Artificial Intelligence

3. Constraint Satisfaction Problems

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute of Economics and Information Systems
\& Institute of Computer Science
University of Hildesheim
http://www.ismll.uni-hildesheim.de

1. Constraint Satisfaction Problems

2. Backtracking Search

3. Local Search

4. The Structure of Problems

A constraint satisfaction problem consists of
variables $X_{1}, X_{2}, \ldots X_{n}$ with values from given domains dom X_{i}
$(i=1, \ldots . n)$.
constraints $C_{1}, C_{2}, \ldots, C_{m}$ i.e., functions defined on some variables var $C_{j} \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$:

$$
C_{j}: \prod_{X \in \operatorname{var} C_{j}} \operatorname{dom} X \rightarrow\{\text { true, false }\}, \quad j=1, \ldots, m
$$

assignment: assignment A of values to some variables $\operatorname{var} A \subseteq\left\{X_{1}, \ldots, X_{n}\right\}$, i.e.,

$$
A: X_{3}=7, X_{5}=1, X_{6}=2
$$

An assignment A that does not violate any constraint is called consistent / legal:

$$
C_{j}(A)=\operatorname{true} \quad \text { for } C_{j} \text { with } \operatorname{var} C_{j} \subseteq \operatorname{var} A, j=1, \ldots, m
$$

An assignment A for all variables is called complete:

$$
\operatorname{var} A=\left\{X_{1}, \ldots, X_{n}\right\}
$$

A consistent complete assignment is called solution.
Some CSPs additionally require an objective function to be maximal.

Example / 8-Queens

variables: $Q_{1}, Q_{2}, Q_{3}, Q_{4}, Q_{5}, Q_{6}, Q_{7}, Q_{8}$
domains: $\{1,2,3,4,5,6,7,8\}$.
constraints: $Q_{1} \neq Q_{2}, Q_{1} \neq Q_{2}-1, Q_{1} \neq Q_{2}+1$,

$$
Q_{1} \neq Q_{3}, Q_{1} \neq Q_{3}+2, Q_{1} \neq Q_{3}-2, \ldots
$$

consistent assignment:
$Q_{1}=1, Q_{2}=3, Q_{3}=5, Q_{4}=7, Q_{5}=2, Q_{6}=4, Q_{7}=6$

Example / Map Coloring

2003

Tasmania
variables: WA, NT, SA, Q, NSW, V, T
domains: \{red, green, blue \}
constraints: WA $\neq \mathrm{NT}, \mathrm{WA} \neq \mathrm{SA}, \mathrm{NT} \neq \mathrm{SA}, \mathrm{NT} \neq \mathrm{Q}, \ldots$
solution:
WA = red, NT = green, $\mathrm{SA}=$ blue, $\mathrm{Q}=$ red, $\mathrm{NSW}=$ green, $\mathrm{V}=$ red, $\mathrm{T}=$ green

Incremental formulation:
states:
consistent assignments.
initial state:
empty assignment.

successor function:

assign any not yet assigned variable
s.t. the resulting assignment still is consistent.
goal test:
assignment is complete.
path cost:
constant cost 1 for each step.

finite domains

condition: $\left|\operatorname{dom} X_{i}\right| \in \mathbb{N} \quad \forall i \quad$ otherwise
example: 8-queens: $\left|\operatorname{dom} Q_{i}\right|=8$. map coloring: \mid dom $X_{i} \mid=3$.
binary CSPs: $\left|\operatorname{dom} X_{i}\right|=2$

infinite domains

scheduling: $\operatorname{dom} X_{i}=\mathbb{N}$
(number of days from now)
integer domains: dom $X_{i}=\mathbb{N}$
continuous domains: dom $X_{i}=\mathbb{R}$
(or an interval)
constraintscan be provided by enumeration,
e.g.,
$(W A, N T) \in$
$\{(r, g),(r, b),(g, r),(g, b),(b, r),(b, g)\}$ linear constraints.

Binary Constraints

2003

Constraints can be classified by the number $\left|\operatorname{var} C_{j}\right|$ of variables they depend on:
unary constraint: depends on a single variable X_{i}. uninteresting: can be eliminated by inclusion in the domain $\operatorname{dom} X_{i}$.
binary constraint: depends on two variables X_{i} and X_{j}.
can be represented as a constraint graph.

original map

constraint graph

$$
n \text {-ary Constraints }
$$

constraint of higher order / n-ary constraint: depends on more than two variables.
can be represented as a constraint hypergraph.

constraint hypergraph

n-ary Constraints

n-ary constraints sometimes can be reduced to binary constraints in a trivial way.

constraint hypergraph

binarized constraint graph

$$
n \text {-ary Constraints }
$$

n-ary constraints always can be reduced to binary constraints by introducing additional auxiliary variables with the cartesian product of the original domains as new domain and the original n-ary constraint as unary constraint on the auxiliary variable.

binarized constraint graph

Sometimes auxiliary variables also are necessary to represent a problem as CSP.

Example: cryptarithmetic puzzle.
Assign each letter a figure
s.t. the resulting arithmetic expression is true.

$$
\begin{aligned}
O+O & =R+10 X_{1} \\
X_{1}+W+W & =U+10 X_{2} \\
X_{2}+T+T & =O+10 X_{3} \\
X_{3} & =F
\end{aligned}
$$

1. Constraint Satisfaction Problems

2. Backtracking Search
3. Local Search
4. The Structure of Problems

Depth-First Search: Backtracking

2003

Uninformed Depth-First search is called backtracking for CSPs.

```
I backtracking(variables \mathcal{X},constraints \mathcal{C}}\mathrm{ , assignment A):
2 \underline{\mathbf{f}}\mathcal{X}=\emptyset\underline{\mathrm{ return }}A\underline{\mathbf{f}}
3 X:= choose(\mathcal{X})
4 A
5\underline{for}v\in\operatorname{values}(X,A,\mathcal{C}) while}\mp@subsup{A}{}{\prime}=\mathrm{ failure do
6 }\quad\mp@subsup{A}{}{\prime}:=\operatorname{backtracking}(\mathcal{X}\{X},\mathcal{C},A\cup{X=v}
7 od
8 return }\mp@subsup{A}{}{\prime
```

where
values $(X, A, \mathcal{C}):=\{v \in \operatorname{dom} X \mid \forall C \in \mathcal{C}$ with $\operatorname{var} C \subseteq \operatorname{var} A \cup\{X\}$:

$$
C(A, X=v)=\text { true }\}
$$

denotes the values for variable X consistent with assignment A for constraints \mathcal{C}.

Backtracking / Example

Backtracking / Example

Backtracking / Example

Backtracking / Example

Variable Ordering / MRV

2003

Which variable is selected in line 3 can be steered by heuristics:
minimum remaining values (MRV):
Select the variable with the smallest number of remaining choices:

$$
X:=\operatorname{argmin}_{X \in \mathcal{X}} \mid \text { values }(X, A, \mathcal{C}) \mid
$$

Variable Ordering / Degree Heuristics

2003

degree heuristic:

Select the variable that is involed in the largest number of unresolved constraints:

$$
X:=\operatorname{argmax}_{X \in \mathcal{X}}|\{C \in \mathcal{C} \mid X \in \operatorname{var} C, \operatorname{var} C \nsubseteq \operatorname{var} A \cup\{X\}\}|
$$

Usually one first applies MRV and breaks ties by degree heuristics.

Value Ordering

2003

The order in which values for the selected variable are tried can also be steered by a heuristics:

least constraining value:

Order the values by descending number of choices for the remaining variables:

$$
\sum_{Y \in \mathcal{X} \backslash\{X\}} \mid \text { values }(Y, A \cup\{X=v\}, \mathcal{C}) \mid, \quad v \in \operatorname{values}(X, A, \mathcal{C})
$$

Allows 1 value for SA

Allows 0 values for $S A$

The minimum remaining values (MRV) heuristics can be implemented efficiently by keeping track of the remaining values values (X, A, \mathcal{C}) of all unassigned variables.

- This is called forward checking.

```
I backtracking-fc(variables }\mathcal{X},(values(X)) X\in\mathcal{X},\mathrm{ constraints }\mathcal{C},\mathrm{ assignment A):
2 \underline{\mathbf{f}}\mathcal{X}=\emptyset\underline{\mathrm{ return }}A\underline{\mathbf{f}}
3}\overline{X}:=\mp@subsup{\operatorname{argmin}}{X\in\mathcal{X}}{}|\mathrm{ values(X)
4 A}\mp@subsup{A}{}{\prime}:=\mathrm{ failure
5 for v}\in\mathrm{ values (X) while }\mp@subsup{A}{}{\prime}=\mathrm{ failure do
6 illegal (Y):={w\in values (Y)|\existsC\in\mathcal{C}:X,Y\in\operatorname{var}C,var C\subseteqvar A\cup{X,Y},
    C(A,X=v,Y=w)= false},\quad}\forallY\in\mathcal{X}\{X
```



```
od
return }\mp@subsup{A}{}{\prime
```

2003

Forward Checking

Forward Checking

Artificial Intelligence / 2. Backtracking Search

Constraint Propagation

wA	NT	0	nsw			v	SA \quad T		
\square	1-		-						\|- \square
	■	-	\square	\square	\square	\square		\square	1-■
	-		\square	-	-	\square			-■■

Arc Consistency

One also could use a stronger consistency check: if

- there is for some unassigned variable X a possible value v,
- there is a constraint C linking X to another unassigned variable Y, and
- setting $X=v$ would rule out all remaining values for Y via C, then we can remove v as possible value for X.

Example:

$$
\text { values }(\mathrm{SA})=\{b\}, \quad \text { values }(\mathrm{NSW})=\{r, b\}, \quad C: \mathrm{NSW} \neq \mathrm{SA}
$$

NSW $=b$ is not possible as C would lead to values $(\mathrm{SA})=\emptyset$.
Removing such a value may lead to other inconsistent arcs, thus, has to be done repeatedly.

Arc Consistency

```
arc-consistency(variables \mathcal{X},(values}(X)\mp@subsup{)}{X\in\mathcal{X}}{}\mathrm{ , constraints }\mathcal{C})\mathrm{ :
arcs := ((X,Y,C)\in\mathcal{X}}\mp@subsup{\mathcal{N}}{}{2}\times\mathcal{C}|\operatorname{var}C={X,Y}) in any order
while arcs }\not=\emptyset\underline{\mathrm{ do}
4 (X,Y,C):= remove-first(arcs)
    illegal := {v\in values }(X)|\forallw\in\operatorname{values}(Y):C(X=v,Y=w)=\mathrm{ false }
    if illegal }\not=
        values(X):= values(X)\illegal
        append(arcs,((Y', X',C')\in\mathcal{X}}\mp@subsup{}{2}{}\times\mathcal{C}|\mp@subsup{X}{}{\prime}=X,\mp@subsup{Y}{}{\prime}\not=Y,\operatorname{var}\mp@subsup{C}{}{\prime}={\mp@subsup{X}{}{\prime},\mp@subsup{Y}{}{\prime}})
        fi
od
return (values(X))}\mp@subsup{X}{X\in\mathcal{X}}{
```


2003
k-consistency:
any consistent assignment of any $k-1$ variables can be extended to a consistent assignment of k variables with any k-th variable.

1-consistency: node consistency

same as forward checking.

2-consistency: arc consistency

3-consistency: path consistency

strong k-consistent: 1-consistent and 2-consistent and \ldots and k-consistent.
strong n-consistency (where n is the number of variables) renders a CSP trivial:
select a value for X_{1}, compute the remaining values for the other variables, then pick on for X_{2} etc. - strong n-consistency guarantees that there is no step where backtracking is necessary.

1. Constraint Satisfaction Problems

2. Backtracking Search

3. Local Search

4. The Structure of Problems

sort of greedy local search:
states: complete assignments
neighborhood: re-assigning a (randomly picked) conflicting variable goal: no conflicts

```
l min-conflicts(variables \mathcal{X},\mathrm{ constraints }\mathcal{C}):
2 A:= random complete assignment for }\mathcal{X
3 for }i:=1\ldots\mathrm{ maxsteps while }\existsC\in\mathcal{C}:C(A)=\mathrm{ false do
4 X:= random({X\in\mathcal{X |}\existsC\in\mathcal{C}:C(A)= false and X\in\operatorname{var}C})
5 v}:=\mp@subsup{\operatorname{argmin}}{v\in\operatorname{dom}X}{}|{C\in\mathcal{C}|C(A,X=v)=\mathrm{ false, X 剂 C}|
6 }\quadA\mp@subsup{|}{X}{}:=
7 od
8 return }A\mathrm{ , if }\forallC\in\mathcal{C}:C(A)=\mathrm{ true, failure else
```


min conflicts / performance

min conflicts finds solution for n-queens problem very quickly even for very large n, e.g., $n=10,000,000$ (starting from a random initial state).
min conflicts also can solve large randomly-generated CSPs very quickly
except in a narrow range of the constraints / variables ratio

$$
R:=\frac{\text { number of constraints }}{\text { number of variables }}
$$

1. Constraint Satisfaction Problems

2. Backtracking Search

3. Local Search

4. The Structure of Problems

Connected Components / Graphs

Let $G:=(V, E)$ be an undirected graph.
A sequence $p=\left(p_{1}, \ldots, p_{n}\right) \in V^{*}$ of vertices is called path of G if

$$
\left(p_{i}, p_{i+1}\right) \in E \quad \text { for } i=1 \ldots, n-1
$$

G^{*} denotes the set of paths on G.
$x, y \in V$ are called connected if there is a path in G between x and y,
i.e., it exists $p \in G^{*}$ with $p_{1}=x$ and $p_{|p|}=y$.
G is called connected if all pairs of vertices are connected.
A maximal connected subgraph $G^{\prime}:=\left(V^{\prime}, E^{\prime}\right)$ of G is called connection component of G.

Connected Components / Graphs

2003
Let $G:=(V, E)$ be an undirected graph.
A sequence $p=\left(p_{1}, \ldots, p_{n}\right) \in V^{*}$ of vertices is called path of G if

$$
\left(p_{i}, p_{i+1}\right) \in E \quad \text { for } i=1 \ldots, n-1
$$

G^{*} denotes the set of paths on G.
$x, y \in V$ are called connected if there is a path in G between x and y,
i.e., it exists $p \in G^{*}$ with $p_{1}=x$ and $p_{|p|}=y$.
G is called connected if all pairs of vertices are connected.
A maximal connected subgraph $G^{\prime}:=\left(V^{\prime}, E^{\prime}\right)$ of G is called connection component of G.

Connected Components / Hypergraphs

2003
Let $G:=(V, E)$ be a hypergraph, i.e., $E \subseteq \mathcal{P}(V)$.
A sequence $p=\left(p_{1}, \ldots, p_{n}\right) \in E^{*}$ of edges is called path of G if

$$
p_{i} \cap p_{i+1} \neq \emptyset \quad \text { for } i=1 \ldots, n-1
$$

G^{*} denotes the set of paths on G.
$x, y \in V$ are called connected if there is a path in G between x and y,
i.e., it exists $p \in G^{*}$ with $x \in p_{1}$ and $y \in p_{|p|}$.
G is called connected if all pairs of vertices are connected.
A maximal connected subgraph $G^{\prime}:=\left(V^{\prime}, E^{\prime}\right)$ of G is called connection component of G.

Connected Components / Hypergraphs

2003
Let $G:=(V, E)$ be a hypergraph, i.e., $E \subseteq \mathcal{P}(V)$.
A sequence $p=\left(p_{1}, \ldots, p_{n}\right) \in E^{*}$ of edges is called path of G if $p_{i} \cap p_{i+1} \neq \emptyset \quad$ for $i=1 \ldots, n-1$
G^{*} denotes the set of paths on G.
$x, y \in V$ are called connected if there is a path in G between x and y,
i.e., it exists $p \in G^{*}$ with $x \in p_{1}$ and $y \in p_{|p|}$.
G is called connected if all pairs of vertices are connected.
A maximal connected subgraph $G^{\prime}:=\left(V^{\prime}, E^{\prime}\right)$ of G is called connection component of G.

2003

Let $(\mathcal{X}, \mathcal{C})$ be a constraint satisfaction problem. The $\operatorname{CSP}\left(\mathcal{X}^{\prime}, \mathcal{C}^{\prime}\right)$ with $\mathcal{X}^{\prime} \subseteq \mathcal{X}$ and

$$
\mathcal{C}^{\prime}:=\left\{C \in \mathcal{C} \mid \operatorname{var} C \subseteq \mathcal{X}^{\prime}\right\}
$$

is called subproblem of $(\mathcal{X}, \mathcal{C})$ on the variables \mathcal{X}^{\prime}.
Two subproblems on the variables \mathcal{X}_{1}^{\prime} and \mathcal{X}_{2}^{\prime} are called independent if there is no joining constraint, i.e., no $C \in \mathcal{C}$ with

$$
\operatorname{var} C \cap \mathcal{X}_{1}^{\prime} \neq \emptyset \text { and } \operatorname{var} C \cap \mathcal{X}_{2}^{\prime} \neq \emptyset
$$

(and thus $\mathcal{X}_{1}^{\prime} \cap \mathcal{X}_{2}^{\prime}=\emptyset$).
I.e., if the respective constraint sub-hypergraphs are unconnected.

Consistent assignments of independent subproblems can be joined to consistent assignments of the whole problem.

The other way around:
if a probem decomposes into independent subproblems we can solve each one separately and joint the subproblem solutions afterwards.

Tree Constraint Graphs

The next simple case:
If the constraint graph is a tree, there is a linear-time algorithm to solve the CSP:

1. choose any vertex as the root of the tree,
2. order the variables from root to leaves
s.t. parents precede their children in the ordering. (topological ordering)
Denote variables by $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$.
3. For $i=n$ down to 2 : apply arc consistency to the edge $\left(\right.$ parent $\left.\left(X_{(i)}\right), X_{(i)}\right)$ i.e., eventually remove values from dom parent $\left(X_{(i)}\right)$.
4. For $i=1$ to n : choose a value for $X_{(i)}$ consistent with the value already choosen for parent $\left(X_{(i)}\right)$.

Tree Constraint Graphs

General Constraint Graphs

2003

Idea: try to reduce problem to constraint trees.
Approach 1: cycle cutset
remove some vertices s.t. the remaining vertices form a tree.
for binary CSPs:

1. find a subset $S \subseteq \mathcal{X}^{\prime}$ of variables
s.t. the constraint graph of the subproblem on $\mathcal{X} \backslash S$ becomes a tree.
2. for each consistent assignment A on S :
(a) remove from the domains of $\mathcal{X} \backslash S$ all values not consistent with A,
(b) search for a solution of the remaining CSP.
if there is one, an overall solution has been found.

General Constraint Graphs / Cycle cutset

General Constraint Graphs / Cycle cutset

The smaller the cutset, the better.
Finding the smallest cutset is NP-hard.

Approach 2: tree decomposition decompose the constraint graph in overlapping subgraphs
s.t. the overlapping structure forms a tree

Tree decomposition $\left(\mathcal{X}_{i}\right)_{i=1, \ldots, m}$:

1. each vertex appears in at least one subgraph.
2. each edge appears in at least one subgraph.
3. if a vertex appears in two subgraphs, it must appear in every subgraph along the path connecting those two vertices.

General Constraint Graphs / Tree Decompositions

General Constraint Graphs / Tree Decompositions

(T)

General Constraint Graphs / Tree Decompositions

2003

To solve the CSP:
view each subgraph as a new variable and apply the algorithm for trees sketched earlier.

Example:
$(\mathrm{WA}, \mathrm{SA}, \mathrm{NT})=(\mathrm{r}, \mathrm{b}, \mathrm{g}) \Rightarrow(\mathrm{SA}, \mathrm{NT}, \mathrm{Q})=(\mathrm{b}, \mathrm{g}, \mathrm{r})$
In general, many tree decompositions possible.
The treewidth of a tree decomposition is the size of the largest subgraph minus 1.

The smaller the treewidth, the better.
Finding the tree decomposition with minimal treewidth is NP-hard.

- CSPs allow to describe problems by variables and constraints between them.
- Depth-first search assigning one variable a time (called backtracking) can be used to solve CSPs.
- Heuristics for choosing the next variable to assign (MRV; degree heuristics) and for ordering the values (least constraining value) can accelerate backtracking.
- MRV can be efficiently implemented keeping book of the remaining values for each unassigned variable (forward checking).
- More complex methods of constraint propagation (such as arc consistency) can be used to lower the risk of having to backtrack.
- Local search (min conflicts) can be used to solve CSPs quickly.
- Tree-structured CSPs can be solved in linear time.

