Exercise Sheet WS 14/15 Wirtschaftsinformatik und Maschinelles Lernen (ISMLL) Ruth Janning, M.Sc., Carlotta Schatten M.Eng.

Exercise Sheet 6

Submission: Tuesday, 13.01.2014, 10:00

Exercise 1 Propositional Logic (20 Points)

- a) Write the truth tables of :
 - $\bullet \ \neg A \wedge B$
 - $\neg A \Rightarrow B$
 - $(\neg A) \lor A$
 - $A \wedge (B \vee C)$
 - $A \lor (B \land \neg C)$
 - $A \Rightarrow (\neg B \land C)$

(6 Points)

- b) Prove with transformations following equivalences and mention at each step what rule (commutation, association, De Morgan, etc.) you apply.
 - $\neg \alpha \land \beta \equiv \neg (\beta \lor \alpha)$
 - $(\alpha \land \neg \beta \lor \gamma) \equiv (\gamma \lor \alpha) \land (\gamma \lor \neg \beta)$
 - $\alpha \Leftrightarrow \beta \equiv (\neg \alpha \land \neg \beta) \lor (\beta \land \alpha)$

(6 Points)

c) Demonstrate which characteristics (tautology, contradiction, satisfiable) have this formulas with transformations or truth tables. Explain all your steps.

(a)
$$\neg((A \Rightarrow (B \Rightarrow C)) \lor (A \lor B \lor \neg C))$$

(b) $\neg(((A \land \neg B) \lor C) \lor ((A \Rightarrow B) \Rightarrow C))$

(4 Points)

d) Prove G from \mathcal{F} using the proof method suggested by the scripts.

$$\begin{split} \boldsymbol{G} &:= (is_penguin \land cannot_fly) \\ \mathcal{F} &:= \{has_feathers, walks_only, \\ (is_bird \land cannot_fly) \Rightarrow is_penguin, \\ has_feathers \Rightarrow is_bird, \\ (is_bird \land walks_only) \Rightarrow cannot_fly \} \\ \text{Consider that each derivation can be used with } \mathcal{F} \text{ ones for new derivations.} \end{split}$$

Basic rules for derivation

premise	conclusion	name
$G \in \mathcal{F}$	$\mathcal{F} \vdash G$	assumption
$\mathcal{F} \vdash G, \mathcal{F} \subseteq \mathcal{F}'$	$\mathcal{F}' \vdash G$	monotonicity
$\mathcal{F} \vdash \neg \neg G$	$\mathcal{F} \vdash G$	double negation
$\mathcal{F} \vdash F, \mathcal{F} \vdash G$	$\mathcal{F} \vdash F \land G$	∧-introduction
$\mathcal{F} \vdash F \land G$	$\mathcal{F} \vdash F$	∧-elimination
$\mathcal{F} \vdash F \land G$	$\mathcal{F} \vdash G \land F$	∧-symmetry
$\mathcal{F} \vdash F$	$\mathcal{F} \vdash F \lor G$	∨-introduction
$\mathcal{F} \vdash F \lor G,$		
$\mathcal{F} \cup \{F\} \vdash H, \mathcal{F} \cup \{G\} \vdash H$	$\mathcal{F} \vdash H$	∨-elimination
$\mathcal{F} \vdash F \lor G$	$\mathcal{F} \vdash G \lor F$	∨-symmetry
$\mathcal{F} \cup \{F\} \vdash G$	$\mathcal{F} \vdash F \to G$	\rightarrow -introduction
$\mathcal{F} \vdash F, \mathcal{F} \vdash F \to G$	$\mathcal{F} \vdash G$	ightarrow -elimination
$\mathcal{F} \vdash F$	$\mathcal{F} \vdash (F)$	()-introduction
$\mathcal{F} \vdash (F)$	$\mathcal{F} \vdash F$	()-elimination
$\mathcal{F} \vdash ((F \land G) \land H)$	$\mathcal{F} \vdash F \land G \land H$	\wedge -parentheses rule
$\mathcal{F} \vdash ((F \lor G) \lor H)$	$\mathcal{F} \vdash F \lor G \lor H$	\vee -parentheses rule

(4 Points)