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Artificial Intelligence / 1. Unification

“Compound Expressions”

Formulas and function terms sometimes are described as
compound expressions.

For a compound expression, its operator and its arguments is
defined:

op(P (t1, . . . , tn)) := P args(P (t1, . . . , tn)) := (t1, . . . , tn)
op(f (t1, . . . , tn)) := f args(f (t1, . . . , tn)) := (t1, . . . , tn)
op(¬φ) := ¬ args(¬φ) := (φ)
op(φ⊕ ψ) := ⊕ args(φ⊕ ψ) := (φ, ψ), ⊕ ∈ {∧,∨,→,↔}
op(∀xφ) := ∀ args(∀xφ) := (x, φ)
op(∃xφ) := ∃ args(∃xφ) := (x, φ)

Atomic terms, i.e., constants and variables, are not considered
compound expressions.
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Artificial Intelligence / 1. Unification

Unification / Algorithm

1 unify(x, y, θ) :
2 if θ = failure
3 return failure
4 elsif x = y
5 return θ
6 elsif is-variable(x)
7 return unify-var(x, y, θ)
8 elsif is-variable(y)
9 return unify-var(y, x, θ)

10 elsif is-compound(x) and is-compound(y)
11 return unify(args(x), args(y), unify(op(x), op(y), θ))
12 elsif is-list(x) and is-list(y)
13 return unify((x2, . . . , xn), (y2, . . . , yn), unify(x1, y1, θ))
14 else
15 return failure
16 fi
17

18 unify-var(var, x, θ) :
19 if θ(var) 6= ∅
20 return unify(θ(var), x, θ)
21 elsif θ(x) 6= ∅
22 return unify(var, θ(x), θ)
23 elsif occurs(var, x)
24 return failure
25 else
26 return θ ∪ {var 7→ x}
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Artificial Intelligence / 1. Unification

Unification / Example

unify(Knows(John, x),Knows(y,Mother(y)), ∅)
= unify((John, x), (y,Mother(y)),unify(Knows,Knows, ∅))
= unify((John, x), (y,Mother(y)), ∅)
= unify((x), (Mother(y)),unify(John, y, ∅))
= unify((x), (Mother(y)), {y/John})
= unify-var(x,Mother(y), {y/John})
= {y/John, x/Mother(y)}
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Artificial Intelligence / 2. Forward Chaining

Generalized Modus Ponens

premise conclusion name
F ` F,F ` F → G F ` G → -elimination / modus ponens
F ` F F ` Fθ universial instantiation
F ` F,F ` F ′ → G,Fθ = F ′θ F ` Gθ generalized modus ponens

Lemma 1. Generalized modus ponens is sound.

Proof.
1. F ` F [assumption]
2. F ` Fθ [universal instantiation applied to 1]
3. F ` F ′ → G [assumption]
4. F ` F ′θ → Gθ [universal instantiation applied to 3]
5. F ` Gθ [→ -elemination applied to 2,4]
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Artificial Intelligence / 2. Forward Chaining

Generalized Modus Ponens / Example

Let the knowledge base F be

King(x) ∧Greedy(x)→ Evil(x)
King(John)
Greedy(y)

Now use

F :=King(John) ∧Greedy(y)
F ′ :=King(x) ∧Greedy(x)
G :=Evil(x)

then for
θ := {x/John, y/John}

we have
Fθ = King(John) ∧Greedy(John) = F ′θ

and thus we can derive

Gθ = Evil(John)
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Artificial Intelligence / 2. Forward Chaining

Forward Chaining

Definitions for conjunctive normal forms (CNF), Horn clauses
and Horn formulas are the same as in propositional logic.
Here, atoms are formulas

P (t1, t2, . . . , tn)

where P is a predicate symbol and ti are any terms (including
variables).

A Horn clause C is called definite it it contains exactly one
positive literal, i.e., implications of type

(

n∨
i=1

¬Li) ≡(
n∧
i=1

Li → false)

are not possible.

If the knowledge base consists of Horn clauses only, then
generalized modus ponens can be used just like modus ponens
to infer statements iteratively by forward chaining.
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Artificial Intelligence / 2. Forward Chaining

Example

The law says that it is a crime for an American to sell weapons to
hostile nations. The country Nono, an enemy of America, has
some missiles, and all of its missiles were sold to it by Colonel
West, who is American.

Prove that Col. West is a criminal.
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Artificial Intelligence / 2. Forward Chaining

Example (2/4)

The law says that it is a crime for an American to sell weapons to
hostile nations.

∀American(x) ∧Weapon(y) ∧ Hostile(z) ∧ Sell(x, y, z)→ Criminal(x)

The country Nono,
Country(Nono)

an enemy of America,

Enemy(Nono, America)

has some missiles,

∃xMissile(x) ∧Owns(Nono, x)

and all of its missiles were sold to it by Colonel West,

∀xMissile(x) ∧Owns(Nono, x)→ Sell(West, x,Nono)

who is American.
American(West)
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Artificial Intelligence / 2. Forward Chaining

Example (3/4)

Additional background knowledge:
Missiles are weapons.

∀xMissile(x)→Weapon(x)

Enemies of America are hostile.

∀xEnemy(x,America)→ Hostile(x)

Prove that Col. West is a criminal

Criminal(West)?
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Artificial Intelligence / 2. Forward Chaining

Example (4/4)

The knowledge base can be simplified by

• existential instantiation and

• omitting universal quantifiers
(as all free variables are universally quantified anyway)

American(x) ∧Weapon(y) ∧ Hostile(z) ∧ Sell(x, y, z)→ Criminal(x)
Country(Nono)
Enemy(Nono, America)
Missile(M1) ∧Owns(Nono,M1)

Missile(x) ∧Owns(Nono, x)→ Sell(West, x,Nono)
American(West)
Missile(x)→Weapon(x)
Enemy(x,America)→ Hostile(x)

 This knowledge base consists of definite Horn clauses only !
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Artificial Intelligence / 2. Forward Chaining

Forward Chaining

1 entails-fc(FOL definite horn formulaF, query atomQ) :
2 C := ∅
3 C′ := clauses(F )
4 while C′ 6= ∅ do
5 C := C ∪ C′

6 C′ := ∅
7 for C ∈ C do
8 C ′ := standardize-apart(C)
9 for atomsA1, A2, . . . , An ∈ C andθ with body(C ′)θ = (A1 ∧A2 ∧ . . . ∧ An)θ do

10 H := head(C ′)θ
11 if H 6∈ C andH 6∈ C′

12 C′ := C′ ∪ {H}
13 if unify(H,Q) return truefi
14 fi
15 od
16 od
17 od
18 return false
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Artificial Intelligence / 2. Forward Chaining

Forward Chaining / Example

Forward chaining proof

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Chapter 9 25
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Artificial Intelligence / 2. Forward Chaining

Forward Chaining / Example

Forward chaining proof

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1) Sells(West,M1,Nono)

Chapter 9 26
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Artificial Intelligence / 2. Forward Chaining

Forward Chaining / Example

Forward chaining proof

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)

Chapter 9 27
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Artificial Intelligence / 3. Backward Chaining

Backward Chaining

Backward chaining works the other way around:

• keep a list of yet unsatisfied atoms Q
– starting with the query atom.

• try to find rules whichs head match atoms in Q (after
unification) and
replace the atom from Q by the atoms of the body of the
matching rule.

• proceed recursively until no more atoms have to be satisfied.

Backward chaining keeps track of the substitution needed during
the proof.
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Artificial Intelligence / 3. Backward Chaining

Backward Chaining / Algorithm

1 entails-bc(FOL definite horn formulaF, query atomQ) :
2 return entails-bc-goals(clauses(F ), {Q}, ∅) 6= ∅
3

4 entails-bc-goals(set of FOL definite Horn clausesC, set of FOL atomsQ, θ) :
5 if Q = ∅ return {θ} fi
6 Θ := ∅
7 for C ∈ C do
8 C ′ := standardize-apart(C)
9 θ′ := unify(head(C ′), Q[1]θ)

10 if θ′ 6= failure
11 Θ := Θ ∪ entails-bc-goals(C, atoms(body(C ′)) ∪ (Q \ {C}), θ ∪ θ′)
12 fi
13 od
14 return Θ
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Artificial Intelligence / 3. Backward Chaining

Backward Chaining / Example

Backward chaining example

Criminal(West)

Chapter 9 32
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Artificial Intelligence / 3. Backward Chaining

Backward Chaining / Example

Backward chaining example

Criminal(West)

Weapon(y)American(x) Sells(x,y,z) Hostile(z)

{x/West}

Chapter 9 33

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany,
Course on Artificial Intelligence, winter term 2012/2013 13/20



Artificial Intelligence / 3. Backward Chaining

Backward Chaining / Example

Backward chaining example

Criminal(West)

Weapon(y) Sells(x,y,z) Hostile(z)

{x/West}

{ }

American(West)

Chapter 9 34
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Artificial Intelligence / 3. Backward Chaining

Backward Chaining / Example

Backward chaining example

Hostile(Nono)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

{ }

Sells(x,y,z) Hostile(z)

{x/West}

Chapter 9 35
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Artificial Intelligence / 3. Backward Chaining

Backward Chaining / Example

Backward chaining example

Hostile(Nono)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

{ }

Sells(x,y,z) Hostile(z)

 y/M1{ }

{x/West, y/M1}

Chapter 9 36
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Artificial Intelligence / 3. Backward Chaining

Backward Chaining / Example

Backward chaining example

Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

 y/M1{ }

{ } z/Nono{ }

Hostile(z)

{x/West, y/M1, z/Nono}

Chapter 9 37
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Artificial Intelligence / 3. Backward Chaining

Backward Chaining / Example

Backward chaining example

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

 y/M1{ } { }{ }{ }

{ } z/Nono{ }

{x/West, y/M1, z/Nono}

Chapter 9 38
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Artificial Intelligence / 3. Backward Chaining

Logic Programming: Prolog

Prolog: logical programming language (PROgrammation en
LOGique; Alain Colmerauer and Philippe Roussel, ca. 1972)

Allows knowlegde bases (= programs) consisting of definite Horn
clauses.

Uses depth-first, left-to-right backward chaining (with several
improvements).

Example:

evil(X) :- king(X), greedy(X).
king(john).
greedy(X).
?- evil(john)
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Artificial Intelligence / 3. Backward Chaining

Negation as Failure

Prolog allows the usage of negated atoms in rule bodies
interpreting them by negation as failure:

good(X) :- not evil(X)

Now the query ?- good(richard) would evaluate to true as
the opposite, evil(richard) cannot be proved.

This is also called closed world assumption:
if a fact is not encoded in the knowledge base
and cannot be inferred,
then it is considered not to be true.

Negation as failure renders Prolog non-monotonic:
if one adds formulas to the knowledge base, inferences may
become untrue.
Example: add evil(richard) to the knowledge base,
now the query ?- good(richard) evaluates to false.

In first order logics we could not derive any conclusions about
good(richard).
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Artificial Intelligence / 3. Backward Chaining

Prolog / Examples

Appending two lists to produce a third:
append(X,Y,Z) encodes that X appended to Y results in Z.

append([], Y, Y).
append([X|L], Y, [X|Z]) :- append(L, Y, Z).

query: append([1,2], [3,4], C) ?
answers: C=[1,2,3,4]

query: append(A, B, [1,2]) ?
answers: A=[] B=[1,2]

A=[1] B=[2]
A=[1,2] B=[]
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Artificial Intelligence / 4. Resolution

FOL Resolvents

Full first-order version:

`1 ∨ · · · ∨ `k, m1 ∨ · · · ∨mn

(`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k ∨m1 ∨ · · · ∨mj−1 ∨mj+1 ∨ · · · ∨mn)θ

where Unify(`i,¬mj) = θ.

For example,

¬Rich(x) ∨ Unhappy(x), Rich(Ken)
Unhappy(Ken)

with `i = ¬Rich(x), mj = Rich(Ken) and θ = {x/Ken}

Apply resolution steps to CNF(KB ∧ ¬query); complete for FOL.
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Artificial Intelligence / 4. Resolution

Conversion to CNF

Everyone who loves all animals is loved by
someone:∀x[∀yAnimal(y) =⇒ Loves(x, y)] =⇒ [∃yLoves(y, x)]

1. Eliminate biconditionals and implications

∀x[¬∀y¬Animal(y) ∨ Loves(x, y)] ∨ [∃yLoves(y, x)]

2. Move ¬ inwards: ¬∀x, p ≡ ∃x¬p, ¬∃x, p ≡ ∀x¬p:
∀x[∃y¬(¬Animal(y) ∨ Loves(x, y))] ∨ [∃yLoves(y, x)]
∀x[∃y¬¬Animal(y) ∧ ¬Loves(x, y)] ∨ [∃yLoves(y, x)]
∀x[∃yAnimal(y) ∧ ¬Loves(x, y)] ∨ [∃yLoves(y, x)]
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Artificial Intelligence / 4. Resolution

Conversion to CNF

3. Standardize variables: each quantifier should use a different
one

∀x[∃yAnimal(y) ∧ ¬Loves(x, y)] ∨ [∃zLoves(z, x)]

4. Skolemize: a more general form of existential instantiation.
Each existential variable is replaced by a Skolem function
of the enclosing universally quantified variables:

∀x[Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x)

5. Drop universal quantifiers:

[Animal(F (x)) ∧ ¬Loves(x, F (x))] ∨ Loves(G(x), x)

6. Distribute ∧ over ∨:

[Animal(F (x))∨Loves(G(x), x)]∧[¬Loves(x, F (x))∨Loves(G(x), x)]
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Artificial Intelligence / 4. Resolution

Resolution / Example
Resolution proof: definite clauses

American(West)

Missile(M1)

Missile(M1)

Owns(Nono,M1)

Enemy(Nono,America) Enemy(Nono,America)

Criminal(x)Hostile(z)LSells(x,y,z)LWeapon(y)LAmerican(x)L > > > >

Weapon(x)Missile(x)L >

Sells(West,x,Nono)Missile(x)L Owns(Nono,x)L> >

Hostile(x)Enemy(x,America)L >

Sells(West,y,z)LWeapon(y)LAmerican(West)L > > Hostile(z)L>

Sells(West,y,z)LWeapon(y)L > Hostile(z)L>

Sells(West,y,z)L> Hostile(z)L>L Missile(y)

Hostile(z)L>L Sells(West,M1,z)

> > L Hostile(Nono)L Owns(Nono,M1)L Missile(M1)

> L Hostile(Nono)L Owns(Nono,M1)

L Hostile(Nono)

Criminal(West)L

Chapter 9 46
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