Tutorial Artificial Intelligence WS 13/14 Wirtschaftsinformatik und Maschinelles Lernen (ISMLL) Ruth Janning, M.Sc., Carlotta Schatten M.Eng.

Exercise Sheet 10

Submission: Monday, 27.01.2013, 23:00

Exercise 1 First-Order-Logic Inference (20 Points)

- a) Propositionalize following sentences with Universal Instantiation and Existential Instantiation. Explain which one you used and why.
 - Students, that party a lot, have worse results but more fun: $\forall x : (student(x) \land party(x)) \Rightarrow (worseResults(x) \land Fun(x))$ $Vocabulary = \{John, Uwe\}$
 - There are odd numbers and even numbers: $\forall x : Number(x) \Rightarrow (even(x) \lor odd(x))$ $Vocabulary = \{2, 3\}$
 - Some numbers are also prime numbers: $\exists x : number(x) \land primeNumber(x)$ $Vocabulary = \{3, 99\}$
 - There is a student that studied with his best friend (BFF) and had a good mark: $\exists x : student(x) \land StudiedWith(x, BFF) \land GoodMark(x)$ $Vocabulary = \{John, Uwe\}$

(4 Points)

b) Infer with unification about the sentence "X sell Y the object Z" or Sell(x, y, z)

p	q	θ
Sell(x, y, z)	Sell(x, y, Missile)	??
Sell(John, y, z)	Sell(x, KingRichard, z)	
Sell(x, y, z)	Sell(x, y, isMissile(g))	
Sell(x, Lukas, z)	Sell(x, Uwe, coffee)	
Sell(isAdult(b), y, z)	Sell(x, y, isMissile(g))	

(5 Points)

c) "The law says it is a crime for a student to copy during an exam or to give hints to a classmate. Martin has some crib sheets and is whispering to a friend during the exam.

Prove that Martin is a criminal with the Backward Chaining algorithm. (8 Points)

d) Express in CNF following sentences:

- There are odd numbers and even numbers: $\forall x : Number(x) \Rightarrow (even(x) \lor odd(x))$
- Some numbers are also prime numbers: $\exists x : number(x) \land primeNumber(x)$

(3 Points)