domXi| = 2 integer domains: domXi = N
continuous domains: domXi = R

(or an interval)

constraints:can be provided by enumeration,
e.g.,
(WA,NT) ∈
{(r, g), (r, b), (g, r), (g, b), (b, r), (b, g)}

must be specified using a
constraint language,
e.g.,
linear constraints.
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Artificial Intelligence / 1. Constraint Satisfaction Problems

Binary Constraints

Constraints can be classified by the number | varCj| of variables
they depend on:

unary constraint: depends on a single variable Xi.
uninteresting: can be eliminated by inclusion in the domain
domXi.

binary constraint: depends on two variables Xi and Xj.
can be represented as a constraint graph.

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

original map

WA

NT

SA

Q

NSW

V

T

constraint graph
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 7/35



Artificial Intelligence / 1. Constraint Satisfaction Problems

n-ary Constraints

constraint of higher order / n-ary constraint: depends on
more than two variables.
can be represented as a constraint hypergraph.

X Y

Z

allDiff(X,Y,Z)

constraint hypergraph
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Artificial Intelligence / 1. Constraint Satisfaction Problems

n-ary Constraints

n-ary constraints sometimes can be reduced to binary constraints
in a trivial way.

X Y

Z

allDiff(X,Y,Z)

constraint hypergraph

X Y

Z

X != Y

Y != ZX != Z

binarized constraint graph
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Artificial Intelligence / 1. Constraint Satisfaction Problems

n-ary Constraints

n-ary constraints always can be reduced to binary constraints
by introducing additional auxiliary variables
with the cartesian product of the original domains as new domain
and the original n-ary constraint as unary constraint on the
auxiliary variable.

X Y

Z

   X + Y = Z

X < Y

constraint hypergraph
Z

YX

A:=(X,Y,Z)X = A1 Y=A2

X < Y

Z = A3

binarized constraint graph
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Artificial Intelligence / 1. Constraint Satisfaction Problems

Auxiliary Variables

Sometimes auxiliary variables also are necessary
to represent a problem as CSP.

Example: cryptarithmetic puzzle.
Assign each letter a figure
s.t. the resulting arithmetic expression is true.

T W O
+ T W O
F O U R

O +O = R + 10X1

X1 +W +W = U + 10X2

X2 + T + T = O + 10X3

X3 = F
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Artificial Intelligence / 2. Backtracking Search

Depth-First Search: Backtracking

Uninformed Depth-First search is called backtracking for CSPs.

1 backtracking(variables X , constraints C, assignment A) :
2 if X = ∅ return A fi
3 X := choose(X )
4 A′ := failure
5 for v ∈ values(X,A, C) while A′ = failure do
6 A′ := backtracking(X \ {X}, C, A ∪ {X = v})
7 od
8 return A′

where

values(X,A, C) := {v ∈ domX | ∀C ∈ C with varC ⊆ varA ∪ {X} :
C(A,X = v) = true}

denotes the values for variable X consistent with assignment A
for constraints C.
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Artificial Intelligence / 2. Backtracking Search

Backtracking / Example
Backtracking example

Chapter 5 17
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Artificial Intelligence / 2. Backtracking Search

Variable Ordering / MRV

Which variable is selected in line 3 can be steered by heuristics:

minimum remaining values (MRV):
Select the variable with the smallest number of remaining
choices:

X := argminX∈X |values(X,A, C)|

Minimum remaining values

Minimum remaining values (MRV):
choose the variable with the fewest legal values

Chapter 5 19
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Artificial Intelligence / 2. Backtracking Search

Variable Ordering / Degree Heuristics

degree heuristic:
Select the variable that is involed in the largest number of
unresolved constraints:

X := argmaxX∈X |{C ∈ C |X ∈ varC, varC 6⊆ varA ∪ {X}}|

Degree heuristic

Tie-breaker among MRV variables

Degree heuristic:
choose the variable with the most constraints on remaining variables

Chapter 5 20

Usually one first applies MRV and breaks ties by degree
heuristics.
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Artificial Intelligence / 2. Backtracking Search

Value Ordering

The order in which values for the selected variable are tried can
also be steered by a heuristics:

least constraining value:
Order the values by descending number of choices for the
remaining variables:∑

Y ∈X\{X}
|values(Y,A ∪ {X = v}, C)|, v ∈ values(X,A, C)Least constraining value

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

Chapter 5 21
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Artificial Intelligence / 2. Backtracking Search

Forward Checking

The minimum remaining values (MRV) heuristics can be
implemented efficiently by keeping track of the remaining values
values(X,A, C) of all unassigned variables.
— This is called forward checking.

1 backtracking-fc(variables X , (values(X))X∈X , constraints C, assignment A) :
2 if X = ∅ return A fi
3 X := argminX∈X |values(X)|
4 A′ := failure
5 for v ∈ values(X) while A′ = failure do
6 illegal(Y ) := {w ∈ values(Y ) | ∃C ∈ C : X, Y ∈ varC, varC ⊆ varA ∪ {X, Y },
7 C(A,X = v, Y = w) = false}, ∀Y ∈ X \ {X}
8 A′ := backtracking(X \ {X}, (values(Y ) \ illegal(Y ))Y ∈X\{X}, C, A ∪ {X = v})
9 od

10 return A′
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Artificial Intelligence / 2. Backtracking Search

Forward CheckingForward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T

Chapter 5 22
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Artificial Intelligence / 2. Backtracking Search
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Artificial Intelligence / 2. Backtracking Search

Constraint PropagationConstraint propagation

Forward checking propagates information from assigned to unassigned vari-
ables, but doesn’t provide early detection for all failures:

WA NT Q NSW V SA T

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally

Chapter 5 26
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Artificial Intelligence / 2. Backtracking Search

Arc Consistency

One also could use a stronger consistency check: if

• there is for some unassigned variable X a possible value v,

• there is a constraint C linking X to another unassigned
variable Y , and

• setting X = v would rule out all remaining values for Y via C,

then we can remove v as possible value for X.

Example:

values(SA) = {b}, values(NSW) = {r, b}, C : NSW 6= SA

NSW = b is not possible as C would lead to values(SA) = ∅.

Removing such a value may lead to other inconsistent arcs, thus,
has to be done repeatedly.
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Artificial Intelligence / 2. Backtracking Search

Arc Consistency

1 arc-consistency(variablesX , (values(X))X∈X , constraintsC) :
2 arcs:= ((X, Y, C) ∈ X 2 × C | varC = {X, Y }) in any order
3 while arcs 6= ∅ do
4 (X, Y, C) := remove-first(arcs)
5 illegal := {v ∈ values(X) | ∀w ∈ values(Y ) : C(X = v, Y = w) = false}
6 if illegal 6= ∅
7 values(X) := values(X) \ illegal
8 append(arcs, ((Y ′, X ′, C ′) ∈ X 2 × C |X ′ = X, Y ′ 6= Y, varC ′ = {X ′, Y ′}))
9 fi

10 od
11 return (values(X))X∈X
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Artificial Intelligence / 2. Backtracking Search

Arc Consistency

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

Chapter 5 27
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Artificial Intelligence / 2. Backtracking Search

Arc Consistency
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Artificial Intelligence / 2. Backtracking Search

Arc Consistency

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

Chapter 5 29
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Artificial Intelligence / 2. Backtracking Search

Arc Consistency

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

Chapter 5 30
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Artificial Intelligence / 2. Backtracking Search

k-consistency

k-consistency:
any consistent assignment of any k− 1 variables can be extended
to a consistent assignment of k variables with any k-th variable.

1-consistency: node consistency
same as forward checking.

2-consistency: arc consistency

3-consistency: path consistency

strong k-consistent: 1-consistent and 2-consistent and . . . and
k-consistent.

strong n-consistency (where n is the number of variables)
renders a CSP trivial:
select a value for X1, compute the remaining values for the other
variables, then pick on for X2 etc. — strong n-consistency
guarantees that there is no step where backtracking is necessary.
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Artificial Intelligence / 3. Local Search

min conflicts

sort of greedy local search:

states: complete assignments
neighborhood: re-assigning a (randomly picked) conflicting variable
goal: no conflicts

1 min-conflicts(variablesX , constraintsC) :
2 A := random complete assignment forX
3 for i := 1 . . .maxstepswhile ∃C ∈ C : C(A) = falsedo
4 X := random({X ∈ X | ∃C ∈ C : C(A) = false andX ∈ varC})
5 v := argminv∈domX |{C ∈ C |C(A,X = v) = false, X ∈ varC}|
6 A|X := v
7 od
8 return A, if ∀C ∈ C : C(A) = true, failure else

2

2

1

2

3

1

2

3

3

2

3

2

3

0
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Artificial Intelligence / 3. Local Search

min conflicts / performance

min conflicts finds solution for n-queens problem very quickly even for
very large n, e.g., n = 10, 000, 000 (starting from a random initial state).

min conflicts also can solve large randomly-generated CSPs very
quickly
except in a narrow range of the constraints / variables ratio

R :=
number of constraints
number of variables

R

CPU
time

critical
   ratio
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Artificial Intelligence / 4. The Structure of Problems

Connected Components / Graphs

Let G := (V,E) be an undirected graph.
A sequence p = (p1, . . . , pn) ∈ V ∗ of vertices is called path of G if

(pi, pi+1) ∈ E for i = 1 . . . , n− 1

G∗ denotes the set of paths on G.

x, y ∈ V are called connected if there is a path in G between x
and y,
i.e., it exists p ∈ G∗ with p1 = x and p|p| = y.

G is called connected if all pairs of vertices are connected.

A maximal connected subgraph G′ := (V ′, E ′) of G is called
connection component of G.

A

F

E

G

H
I

C

B

D
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Artificial Intelligence / 4. The Structure of Problems

Connected Components / Hypergraphs

Let G := (V,E) be a hypergraph, i.e., E ⊆ P(V ).
A sequence p = (p1, . . . , pn) ∈ E∗ of edges is called path of G if

pi ∩ pi+1 6= ∅ for i = 1 . . . , n− 1

G∗ denotes the set of paths on G.

x, y ∈ V are called connected if there is a path in G between x
and y,
i.e., it exists p ∈ G∗ with x ∈ p1 and y ∈ p|p|.

G is called connected if all pairs of vertices are connected.

A maximal connected subgraph G′ := (V ′, E ′) of G is called
connection component of G.

A
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E

G

H
I

C

B

D

J
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Artificial Intelligence / 4. The Structure of Problems

Independent Subproblems

Let (X , C) be a constraint satisfaction problem.
The CSP (X ′, C ′) with X ′ ⊆ X and

C ′ := {C ∈ C | varC ⊆ X ′}
is called subproblem of (X , C) on the variables X ′.

Two subproblems on the variables X ′1 and X ′2 are called
independent if there is no joining constraint, i.e., no C ∈ C with

varC ∩ X ′1 6= ∅ and varC ∩ X ′2 6= ∅
(and thus X ′1∩X ′2 = ∅).
I.e., if the respective constraint sub-hypergraphs are
unconnected.

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T
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Artificial Intelligence / 4. The Structure of Problems

Independent Subproblems

Consistent assignments of independent subproblems can be
joined to consistent assignments of the whole problem.

The other way around:
if a probem decomposes into independent subproblems
we can solve each one separately
and joint the subproblem solutions afterwards.
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Artificial Intelligence / 4. The Structure of Problems

Tree Constraint Graphs

The next simple case:
If the constraint graph is a tree,
there is a linear-time algorithm to solve the CSP:

1. choose any vertex as the root of the tree,

2. order the variables from root to leaves
s.t. parents precede their children in the ordering.
(topological ordering)
Denote variables by X(1), X(2), . . . , X(n).

3. For i = n down to 2:
apply arc consistency to the edge (parent(X(i)), X(i))
i.e., eventually remove values from domparent(X(i)).

4. For i = 1 to n:
choose a value for X(i) consistent with the value already
choosen for parent(X(i)).
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Artificial Intelligence / 4. The Structure of Problems

Tree Constraint Graphs

A

C

B D

E

F
(a)

A CB D E F

(b)
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Artificial Intelligence / 4. The Structure of Problems

General Constraint Graphs

Idea: try to reduce problem to constraint trees.

Approach 1: cycle cutset
remove some vertices s.t. the remaining vertices form a tree.

for binary CSPs:

1. find a subset S ⊆ X ′ of variables
s.t. the constraint graph of the subproblem on X \S becomes a
tree.

2. for each consistent assignment A on S:
(a) remove from the domains of X \S all values not consistent

with A,

(b) search for a solution of the remaining CSP.
if there is one, an overall solution has been found.
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General Constraint Graphs / Cycle cutset
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The smaller the cutset, the better.

Finding the smallest cutset is NP-hard.
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General Constraint Graphs / Tree Decompositions

Approach 2: tree decomposition
decompose the constraint graph in overlapping
subgraphs
s.t. the overlapping structure forms a tree

Tree decomposition (X i)i=1,...,m:

1. each vertex appears in at least one subgraph.

2. each edge appears in at least one subgraph.

3. if a vertex appears in two subgraphs,
it must appear in every subgraph along the path
connecting those two vertices.
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General Constraint Graphs / Tree Decompositions

To solve the CSP:
view each subgraph as a new variable
and apply the algorithm for trees sketched earlier.

Example:
(WA,SA,NT) = (r,b,g)⇒ (SA,NT,Q) = (b,g,r)

In general, many tree decompositions possible.

The treewidth of a tree decomposition is the size of the
largest subgraph minus 1.

The smaller the treewidth, the better.

Finding the tree decomposition with minimal treewidth is
NP-hard.
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Summary

• CSPs allow to describe problems by variables and constraints
between them.

• Depth-first search assigning one variable a time (called backtracking)
can be used to solve CSPs.

• Heuristics for choosing the next variable to assign (MRV; degree
heuristics) and for ordering the values (least constraining value)
can accelerate backtracking.

• MRV can be efficiently implemented keeping book of the remaining
values for each unassigned variable (forward checking).

• More complex methods of constraint propagation (such as arc
consistency) can be used to lower the risk of having to backtrack.

• Local search (min conflicts) can be used to solve CSPs quickly.

• Tree-structured CSPs can be solved in linear time.
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