



# **Artificial Intelligence**

# 3. Constraint Satisfaction Problems

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute of Economics and Information Systems & Institute of Computer Science University of Hildesheim http://www.ismll.uni-hildesheim.de



# **1. Constraint Satisfaction Problems**

- 2. Backtracking Search
- 3. Local Search
- 4. The Structure of Problems

**Problem Definition** 



# A constraint satisfaction problem consists of

variables  $X_1, X_2, \ldots X_n$  with values from given domains dom  $X_i$  $(i = 1, \ldots n)$ .

**constraints**  $C_1, C_2, \ldots, C_m$  i.e., functions defined on some variables  $\operatorname{var} C_j \subseteq \{X_1, \ldots, X_n\}$ :

$$C_j: \prod_{X \in \operatorname{var} C_j} \operatorname{dom} X \to \{\operatorname{true}, \operatorname{false}\}, \quad j = 1, \dots, m$$

# Assignments



**assignment**: assignment *A* of values to some variables var  $A \subseteq \{X_1, \dots, X_n\}$ , i.e.,  $A: X_3 = 7, X_5 = 1, X_6 = 2$ 

An assignment A that does not violate any constraint is called **consistent** / **legal**:

 $C_j(A) =$ true for  $C_j$  with  $\operatorname{var} C_j \subseteq \operatorname{var} A, j = 1, \dots, m$ 

An assignment A for all variables is called **complete**:

 $\operatorname{var} A = \{X_1, \dots, X_n\}$ 

A consistent complete assignment is called **solution**.

Some CSPs additionally require an objective function to be maximal.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

#### Example / 8-Queens





variables:  $Q_1, Q_2, Q_3, Q_4, Q_5, Q_6, Q_7, Q_8$ domains:  $\{1, 2, 3, 4, 5, 6, 7, 8\}$ . constraints:  $Q_1 \neq Q_2, Q_1 \neq Q_2 - 1, Q_1 \neq Q_2 + 1,$  $Q_1 \neq Q_3, Q_1 \neq Q_3 + 2, Q_1 \neq Q_3 - 2, \dots$ 

consistent assignment:

 $Q_1 = 1, Q_2 = 3, Q_3 = 5, Q_4 = 7, Q_5 = 2, Q_6 = 4, Q_7 = 6$ 

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

# Example / Map Coloring





domains: { red, green, blue } constraints: WA  $\neq$  NT, WA  $\neq$  SA, NT  $\neq$  SA, NT  $\neq$  Q, ...

#### solution: <u>WA = red, NT = green, SA = blue, Q = red, NSW = green, V = red, T = green</u>

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

CSP as Search Problems

Incremental formulation:

#### states:

consistent assignments.

#### initial state:

empty assignment.

#### successor function:

assign any not yet assigned variable s.t. the resulting assignment still is consistent.

#### goal test:

assignment is complete.

#### path cost:

constant cost 1 for each step.



Types of Variables & Constraints



|                   | finite domains                                                                                                      | infinite domains                                                                                                                        |
|-------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| condition:        | $ \operatorname{dom} X_i  \in \mathbb{N}  \forall i$                                                                | otherwise                                                                                                                               |
| example:          | 8-queens: $ \operatorname{dom} Q_i  = 8$ .<br>map coloring: $ \operatorname{dom} X_i  = 3$ .                        | scheduling: dom $X_i = \mathbb{N}$ (number of days from now)                                                                            |
| special<br>cases: | binary CSPs: $ \operatorname{dom} X_i  = 2$                                                                         | integer domains: $\operatorname{dom} X_i = \mathbb{N}$<br>continuous domains: $\operatorname{dom} X_i = \mathbb{R}$<br>(or an interval) |
| constraint        | scan be provided by enumeration,<br>e.g.,<br>$(WA, NT) \in$<br>$\{(r, g), (r, b), (g, r), (g, b), (b, r), (b, g)\}$ | must be specified using a <b>constraint language</b> , e.g., linear constraints.                                                        |

# **Binary Constraints**



Constraints can be classified by the number  $|\operatorname{var} C_j|$  of variables they depend on:

- **unary constraint:** depends on a single variable  $X_i$ . uninteresting: can be eliminated by inclusion in the domain  $\operatorname{dom} X_i$ .
- **binary constraint:** depends on two variables  $X_i$  and  $X_j$ . can be represented as a constraint graph.



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013





# constraint of higher order / n-ary constraint: depends on

more than two variables. can be represented as a constraint hypergraph.



# *n*-ary Constraints



*n*-ary constraints sometimes can be reduced to binary constraints in a trivial way.



# *n*-ary Constraints

young 2003

*n*-ary constraints always can be reduced to binary constraints by introducing additional **auxiliary variables** with the cartesian product of the original domains as new domain and the original *n*-ary constraint as unary constraint on the auxiliary variable.



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

**Auxiliary Variables** 



Sometimes auxiliary variables also are necessary to represent a problem as CSP.

Example: cryptarithmetic puzzle. Assign each letter a figure s.t. the resulting arithmetic expression is true.

 $O + O = R + 10X_1$  $X_1 + W + W = U + 10X_2$  $X_2 + T + T = O + 10X_3$  $X_3 = F$ 



**1.** Constraint Satisfaction Problems

2. Backtracking Search

3. Local Search

4. The Structure of Problems

Depth-First Search: Backtracking

# Uninformed Depth-First search is called **backtracking** for CSPs.

1 backtracking(variables 
$$\mathcal{X}$$
, constraints  $\mathcal{C}$ , assignment  $A$ ) :
2 if  $\mathcal{X} = \emptyset$  return  $A$  fi
3  $X := \text{choose}(\mathcal{X})$ 
4  $A' := \text{failure}$ 
5 for  $v \in \text{values}(X, A, \mathcal{C})$  while  $A' = \text{failure}$  do
6  $A' := \text{backtracking}(\mathcal{X} \setminus \{X\}, \mathcal{C}, A \cup \{X = v\})$ 
7 od
8 return  $A'$ 

where

 $\mathsf{values}(X, A, \mathcal{C}) := \{ v \in \operatorname{dom} X \, | \, \forall C \in \mathcal{C} \text{ with } \operatorname{var} C \subseteq \operatorname{var} A \cup \{X\} : \\ C(A, X = v) = \mathsf{true} \}$ 

denotes the values for variable X consistent with assignment A for constraints C.



















Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

# Variable Ordering / MRV

Which variable is selected in line 3 can be steered by heuristics:

# minimum remaining values (MRV):

Select the variable with the smallest number of remaining choices:

 $X := \operatorname{argmin}_{X \in \mathcal{X}} |\operatorname{values}(X, A, \mathcal{C})|$ 





Variable Ordering / Degree Heuristics

#### degree heuristic:

Select the variable that is involed in the largest number of unresolved constraints:

 $X := \operatorname{argmax}_{X \in \mathcal{X}} |\{C \in \mathcal{C} \mid X \in \operatorname{var} C, \operatorname{var} C \not\subseteq \operatorname{var} A \cup \{X\}\}|$ 



Usually one first applies MRV and breaks ties by degree heuristics.



# Value Ordering



The order in which values for the selected variable are tried can also be steered by a heuristics:

#### least constraining value:

Order the values by descending number of choices for the remaining variables:

 $\sum_{Y \in \mathcal{X} \setminus \{X\}} |\mathsf{values}(Y, A \cup \{X = v\}, \mathcal{C})|, \quad v \in \mathsf{values}(X, A, \mathcal{C})$ 





The minimum remaining values (MRV) heuristics can be implemented efficiently by keeping track of the remaining values values (X, A, C) of all unassigned variables.

— This is called **forward checking**.

$$\begin{array}{l} \text{i backtracking-fc}(\text{variables } \mathcal{X}, (\text{values}(X))_{X \in \mathcal{X}}, \text{constraints } \mathcal{C}, \text{assignment } A): \\ \text{2 } \underbrace{\text{if } \mathcal{X} = \emptyset \ \underline{\text{return}} \ A \ \underline{\text{fi}}}_{X = \operatorname{argmin}_{X \in \mathcal{X}}} | \text{values}(X) | \\ \text{3 } X := \operatorname{argmin}_{X \in \mathcal{X}} | \text{values}(X) | \\ \text{4 } A' := \operatorname{failure} \\ \text{5 } \underbrace{\underline{\text{for}} \ v \in \text{values}(X) \ \underline{\text{while}} \ A' = \operatorname{failure} \ \underline{\text{do}}}_{6} \\ \text{6 } \quad \operatorname{illegal}(Y) := \{w \in \operatorname{values}(Y) \mid \exists C \in \mathcal{C} : X, Y \in \operatorname{var} C, \operatorname{var} C \subseteq \operatorname{var} A \cup \{X, Y\}, \\ \text{7 } \qquad C(A, X = v, Y = w) = \operatorname{false}\}, \quad \forall Y \in \mathcal{X} \setminus \{X\} \\ \text{8 } \quad A' := \operatorname{backtracking}(\mathcal{X} \setminus \{X\}, (\operatorname{values}(Y) \setminus \operatorname{illegal}(Y))_{Y \in \mathcal{X} \setminus \{X\}}, \mathcal{C}, A \cup \{X = v\}) \\ \text{9 } \underbrace{\underline{\text{od}}}_{10} \\ \underline{\text{return}} \ A' \end{array}$$























Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

# **Constraint Propagation**







One also could use a stronger consistency check: if

- there is for some unassigned variable X a possible value v,
- there is a constraint C linking X to another unassigned variable Y, and
- setting X = v would rule out all remaining values for Y via C,

then we can remove v as possible value for X.

Example:

 $\mathsf{values}(\mathsf{SA}) = \{b\}, \quad \mathsf{values}(\mathsf{NSW}) = \{r, b\}, \quad C: \mathsf{NSW} \neq \mathsf{SA}$ 

NSW = b is not possible as C would lead to values $(SA) = \emptyset$ .

Removing such a value may lead to other inconsistent arcs, thus, has to be done repeatedly.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013



*i* arc-consistency(variables  $\mathcal{X}$ , (values(X)) $_{X \in \mathcal{X}}$ , constraints  $\mathcal{C}$ ) : 2 arcs :=  $((X, Y, C) \in \mathcal{X}^2 \times \mathcal{C} | \operatorname{var} C = \{X, Y\})$  in any order <sup>3</sup> <u>while</u> arcs  $\neq \emptyset$  <u>do</u> (X, Y, C) :=remove-first(arcs) 4  $illegal := \{ v \in values(X) \mid \forall w \in values(Y) : C(X = v, Y = w) = false \}$ 5 **if** illegal  $\neq \emptyset$ 6  $values(X) := values(X) \setminus illegal$ 7 append(arcs,  $((Y', X', C') \in \mathcal{X}^2 \times \mathcal{C} \mid X' = X, Y' \neq Y, \text{var } C' = \{X', Y'\}))$ 8 fi 9 10 **od** 11 <u>**return**</u> (values(X))\_{X \in \mathcal{X}}





















# k-consistency

# *k*-consistency:

any consistent assignment of any k-1 variables can be extended to a consistent assignment of k variables with any k-th variable.

# 1-consistency: node consistency

same as forward checking.

2-consistency: arc consistency

# 3-consistency: path consistency

**strong** k-consistent: 1-consistent and 2-consistent and ... and k-consistent.

**strong** *n***-consistency** (where *n* is the number of variables) renders a CSP trivial: select a value for  $X_1$ , compute the remaining values for the other variables, then pick on for  $X_2$  etc. — strong *n*-consistency guarantees that there is no step where backtracking is necessary.





**1. Constraint Satisfaction Problems** 

2. Backtracking Search

**3. Local Search** 

4. The Structure of Problems

#### min conflicts

sort of greedy local search: states: complete assignments neighborhood: re-assigning a (randomly picked) conflicting variable goal: no conflicts

 $\begin{array}{l} nin-conflicts(variables \mathcal{X}, constraints \mathcal{C}) :\\ 2 \ A := random complete assignment for \mathcal{X} \\ 3 \ \underline{for} \ i := 1 \dots maxsteps \ \underline{while} \ \exists C \in \mathcal{C} : C(A) = false \ \underline{do} \\ 4 \ X := random(\{X \in \mathcal{X} \mid \exists C \in \mathcal{C} : C(A) = false \ and \ X \in var \ C\}) \\ 5 \ v := \operatorname{argmin}_{v \in \operatorname{dom} X} |\{C \in \mathcal{C} \mid C(A, X = v) = false, \ X \in var \ C\}| \\ 6 \ A|_X := v \\ 7 \ \underline{od} \\ 8 \ \underline{return} \ A, \text{if } \forall C \in \mathcal{C} : C(A) = true, failure \ else \end{array}$ 



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013





# min conflicts / performance

min conflicts finds solution for *n*-queens problem very quickly even for very large *n*, e.g., n = 10,000,000 (starting from a random initial state).

min conflicts also can solve large randomly-generated CSPs very quickly

except in a narrow range of the constraints / variables ratio

 $R := \frac{\text{number of constraints}}{\text{number of variables}}$ 



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013





- **1. Constraint Satisfaction Problems**
- 2. Backtracking Search
- 3. Local Search
- 4. The Structure of Problems



Connected Components / Graphs

Let G := (V, E) be an undirected graph. A sequence  $p = (p_1, \dots, p_n) \in V^*$  of vertices is called **path** of *G* if  $(p_i, p_{i+1}) \in E$  for  $i = 1 \dots, n-1$ 

 $G^*$  denotes the set of paths on G.

 $x, y \in V$  are called **connected** if there is a path in *G* between *x* and *y*,

i.e., it exists  $p \in G^*$  with  $p_1 = x$  and  $p_{|p|} = y$ .

*G* is called **connected** if all pairs of vertices are connected.





Connected Components / Graphs

Let G := (V, E) be an undirected graph. A sequence  $p = (p_1, \dots, p_n) \in V^*$  of vertices is called **path** of *G* if  $(p_i, p_{i+1}) \in E$  for  $i = 1 \dots, n-1$ 

 $G^*$  denotes the set of paths on G.

 $x, y \in V$  are called **connected** if there is a path in G between x and y,

i.e., it exists  $p \in G^*$  with  $p_1 = x$  and  $p_{|p|} = y$ .

*G* is called **connected** if all pairs of vertices are connected.





Connected Components / Hypergraphs

Let G := (V, E) be a hypergraph, i.e.,  $E \subseteq \mathcal{P}(V)$ . A sequence  $p = (p_1, \dots, p_n) \in E^*$  of edges is called **path** of *G* if  $p_i \cap p_{i+1} \neq \emptyset$  for  $i = 1 \dots, n-1$ 

 $G^*$  denotes the set of paths on G.

 $x, y \in V$  are called **connected** if there is a path in G between x and y,

i.e., it exists  $p \in G^*$  with  $x \in p_1$  and  $y \in p_{|p|}$ .

*G* is called **connected** if all pairs of vertices are connected.





Connected Components / Hypergraphs

Let G := (V, E) be a hypergraph, i.e.,  $E \subseteq \mathcal{P}(V)$ . A sequence  $p = (p_1, \dots, p_n) \in E^*$  of edges is called **path** of *G* if  $p_i \cap p_{i+1} \neq \emptyset$  for  $i = 1 \dots, n-1$ 

 $G^*$  denotes the set of paths on G.

 $x, y \in V$  are called **connected** if there is a path in G between x and y,

i.e., it exists  $p \in G^*$  with  $x \in p_1$  and  $y \in p_{|p|}$ .

*G* is called **connected** if all pairs of vertices are connected.



Independent Subproblems

Let  $(\mathcal{X}, \mathcal{C})$  be a constraint satisfaction problem. The CSP  $(\mathcal{X}', \mathcal{C}')$  with  $\mathcal{X}' \subseteq \mathcal{X}$  and

 $\mathcal{C}' := \{ C \in \mathcal{C} \mid \operatorname{var} C \subseteq \mathcal{X}' \}$ 

is called subproblem of  $(\mathcal{X}, \mathcal{C})$  on the variables  $\mathcal{X}'$ .

Two subproblems on the variables  $\mathcal{X}'_1$  and  $\mathcal{X}'_2$  are called **independent** if there is no joining constraint, i.e., no  $C \in \mathcal{C}$  with

$$\operatorname{var} C \cap \mathcal{X}'_1 \neq \emptyset$$
 and  $\operatorname{var} C \cap \mathcal{X}'_2 \neq \emptyset$ 



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013



Independent Subproblems



Consistent assignments of independent subproblems can be joined to consistent assignments of the whole problem.

The other way around: if a probem decomposes into independent subproblems we can solve each one separately and joint the subproblem solutions afterwards.

# Tree Constraint Graphs

The next simple case: If the constraint graph is a tree, there is a linear-time algorithm to solve the CSP:

1. choose any vertex as the root of the tree,

- 2. order the variables from root to leaves s.t. parents precede their children in the ordering. (topological ordering) Denote variables by  $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ .
- 3. For i = n down to 2: apply arc consistency to the edge  $(parent(X_{(i)}), X_{(i)})$ i.e., eventually remove values from dom  $parent(X_{(i)})$ .
- **4.** For i = 1 to n:

choose a value for  $X_{(i)}$  consistent with the value already choosen for parent $(X_{(i)})$ .



#### **Tree Constraint Graphs**





General Constraint Graphs

2003

Idea: try to reduce problem to constraint trees.

Approach 1: cycle cutset

remove some vertices s.t. the remaining vertices form a tree.

for binary CSPs:

- 1. find a subset  $S \subseteq \mathcal{X}'$  of variables s.t. the constraint graph of the subproblem on  $\mathcal{X} \setminus S$  becomes a tree.
- 2. for each consistent assignment A on S:
  - (a) remove from the domains of  $\mathcal{X} \setminus S$  all values not consistent with A,
  - (b) search for a solution of the remaining CSP. if there is one, an overall solution has been found.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

#### General Constraint Graphs / Cycle cutset





#### General Constraint Graphs / Cycle cutset



The smaller the cutset, the better.

Finding the smallest cutset is NP-hard.



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

Journal 2003

General Constraint Graphs / Tree Decompositions

# Approach 2: tree decomposition

decompose the constraint graph in overlapping subgraphs

s.t. the overlapping structure forms a tree

Tree decomposition  $(\mathcal{X}_i)_{i=1,...,m}$ :

- 1. each vertex appears in at least one subgraph.
- 2. each edge appears in at least one subgraph.
- if a vertex appears in two subgraphs, it must appear in every subgraph along the path connecting those two vertices.

# General Constraint Graphs / Tree Decompositions





#### General Constraint Graphs / Tree Decompositions





General Constraint Graphs / Tree Decompositions

To solve the CSP: view each subgraph as a new variable and apply the algorithm for trees sketched earlier.

Example: (WA,SA,NT) = (r,b,g)  $\Rightarrow$  (SA,NT,Q) = (b,g,r)

In general, many tree decompositions possible.

The **treewidth** of a tree decomposition is the size of the largest subgraph minus 1.

The smaller the treewidth, the better.

Finding the tree decomposition with minimal treewidth is NP-hard.



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013

# Summary



- CSPs allow to describe problems by **variables** and **constraints** between them.
- Depth-first search assigning one variable a time (called backtracking) can be used to solve CSPs.
- Heuristics for choosing the next variable to assign (MRV; degree heuristics) and for ordering the values (least constraining value) can accelerate backtracking.
- MRV can be efficiently implemented keeping book of the remaining values for each unassigned variable (**forward checking**).
- More complex methods of constraint propagation (such as arc consistency) can be used to lower the risk of having to backtrack.
- Local search (min conflicts) can be used to solve CSPs quickly.

#### Tree-structured CSPs can be solved in linear time.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, winter term 2012/2013