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Artificial Intelligence / 1. Introduction

What is first-order logic?

Think about expressing these phrases in propositional logic:

A := “Socrates is human.”
B := “All humans are mortal.”
C := “Thus, Socrates is mortal.”

How can we see that A,B,C are related?

First-order logic is richer than propositional logic:

H(a)
∀xH(x)→M(x)
M(a)

where a stands for “Socrates”, H for “is human”, and M for “is
mortal”.
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Artificial Intelligence / 1. Introduction

What is first-order logic?

H(a)
∀xH(x)→M(x)
M(a)

So what do we have here?

– x is a variable. Variables denote arbitrary elements (objects) of
an underlying set.

– a is a constant. Constants denote specific elements of an
underlying set.

– H and M are unary relations.
– ∀ is the all quantifier. It is read “for all”.
– We can also use the connectives we already know from

propositional logic.

In first-order logic, there are also relations with other arities, as
well as n-ary functions. In addition to the all quantifier, there is
the existential quantifier, read “there exists”.
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Artificial Intelligence / 2. Syntax

Syntax: Symbols

– Let {f, g, h, . . . , f1, f2, . . . } be the set of function symbols.
Every function symbol has a given arity. Sometimes we write
fn to denote that f has arity n.

– Let {a, b, c, . . . , a1, a2, . . . } be the set of constant symbols.
Constant symbols can be seen as 0-ary function symbols.

– {P,R, S, . . . , P1, P2, . . . } be the set of relation symbols. Every
relation symbol (predicate) has a given arity. Sometimes we
write P n to denote that P has arity n.

– {x, y, z, x1, x2, . . . } be the set of variable symbols.
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Artificial Intelligence / 2. Syntax

Syntax: Terms

A term is a logical expression that refers to an object.

(T1) Every variable or constant symbol is a term.
(T2) If f is an n-ary function symbol and t1, . . . , tn are terms, then
f (t1, . . . , tn) is also a term.

Examples:

– a is a term, b as well.

– f (a) is a term if f is unary.

– f 3(a, x) is not a term.

– P (x) and P (x) ∨Q(x) are not
terms.

– f 1(f (f (a))) is a term.

More meaningful names for the
symbols:

– aristotle, socrates, kallias
– succ(root)
– Likes(zeno, hockey),
Likes(steffen, soccer) ∧
Likes(steffen, hockey)

– succ(succ(succ(0)))

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 4/19



Artificial Intelligence / 2. Syntax

Syntax: Formulas

An atomic formula has the form t1 = t2 or R(t1, . . . tn) is an n-ary
relation symbol and t1, . . . , tn are terms.

(F0) Every atomic formula is a formula.
(F1) If φ is a formula then so is (¬φ).
(F2) If φ and ψ are formulas then so is (φ ∧ ψ).
(F3) If φ is a formula, then so is (∃xφ) for any variable x.

We define ∨,→, and↔ the same way as in propositional logic.
For any formula φ, (∀xφ) and (¬∃x¬φ) are interchangeable.
Unnecessary brackets can be left out as in propositional logic.
Precedence: ¬,∃,∀,∧,∨,→,↔

Examples:

– P (x) and P (x) ∨Q(x) are formulas if P and Q are unary.
– succ(succ(succ(0))) = 3 is a formula.
– ∀yP (x, y) is a formula and x(P (z)∃) is not.
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Artificial Intelligence / 2. Syntax

Syntax: Subformulas

Let φ be a formula of first-order logic. We inductively define what it
means for θ to be a subformula of φ as follows:

– If φ is atomic, then θ is a subformula of φ if and only if θ = φ.
– If φ has the form ¬ψ, then θ is a subformula of φ if and only if
θ = φ or θ is a subformula of ψ.

– If φ has the form ψ1 ∧ ψ2, then θ is a subformula of φ if and only
if θ = φ or θ is a subformula of ψ1, or θ is a subformula of ψ2.

– If φ has the form ∃xψ, then θ is a subformula of φ if and only if
θ = φ or θ is a subformula of ψ.
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Artificial Intelligence / 2. Syntax

Syntax: Free variables

The free variables of a formula are those variables occurring in it
that are not quantified.
Example: In ∀yR(x, y), x is free, but y is bound by ∀y.
For any first-order formula φ, let free(φ) denote the set of free
variables of φ. We define free(φ) inductively as follows:

– If φ is atomic, then free(φ) is the set of all variables occurring in
φ,

– if φ = ¬ψ, then free(φ) = free(ψ),
– if φ = ψ ∧ θ, then free(φ) = free(ψ) ∪ free(θ), and
– if φ = ∃xψ, then free(φ) = free(ψ)− {x}.

How would you define the set of bound variables of φ, bnd(φ)?

A sentence of first-order logic is a formula having no free
variables.
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Artificial Intelligence / 3. Semantics

Semantics: Vocabularies, structures and interpretations

A vocabulary is a set of function, relation, and constant symbols.
Let V be a vocabulary. A V-structure M = (U, I) consists of a
nonempty underlying set U (the universe) along with an
interpretation I of V. An interpretation I of V assigns:

– an element of U to each constant symbol in V,
– a function from Un to U to each n-ary function in V, and
– a subset of Un to each n-ary relation in V.

Examples:

– V = {f 1, R2, c}, Z = (Z, IZ)
The universe is the set of integers Z.
IZ could interpret f (x) as x2, R(x, y) as x < y, and c as 3.

– V = {f 1, R2, c}, N = (N, IN)
The universe is the set of natural numbers N.
IN could interpret f (x) as x + 1, R(x, y) as x < y, and c as 0.
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Artificial Intelligence / 3. Semantics

Semantics: V-formulas and V-sentences

Let V be a vocabulary. A V-formula is formula in which every
function, relation, and constant symbol is in V. A V-sentence is a
V-formula that is a sentence.

If M is a V-structure, then each V-sentence φ is either true or false
in M. If φ is true in M, then we say M models φ and write M |= φ.

Example: Var = {+, ·, 0, 1} is the vocabulary of arithmetic. Then
R = (R, IR) is an Var-structure if IR is a interpretation of Var.
R |= ∀x∃y(1 + x · x = y)

What about ∀y∃x(1 + x · x = y)?
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Artificial Intelligence / 3. Semantics

Semantics: The value of terms

We define the value VM(t) ∈ U of a term t inductively as

– VM(t) = IM(t), if t is a constant symbol, and
– VM(t) = IM(f )(VM(t1), . . . , VM(tn)), if t = fn(t1, . . . , tn).

Example: V = {f 1, R2, c}, N = (N, IN), interpretation IN as before
What is the value of the term t = f (f (c))?

VN(f (f (c))) = IN(f )(VN(f (c)))

= IN(f )(IN(f )(VN(c)))

= IN(f )(IN(f )(IN(c)))

= IN(f )(IN(f )(0))

= IN(f )(1)

= 2
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Artificial Intelligence / 3. Semantics

Semantics: Vocabulary/structure expansions and reducts

An expansion of a vocabulary V is a vocabulary containing V as a
subset.
A structure M ′ is an expansion of the V-structure M if M ′ has the
same universe and interprets the symbols of V in the same way
as M .
If M ′ is an expansion of M , then we say that M is a reduct of M ′.

Examples:
The {+,−, ·, <, 0, 1}-structure M ′ = (R, I ′) is an expansion of the
Var-structure M = (R, I) if both I ′ and I interpret the symbols
+, ·, 0, and 1 in the usual way.
A {+,−, ·, <, 0, 1}-structure M ′′ = (Q, I ′′) cannot be an expansion
of M .
Any structure is an expansion of itself.
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Artificial Intelligence / 3. Semantics

Semantics: The value of formulas

We define M |= φ by induction:

– M |= t1 = t2 if and only if V (t1) = V (t2),
– M |= Rn(t1, . . . , tn) iff. (VM(t1), . . . , VM(tn)) ∈ IM(Rn),
– M |= ¬φ iff. M does not model φ,
– M |= φ1 ∧ φ2 iff. both M |= φ1 and M |= φ2, and
– M |= ∃xφ(x) iff. MC |= φ(c) for some constant c ∈ V(M) .

V(M) = V ∪ {cm|m ∈ UM}
MC = (UM , IC) is the expansion of M = (UM , I) to a
V(M)-structure where IC interprets each cm as the element m.
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Artificial Intelligence / 4. Example

Back to the Silly Example

Toy example by Gregory Yob (1975), adapted by our textbook.

– 4× 4 grid, tiles numbered (1,1) to (4,4),
– the agent starts in (1,1),
– the beast Wumpus sits at a random tile, unknown to the agent,
– a pile of gold sits at another random tile, unknown to the agent,
– some pits are located at random tiles, unknown to the agent.

– if the agent enters the tile of the Wumpus, he will be eaten,
– if the agent enters a pit, he will be trapped,

PIT

1 2 3 4

1

2

3

4

START

Stench

Stench

Breez e

Gold

PIT

PIT

Breez e

Breez e

Breez e

Breez e

Breez e

Stench
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Artificial Intelligence / 4. Example

Encoding in propositional logic

64 variables:

Px,y tile x, y contains a pit (x, y = 1, . . . , 4).
Wx,y tile x, y contains the Wumpus (x, y = 1, . . . , 4).
Bx,y tile x, y contains a breeze (x, y = 1, . . . , 4).
Sx,y tile x, y contains stench (x, y = 1, . . . , 4).

start is save: (2 formulas)

¬P1,1, ¬W1,1

how breeze arises: (16 formulas)

Bx,y ↔ Px−1,y ∨ Px+1,y ∨ Px,y−1 ∨ Px,y+1, x, y = 1, . . . , 4

how stench arises: (16 formulas)

Sx,y ↔ Wx−1,y ∨Wx+1,y ∨Wx,y−1 ∨Wx,y+1, x, y = 1, . . . , 4

there is exactly one Wumpus: (121 formulas)

W1,1 ∨W1,2 ∨ . . . ∨W4,4

¬Wx,y ∨ ¬Wx′,y′, x, y, x′, y′ = 1, . . . , 4, x 6= x′ or y 6= y′
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Artificial Intelligence / 4. Example

Encoding in first order logic (1/2)

Vocabulary:

– constants 1, 2, 3, 4

– binary relations symbols P,W,B, S

Meaning of the predicates:

P (x, y) tile x, y contains a pit.
W (x, y) tile x, y contains the Wumpus.
B(x, y) tile x, y contains a breeze.
S(x, y) tile x, y contains stench.
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Artificial Intelligence / 4. Example

Encoding in first order logic (2/2)

start is save:
¬P (1, 1) ∧ ¬W (1, 1)

how breeze arises:

∀x∀yB(x, y)↔ P (x− 1, y)∨P (x+1, y)∨P (x, y− 1)∨P (x, y+1)

there is exactly one Wumpus:

W (x, y)→ ∀x′∀y′W (x′, y′)→ (x = x′ ∧ y = y′)

Further possibilities: Encode actions as functions, encode time
steps.
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Artificial Intelligence / 5. Conclusion

Summary

We introduced first-order logic, a representation language far
more powerful than propositional logic.

– Knowledge representation should be declarative,
compositional, expressive, context-independent, and
unambiguous.

– Constant symbols name objects, relation symbols
(predicates) name properties and relations, and function
symbols name functions. Complex terms apply function
symbols to terms to name an object.

– Given a V-structure, the truth of a formula is determined.
– An atomic formula consists of a relation symbol applied to one

or more terms; it is true iff. the relation named by the predicate
holds between the objects named by the terms. Complex
formulas use connectives just like propositional logic.
Quantifiers allow the expression of general rules.
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Artificial Intelligence / 5. Conclusion

Outlook

Next lesson: Inference in first-order predicate logic.

Which other kind of logics exist?

– Temporal logic: Gφ→ Xφ

– Description logic: C ⊆ D

– Modal logic: �p→ ��p

– Higher-order predicate logic: ∀P∀x∀yP (x, y) ∧ P (y, x)→ S(P )

– Typed/intuitionistic/default/relevance logics
– . . .

(not covered in this course)
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Artificial Intelligence / 5. Conclusion

Literature

– Shawn Hedman: A First Course in Logic
– Heinz-Dieter Ebbinghaus, Jörg Flum, Wolfgang Thomas:

Einführung in die mathematische Logik
– Uwe Schöning: Logik für Informatiker
– Stuart Russell, Peter Norvig: Artificial Intelligence. A Modern

Approach
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