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Artificial Intelligence / 1. Greedy Best-First Search
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Uniform Cost Search 2003

uniform-cost-search(.X, succ, cost, xg, g) :
border := {x¢}
c(xg) :=0
while border # 0 do
T = AGMIN, oy ger ()
if g(z) =1
return branch(z, previous)
fi
for y € succ(x, A) do
border := border U {y}
c(y) = c(z) + cost(x, y)
previous(y) := x
od
border := border \ {z}

© 00 N o O b~ W N PP

T =
A W N R O

od
return ()

e
o ~N o O

branch(z, previous) :

P:=1

while & # § do
insert-at-beginning( P, )
x = previous(z)

N N DN B
N B O ©

od
return P

N N
ENN V]
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Artificial Intelligence / 1. Greedy Best-First Search Swri
Best-First-Search & 2008

1 uniform-cost-search(.X, succ, cost, xg, g) : 1 best-first-seardlX, succ cost xq, g, f) :
2 border := {z¢} 2 border:= {z}

3 ¢(xg) :=0 3 while border= () do

4 while border # () do 4 T = argmin, porged (%)

5 T 1= argmin, cporger () 5 ifg(z)=1

6 if g(z) =1 6 return branchz, previous
7 return branch(z, previous) 7 fi

8 fi 8 for y € sucqz, A) do

9 for y € succ(z, A) do 9 border:= borderu {y}
10 border := border U {y} 10 previougy) =z

11 c(y) := c¢(x) + cost(z, y) 11 od

12 previous(y) := x 12 border:= border\ {z}

13 od 13 od

14 border := border \ {z} 14 return ()

15 od

16 return ()

17

18 branch(z, previous) : - .

o P () f: evaluation function

while = # () do
insert-at-beginning( P, )
x = previous(z)

NN
= O

uniform cost search is special case with

N
N

od
return P f(z) := cost(branch(x, previous))

N N
ENN V]
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Artificial Intelligence / 1. Greedy Best-First Search

~ 3
Additi | Inf tion: a Heuristi B 0w
Iltonal iInformation: a AeuristiCs 2003
Straight-line distance
[] Oradea to Bucharest
Neamt Arad 36¢
] 87 Bucharest 0
Craiova 16C
[] lasi Dobreta 247
Arad Eforie 161
N 92 Fagaras 17¢
Sibiu g9  Fagaras Giurgiu 77
118 80 [] Vaslui Hir_sova 151
o las 22€
Timisoara Rimnicu Vilcea Lugoj 241
= Mehadia
211 142 241
11 M Lugoj Pitesti Neamt 234
- Oradea 38(
70 N 98  Hirsova Pitesti o€
] Mehadia 10 Urziceni F\’_IrT_mICU Vilcea 19¢
75 138 - 86 Sibiu 258
120 Bucharest Timisoara 32¢
Dobreta [ 90 Ur ziceni 8C
= Craiova o Eforie VaS_|Ui 19¢
] Giurgiu Zerind 374
cost: X x X - R h: X —R
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 3/25
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Artificial Intelligence / 1. Greedy Best-First Search
Greedy Best-First Search

epfwung
Q”é?qﬁw

Additional Information:
Heuristics i estimates costs to next goal state.

Greedy best-first search:
Take heuristics as evaluation function:

f=nh

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 4/25
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Artificial Intelligence / 1. Greedy Best-First Search
2003

Greedy Best-First Search / Example

366
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Artificial Intelligence / 1. Greedy Best-First Search
2003

Greedy Best-First Search / Example

374

253

4/25
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Artificial Intelligence / 1. Greedy Best-First Search 3 % :
Greedy Best-First Search / Example Ky

329 374
Crad P e
366 176 380 193

4/25
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Artificial Intelligence / 1. Greedy Best-First Search 3 % :
Greedy Best-First Search / Example Ky

329 374
> e
366 380 193

Sibiu_DP>BucharesD
253 0

4/25
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Artificial Intelligence / 1. Greedy Best-First Search 3 % %
Greedy Best-First Search % s S

Completeness
no (can get stuck in loops:
e.g., goal Oradea; lasi -+ Neamt — lasi — ...)

yes with repeated state checking

Optimality
no

Time complexity
O(b™) — but average time complexity may be much better for

good heuristics.

Space complexity
same as time complexity as whole search tree is kept in

memory.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,

Course on Artificial Intelligence, winter term 2012/2013 5/25
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1. Greedy Best-First Search

2. A* Search

3. Admissible Heuristic Functions

4. Local Search
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Artificial Intelligence / 2. A* Search Swppi
A* Search it

Additional Information:
Heuristics h estimates costs to next goal state.

Greedy best-first search:
Take heuristics as evaluation function:

f=nh

A* search:
|dea: penalty paths that are already costly.
~ take sum of costs so far and heuristics as evaluation function:

f .=cost+ h

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,

Course on Artificial Intelligence, winter term 2012/2013 6/25
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Artificial Intelligence / 2. A* Search SpPrs
WA
A* Search / Example o
393=140+253 447=118+329 449=75+374
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
6/25
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Artificial Intelligence / 2. A* Search

A* Search / Example

449=75+374

447=118+329

646=280+366 415=239+176 671=291+380 413=220+193

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
6/25

Course on Artificial Intelligence, winter term 2012/2013



Artificial Intelligence / 2. A* Search

A* Search / Example

<_Sibiu_ Cimisoara> CZerind >
447=118+329 449=75+374

CArad D PFagaras> COradea>  @mieuViced

646=280+366 415=239+176 671=291+380

CCraiova > Pitesti > (_Sibiu_2

526=366+160 417=317+100 553=300+253

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
6/25
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Artificial Intelligence / 2. A* Search

A* Search / Example

<_Sibiu_ Cimisoara> CZerind >
447=118+329 449=75+374

Carad > (Fagaras> COradea>  EmienViced

646=280+366 671=291+380

CSbiu > @ucharesd  CCraiova D Pitesti > C_Sibiu_3

591=338+253 450=450+0 526=366+160 417=317/+100 553=300+253

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
6/25
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Artificial Intelligence / 2. A* Search

A* Search / Example

~arad
. sbu_ Climisoaray

447=118+329

CArad > (Fagaras> COradea > @i ViceD

646=280+366 671=291+380

C_Sibiu_> Pitest
591=338+253 450=450+0 526=366+160 553=300+253

>

C Craiova )

418=418+0 615=455+160 607=414+193

449=75+374

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013

6/25



Artificial Intelligence / 2. A* Search 3 % %
A* Search % 2003 s

Completeness
yes (if b is finite and step costs are > € > 0
~+ there are only finite many states x with f(x) < f(goal))

Optimality
no (with any heuristics)
yes with admissible heuristics (see next page)

Time complexity
exponential in (relative errorin h) - d.

Space complexity
same as time complexity as whole search tree is kept in

memory.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 7/25



.q.aTSiIéilp&

%,ﬁ

&

epfwung
Q”é?qﬁw

Artificial Intelligence / 2. A* Search

Optimality
Heuristics is admissible (“optimistic”, lower bound):
h <h”

where h* denotes the true cost to the next goal.
Lemma: If h is admissible, A* search is optimal.

Proof: assume suboptimal G, has been found
and let n be any node on an optimal path to optimal solution G.

f(Gy) = cost(Gy) > cost(G) > f(n)

Hence n must be visited before Gs.
Sart

N

GO G,

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
8/25
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Artificial Intelligence / 2. A* Search
2003

Optimality

A* expands nodes in layers/contours of increasing f value.

9/25
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1. Greedy Best-First Search

2. A* Search

3. Admissible Heuristic Functions

4. Local Search
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Artificial Intelligence / 3. Admissible Heuristic Functions
Example 8-Puzzle T s

%\5&\4“0

\-
\-

Q"‘:‘?Lfﬁn

38 3 1 7 38

Start State Goal State

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 10/25
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Artificial Intelligence / 3. Admissible Heuristic Functions
Example 8-Puzzle

I 2 4 1 2 3
5 6 4 5 6
38 3 1 7 38

Start State Goal State

hi(z) := number of misplaced tiles

hl(ZIZ) = 0.

10/25
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Artificial Intelligence / 3. Admissible Heuristic Functions Sprt
Example 8-Puzzle ® 2005
I 2 4 1 2 3
5 6 4 S) 6
8 3 1 I 38
Start State Goal State

ho(z) := sum of distances of all misplaced tiles to goal
Here: distance in required moves, i.e., Manhattan distance.

ho(lx) =4+0+3+34+1+04+2+1=14

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 10/25



Artificial Intelligence / 3. Admissible Heuristic Functions Sp %
Which heuristics is better? ® 200 7

Size of search tree in nodes for two examples:

length of optimal solution
algorithm d=14 d =24
IDS 3,473,941 | =~ 54,000,000,000
A*(hy) 539 39,135
A*(hs) 113 1,641

For two admissble heurstics h; and hs:
h, dominates h; if hi(z) > ho(z) for all x.

Using a dominant heuristics with A* always is faster.
(as only nodes x with f(z) = cost(x) + h(x) < f(z*) are
expanded!)

= max(hy, ho) also is admissible and dominates h; and h..

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,

Course on Artificial Intelligence, winter term 2012/2013 11/25



Artificial Intelligence / 3. Admissible Heuristic Functions g%
How to design a heuristics? / 1. Relaxation % o

Conditions for legal moves:

A tile can move from A to B
(a) if A and B are horizontally or vertically adjacent and B is blank.

Relax conditions to:

(b) if A and B are horizontally or vertically adjacent.
— OR —

(c) if B is blank.

— OR —

(d) if true.

hi gives the true costs for relaxed problem (d).
hs gives the true costs for relaxed problem (b).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 12/25
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Artificial Intelligence / 3. Admissible Heuristic Functions
How to design a heuristics? / 2. Subproblems

“sygatt

LU
5 9 ¢y,

%\3

Look at a subproblem, e.g.,
8-puzzle with four tiles labeled 1 to 4 and four unlabeled tiles.

Each state = can be projected to a state subproblem,,,,(z) of the
subproblem.

7 24 - x 2 4
A ol I 0
8 31 x 31

hs(x) :=cost(subproblem,,,(x))
— the cost to solve just the subproblem.
(all configurations of such subproblems, called patterns and their

costs can be precomputed and stored in a database).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,

Course on Artificial Intelligence, winter term 2012/2013 13/25
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1. Greedy Best-First Search

2. A* Search

3. Admissible Heuristic Functions

4. Local Search
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Artificial Intelligence / 4. Local Search S
Local Search 5 2000

For some problems just the final state is interesting,
not the action/state sequence to reach the final state.

Examples:

— 8-queens problem
— traveling salesman problem

Then it is a waste to keep all the information about solution paths.
Instead:
— keep only one state z, the actual or current state

— consider only neighboring states as next actual state
i.e., reachable by an action from the actual state: succ(zx, A).

— needs objective function to steer movement: f
may need an heuristics if the true objective is not accessible.

Called local search or neighborhood search.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 14/25



Artificial Intelligence / 4. Local Search 3 % %
Local Search B S

If the state space consists just of “complete configurations”,
local search can be understood as iterative improvement.

In any case:
Local search requires just constant space.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 15/25



Artificial Intelligence / 4. Local Search Sp
Example / Traveling Salesman Problem 5 2000

Problem:

given a graph with labeled edges,

find a cycle that visits each node exactly once (hamiltonian cycle;
tour) with minimal sum of edge labels (costs).

State space:
all tours.

Actions:
remove two edges and join the resulting two paths in the other
possible way (2-Opt; Croes 1958).

Objective function:
cost of resulting tour.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 16/25



Artificial Intelligence / 4. Local Search

Example / 8-Queens

State space:
8 queens on the board, each in one column.

Actions:
move a queen to another row in her column.

Heuristics h:
number of possible attacks.

N9 G,

w.afsil,_é.i“‘?

2003
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Artificial Intelligence / 4. Local Search SpPrs
Hill-climbing / Steepest Descent/Ascent 5 2000

Greedy local search:
always move to the neighbor with the maximal objective value.

1 hill-climbing( X, succ, f, o) :
2 Y =X

3 do

4 T =y

5 Y= argmaxyewcc(z,A)f(y)
6 While f(y) > f(x)

7 returnx

For continuous state spaces / actions and differentiable objective

functions:
gradient descent/ascent.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,

Course on Artificial Intelligence, winter term 2012/2013 18/25
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Artificial Intelligence / 4. Local Search 3%%
Hill-climbing / Steepest Descent/Ascent %
State space landscape:
objecti\‘e function lobal maximum
shoulder
\ local maximum
"flat" local maximum
current »State space
state
Random restart: try to overcome local maxima.
Random sideways move: try to overcome shoulders.
(but restrict their number to avoid infinite loops on flat local
maxima)
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
19/25
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Artificial Intelligence / 4. Local Search s%’%
Stochastic Hill-climbing %
|dea:
like hill-climbing
but choose randomly among all improving actions
proportional to their improvement.
1 hill-climbing-stochastic( X, succ, f, zo) :
2 Y =2
3 do
4 =1y
5y ~ multinomial(succ(z, A)) with p(y) 1= i),y € suce(x, A)
6 while f(y) > f(x)
7 return x
p(y) is called the acceptance probability for neighboring state y
of .
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
20/25
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Artificial Intelligence / 4. Local Search s%’%
Simulated Annealing B0 S
|dea:
like hill-climbing
but also allow deteriorating actions
slight deteriorations more often than severe deteriorations
less and less deteriorations as the search proceeds
1 simulated-annealing( X, succ, f, xo, T) :
2 X=X
3 for k :=1to oo while T'(k) > 0 do
4y~ uniform(succ(z, A))
5 if f(y) > f(z) or random() < exp((f(y) — f(x))/T(k))
6 =y
7 fi
s od
9 return x
T is called the temperature schedule, 7" — 0 for k£ growing.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
21/25
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Artificial Intelligence / 4. Local Search

Beam Search

|dea:
like hill-climbing
but retain k£ best solutions in parallel.

1 beam-search( X, succ, f, g, k) :

2 S := random subset of X of size k
3 whileg(z) =0Vx € Sdo

4 S = argmaxgljesucc(S,A)f(y)
5 od

6 return z € Swithg(z) =1

where succ(S, A) = J,.ssucc(z, A) and

argmax” selects the k elements with maximum argument.

S is called population, each state an individual.

This is different from £ random restarts of hill-climbing!

b
i

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013
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Artificial Intelligence / 4. Local Search Swppi
Genetic Algorithms ® a0 °

|dea:

like beam search
but combine two states to a new state
(represented as string/vector)

1 genetic-algorithm(X, f, g, k) :
2 S := random subset of X of size k
3 while g(z) = 0Vx € Sdo

4 Si=10

5 fori=1...kdo

6 x1, To ~ multinomial(S) with p(z) := %,
7 y := combine(zy, x3)

8 if (random() < prutation) v := Mutation(y) fi

9 S = S"U{y}

10 od

11 S =5

12 od

13
14
15
16
1
18

~

return z € S with g(z)=1

combine(xy, xs) :

n = length(x;)

c ~uniform({1,2,...,n})

return concat(z[1...c],z3[c+1...n])

f also is called fithess (and should be > 0).

resS

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013
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Artificial Intelligence / 4. Local Search 5%%
Genetic Algorithms / Example %
24748552 | 24 1% _[ 32752411 >_< 32748552 327481p2
32752411 | 23 20% [ 24748552 24752411 24752411
24415124 | 20 26% 327525411 >_< 32752124 322b2124
32543213 | 11 14% ~[ 24415124 24415411 24415417

Fithess  Selection Pairs Cross—-Over

Genetic algorithms create triadic neighborhoods
pair of states — state
by means of combination/reproductio/cross-over.

To make sense, the string encoding must be such that close
positions encode related properties of the candidate solution.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
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Artificial Intelligence / 4. Local Search

24748552

32752411

24415124

32543213

Genetic Algorithms / Example

32748IH2

24752411

32262124

24 31%_, [32752411 32748552

23 20% ~[ 24748552 >~ 24752411

20 26% ~[32752411 N 32752124

11 14% 24415%124 24415411
Fitness  Selection Pairs Cross—Over

W

2441541[7]
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