
Tomáš Horváth

BUSINESS ANALYTICS

Lecture 3

Data Pre-processing

Information Systems and Machine Learning Lab

University of Hildesheim

Germany

Overview

The aim of this lecture is to describe some data pre-processing
approaches.

• What to have in mind when checking the quality of data

• Value editing
• aggregation, missing value completion, noise handling,

normalization, discretization, value transformations, . . .

• Feature selection

• Sampling

• Dimensionality reduction

Tomáš Horváth ISMLL, University of Hildesheim, Germany 1/48

Data quality factors

The quality of data is influenced by

• Noise
• sometimes can be ignored, depending on the context

• Outliers
• since these are legitimate data objects (a kind of anomalies in data),

can sometimes be of interests

• Missing values

• Inconsistent values

• Redundant data

• Application related issues
• timeliness, relevance, . . .

• Knowledge about data

Tomáš Horváth ISMLL, University of Hildesheim, Germany 2/48

Missing values

• Ignoring the tuple
• When does it works fine and when doesn’t?

• Fill the values manually
• When would You use this method?

• Replace missing values by a constant, e.g. “unknown”, −∞
• What is the drawback here?

• Fill by a computed value
• Use the attribute mean
• Use the attribute mean of objects belonging to the same class
• Use the most probably value for an attribute derived by some

learning algorithm from other attributes

Note, that a missing value is not necessary an error in data (e.g. one
has no driver licence number to fill in a questionnaire).

Tomáš Horváth ISMLL, University of Hildesheim, Germany 3/48

Noisy data

• Binning
• Distribute sorted values to equal-width or equal-frequency bins and

smooth individual values in each bin by a mean, median or the
boundaries of the given bin.

• Regression1

• Fit the data to a function using an other attribute and smooth the
values by the values of the fitted function.

• Clustering2

• Organize similar objects (values) to groups and use a representative
value of each cluster for smoothing.

• Concept hierarchies
• Smooth the data values by a more general value from the concept

hierarchy, if known (e.g. map price to ranges)

Some smoothing methods can also be used for data reduction.
1
A machine learning technique used to fit the data to a (most often linear) function.

2
Will be discussed in the following lecture.

Tomáš Horváth ISMLL, University of Hildesheim, Germany 4/48

Binarization

• Uniquely assign1 each of the m values to an integer in [0,m− 1]
and convert it to a binary number

• Use one binary attribute for each categorical value

Categorical value Integer value x1 x2 x3 x1 x2 x3 x4 x5

awful 0 0 0 0 1 0 0 0 0

poor 1 0 0 1 0 1 0 0 0

ok 2 0 1 0 0 0 1 0 0

good 3 0 1 1 0 0 0 1 0

great 4 1 0 0 0 0 0 0 1

1
In case of ordinal values the order must be kept.

Tomáš Horváth ISMLL, University of Hildesheim, Germany 5/48

Discretization

Transformation of a continuous attribute to categorical attribute with
two steps:

• deciding the number of categories

• determining how to map the values to categories

Visual

• Sometimes, visually inspecting the data can be an effective
approach, at least to decide on the number of categories.

Unsupervised

• class information is not used
• equal width, equal frequency
• k-means

Supervised

• with the use of class information

Tomáš Horváth ISMLL, University of Hildesheim, Germany 6/48

Unsupervised discretization

Tomáš Horváth ISMLL, University of Hildesheim, Germany 7/48

Unsupervised discretization: the 3-4-5 rule (1)

Used to segment data into relatively uniform natural intervals using
the most significant digit.

• If an interval covers 3, 6, 7 or 9 distinct values at the most
significant digit, partition the range into 3 equal-sized intervals.

• If an interval covers 2, 4 or 8 distinct values at the most significant
digit, partition the range into 4 equal-sized intervals.

• If an interval covers 1, 5 or 10 distinct values at the most
significant digit, partition the range into 5 equal-sized intervals.

Tomáš Horváth ISMLL, University of Hildesheim, Germany 8/48

Unsupervised discretization: the 3-4-5 rule (2)

Tomáš Horváth ISMLL, University of Hildesheim, Germany 9/48

Unsupervised discretization using concept hierarchies

If the knowledge about the hierarchies of concepts in data is present,
we can discretize the values at lower levels to values at highest levels

• e.g. street – city – state – country

Tomáš Horváth ISMLL, University of Hildesheim, Germany 10/48

Entropy-based supervised discretization (1)

Let’s have k different class labels, ni values in the i-th interval, nij
values of class j in the i-th interval and m the number of intervals.

• The entropy1 of the i-th interval is defined as

ei =

k∑
j=1

nij
ni
log2

nij
ni

• The total entropy is

e =

m∑
i=1

ni
n
ei

The basic idea is to split initial values to m intervals such that the
total entropy is minimal.

• How to choose m?
1
measure of “purity”.

Tomáš Horváth ISMLL, University of Hildesheim, Germany 11/48

Entropy-based supervised discretization (2)

A simple iterative approach to find splitting points

1 j = 0, X 0 = X , S = ∅
2 lj = min{x|x ∈ X j}, rj = max{x|x ∈ X j}
3 find X1 = 〈lj , s〉, X2 = (s, rj〉 such that |X1|

n eX1 + |X2|
n eX2 is

minimal, where eX1 , eX2 are the entropies for X1, X2.

4 j = j + 1, S = S
⋃
{s}

5 if eX1 > eX2 then X j = X1 else X j = X2

6 if stopping criteria not fulfilled then goto the step 2.

7 return S

Tomáš Horváth ISMLL, University of Hildesheim, Germany 12/48

Value transformation

Sometimes, transformed values are more convenient as the original
ones, e.g.

• if only the magnitudes of values are important, then we can take
the absolute value

• if the values are the numbers of data bytes in a session ranging
from 1 to billion, it is more convenient to use a log10
transformation.

• transform the data to have a normal distribution

Popular transformation functions are |x|, xk, logx, ex,
√
x, 1x , . . .

The transformation change the nature of data!

• using 1
x to {1, 2, 3} results in a changed ordering {1, 12 ,

1
3}

Tomáš Horváth ISMLL, University of Hildesheim, Germany 13/48

Normalization

• Normalization by decimal scaling

x′ =
x

10j
, such that max{|v′|} < 1

• Min-max normalization

x′ =
x−minX

maxX −minX

• z-score (zero-mean) normalization

x′ =
x− x
σx

• where x, σx are the mean and standard deviation of the values
• the median or the absolute standard deviation can be also used

Tomáš Horváth ISMLL, University of Hildesheim, Germany 14/48

Feature subset selection

The aim is to get rid of redundant and irrelevant features.

• ideal approach is to try all possible features as input to the data
mining algorithm used
• intractable in most of the cases

• alternative strategies
• Embedded approaches

• feature selection is a part of the data mining algorithm which
decides by itself on which attribute to use (e.g. decision trees)

• Filter approaches

• features are selected before running the data mining algorithm by
an approach independent of the data mining task (e.g. select
attributes with low pairwise correlations)

• Wrapper approaches
• use the data mining algorithm as a black box to find the best subset

of attributes without enumerating all possible subsets

Tomáš Horváth ISMLL, University of Hildesheim, Germany 15/48

Feature subset selection: An architecture

Encompassing filter and wrapper methods in one architecture

• they differ only in the way in which they evaluate a subset of
features

Tomáš Horváth ISMLL, University of Hildesheim, Germany 16/48

Sampling

The goal is to find a sample of the dataset having approximately the
same properties as the original dataset.

• A good sampling scheme guaranties a high probability of getting a
representative sample.
• This involves choosing the approppriate sample size as well as the

sampling technique.

Simple random sampling

• an equal probability of selecting any particular object
• without replacement
• with replacement

Stratified sampling

• accomodating different frequencies for items
• draw equal number of objects from each group
• drawn objects from groups proportional to the sizes of groups

Tomáš Horváth ISMLL, University of Hildesheim, Germany 17/48

Sampling: Sample size vs. the loss

Tomáš Horváth ISMLL, University of Hildesheim, Germany 18/48

Sampling: Determining the sample size

Tomáš Horváth ISMLL, University of Hildesheim, Germany 19/48

Progressive Sampling

What is the size of the smallest sufficient training set?

• nmin is hard to determine from theory, however an empirical
approximation n̂min is possible.

1

1
Image source: F. Provost, D. Jensen, T. Oates: Efficient Progressive Sampling, KDD-99, San Diego

CA USA, ACM 1999.

Tomáš Horváth ISMLL, University of Hildesheim, Germany 20/48

PS: Algorithm

• Compute schedule S = {n0, n1, . . . , nk} of sample sizes

• n← n0

• M ← model induced from n instances

• while not converged
• recompute S if necessary
• n← next element of S larger than n
• M ← model induced from n instances

• end while

• return M

Tomáš Horváth ISMLL, University of Hildesheim, Germany 21/48

PS: Schedules

Basic schedules

• All instances: SN = {N}
• Omniscient oracle: SO = {nmin}

Static sampling

• computes n̂min according to a subsample’s statistical similarity to
the entire sample: SS = {n̂min}

Arithmetic sampling

• SA = {n0, n0 + nδ, n0 + 2 · nδ, . . . , n0 + k · nδ}
• more accurate models than SS since nmin depends on the

relationship between data and the specific learning algorithm

Geometric sampling

• SG = {n0, a · n0, a2 · n0, . . . , ak · n0}
• robust schedule

Tomáš Horváth ISMLL, University of Hildesheim, Germany 22/48

PS: Efficiency

Consider

• an induction algorithm with a polynomial complexity O(nc)

• nb as the first schedule point prior to the point of the convergence

The condition under which the computational cost of progressive
sampling is equal to the cost of using all instances is

N c = nc0 + nc1 + nc2 + · · ·+ ncb

Tomáš Horváth ISMLL, University of Hildesheim, Germany 23/48

PS: Asymptotic optimality (1)

How do simple schedules compare to SO = {nmin}?

Theorem: For induction algorithms with polynomial time complexity
Θ(f(n)), no better than O(n), if confergence also can be detected in
O(f(n)), then geometric progressive sampling is asymptotically optimal
among progressive sampling methods in terms of run time.

Proof: Given nmin the size of the smallest sufficient training set, the
run-time complexity of SO is Θ(f(nmin)).
Geometric progressive sampling runs the induction algorithm on
subsets of sizes ai · n0 for i = 0, 1, . . . , b, before the convergence is
detected.

Tomáš Horváth ISMLL, University of Hildesheim, Germany 24/48

PS: Asymptotic optimality (2)

Assuming that the convergence is well detected, we have

ab−1 · n0 < nmin ≤ ab · n0 < a · nmin

which means that

ai · n0 <
ai

ab−1
· nmin

for i = 0, 1, . . . , b. Since O(f(·)) is at best linear, the run time of SG is

O
(
f(

b∑
i=0

ai

ab−1
· nmin)

)
= O

(
f(a · nmin · (1 +

1

a
+

1

a2
+ · · ·+ 1

ab︸ ︷︷ ︸
;const, since a>1

)
)

Therefore the run time of SG is asymptotically no worse than the run
time of SO. �

Tomáš Horváth ISMLL, University of Hildesheim, Germany 25/48

PS: Expectation-based optimality (1)

How can optimal schedules be constructed given expectations between
the two extremes SO and SN?

• probability Φ(n) that convergence requires more than n instances
• Φ(n) = (N − n)/N – if no prior information are available

The expected cost of convergence by S = {n0 = 0, n1, . . . , nk} is

CS =

k∑
i=1

Φ(ni−1)f(ni)

Example: 10 instances, uniform prior, f(n) = n2

S1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} CS1 = 121

S2 = {10} CS2 = 100

S3 = {2, 6, 10} CS3 = 72.8

CS3 = Φ(0)f(2) + Φ(2)f(6) + Φ(6)f(10) = 1 · 4 + 8
1036 + 4

10100 = 72.8

Tomáš Horváth ISMLL, University of Hildesheim, Germany 26/48

PS: Expectation-based optimality (2)

For each value of n, a model can either be built or not

• We have 2N possible schedules! How to find an optimal one?

Optimal schedules are composed of optimal sub-schedules.

• use of dynamic programming
• m[i, j] is the cost of minimum expected cost-schedule of all samples

in the size range [i, j]
• m[0, N] is the cost of the optimal schedule given a dataset

containing N instances computed by the following recurrence

m[i, j] = min

{
Φ(i)f(j)
mini<k<j m[i, k] +m[k, j]

• O(N3) time-complexity, which is still high
• we can use some heuristics, e.g. looking only at multiplies of 100 or

1000 instances, however, we sacrifice the precision

Tomáš Horváth ISMLL, University of Hildesheim, Germany 27/48

PS: Example of schedule computation (1)

Let’s have: N = 5, Φ(i) = N−i
N , f(n) = n2

Two tables M = m[i, j] and S = s[i, j], for saving

• the computed minimal costs m[i, j] for the different i < j

• the schedules corresponding to minimal costs, i.e. the way the
given costs m[i, j] we’ve computed
• if Φ(i)f(j) ≤ mini<k<j m[i, k] +m[k, j], then s[i, j] = {i, j}1
• if Φ(i)f(j) > mini<k<j m[i, k] +m[k, j], then s[i, j] = s[i, k]

⋃
s[k, j]

First, we fill out the cells m[i.j], for which “recursion” is not needed,
i.e. there is no k between i and j
Then, in each iteration (until we don’t reach the right-upper corners of
the tables) we use the already computed costs and schedules. Finally,

the schedule s[0, 5] = s[0, 3]
⋃
s[3, 5] = a[0, 1]

⋃
s[1, 3]

⋃
s[3, 5] =

{1}
⋃
{1, 3}

⋃
{3, 5} = {1, 3, 5} is optimal with C{1,3,5} = 18.2.

1
If i = 0 then s[i, j] = {j}, since having 0 in a schedule makes no sense.

Tomáš Horváth ISMLL, University of Hildesheim, Germany 28/48

PS: Example of schedule computation (2)

i� j 1 2 3 4 5

0 1

1 – 3.2

2 – – 5.4

3 – – – 6.4

4 – – – – 5

5 – – – – –

i� j 1 2 3 4 5

0 {1}
1 – {1,2}
2 – – {2,3}
3 – – – {3,4}
4 – – – – {4,5}
5 – – – – –

Tomáš Horváth ISMLL, University of Hildesheim, Germany 29/48

PS: Example of schedule computation (3)

i� j 1 2 3 4 5

0 1 4

1 – 3.2 7.2

2 – – 5.4 9.6

3 – – – 6.4 10

4 – – – – 5

5 – – – – –

i� j 1 2 3 4 5

0 {1} {2}
1 – {1,2} {1,3}
2 – – {2,3} {2,4}
3 – – – {3,4} {3,5}
4 – – – – {4,5}
5 – – – – –

Tomáš Horváth ISMLL, University of Hildesheim, Germany 30/48

PS: Example of schedule computation (4)

i� j 1 2 3 4 5

0 1 4 8.2

1 – 3.2 7.2 12.8

2 – – 5.4 9.6 14.6

3 – – – 6.4 10

4 – – – – 5

5 – – – – –

i� j 1 2 3 4 5

0 {1} {2} s[0, 1]
⋃
s[1, 3]

1 – {1,2} {1,3} {1,4}
2 – – {2,3} {2,4} s[2, 4]

⋃
s[4, 5]

3 – – – {3,4} {3,5}
4 – – – – {4,5}
5 – – – – –

Tomáš Horváth ISMLL, University of Hildesheim, Germany 31/48

PS: Example of schedule computation (5)

i� j 1 2 3 4 5

0 1 4 8.2 13.6

1 – 3.2 7.2 12.8 17.2

2 – – 5.4 9.6 14.6

3 – – – 6.4 10

4 – – – – 5

5 – – – – –

i� j 1 2 3 4 5

0 {1} {2} s[0, 1]
⋃
s[1, 3] s[0, 2]

⋃
s[2, 4]

1 – {1,2} {1,3} {1,4} s[1, 3]
⋃
s[3, 5]

2 – – {2,3} {2,4} s[2, 4]
⋃
s[4, 5]

3 – – – {3,4} {3,5}
4 – – – – {4,5}
5 – – – – –

Tomáš Horváth ISMLL, University of Hildesheim, Germany 32/48

PS: Example of schedule computation (6)

i� j 1 2 3 4 5

0 1 4 8.2 13.6 18.2

1 – 3.2 7.2 12.8 17.2

2 – – 5.4 9.6 14.6

3 – – – 6.4 10

4 – – – – 5

5 – – – – –

i� j 1 2 3 4 5

0 {1} {2} s[0, 1]
⋃
s[1, 3] s[0, 2]

⋃
s[2, 4] s[0, 3]

⋃
s[3, 5]

1 – {1,2} {1,3} {1,4} s[1, 3]
⋃
s[3, 5]

2 – – {2,3} {2,4} s[2, 4]
⋃
s[4, 5]

3 – – – {3,4} {3,5}
4 – – – – {4,5}
5 – – – – –

Tomáš Horváth ISMLL, University of Hildesheim, Germany 33/48

PS: Convergence & Actual run-time complexity

Efficient and accurate convergence detection plays a key role
• model the learning curve as sampling progresses

• three regions: the primary and the secondary rise, and the plateau
• simple functional form usually cannot capture all three regions
• adding more points to the schedule would be beneficial for more

precise modeling but it impairs efficiency

• linear regression with local sampling
• sample l additional points in the local neighborhood of the latest

scheduled sample size ni
• estimate a linear regression line and compare its slope to zero

• if the slope is “close” to zero, convergence is detected

An actual run-time complexity of the underlying induction
algorithm is more required as the worst-case complexity

• assuming that f(n) = const · nc, we have
log f(n) = log const+ c · log n

• sample f(n) for som n, take their logarithm and use linear
regression to estimate c

Tomáš Horváth ISMLL, University of Hildesheim, Germany 34/48

Dimensionality Reduction

The goal is to obtain a reduced (compressed) representation of the
data.

• different from feature subset selection where a subset of “suitable”
attributes were only retained in the initial data

• leads to loss of information

Principal Component Analysis is one of the most popular methods

• describe a dataset of d variables by new, k variables which are
linear combinations of the original variables
• search for k d-dimensional, pairwise orthogonal and uncorrelated

vectors (k < d) which represent the data in a best way

• i.e. find “directions” with the largest variance in the data, which
are the most important – in other words, most principal

• minimizes the loss of information

Tomáš Horváth ISMLL, University of Hildesheim, Germany 35/48

PCA & Multivariate Normal Distribution

2

2
Figure from http://en.wikipedia.org/wiki/Multivariate normal distribution

Tomáš Horváth ISMLL, University of Hildesheim, Germany 36/48

Multivariate Normal Distribution (1)

notation: x = [x1, . . . , xd]
T ∼ Nd(µ,Σ)

mean

• E{x} = µ = [µ1, . . . , µd]
T

covariance

• σij = Cov(Xi, Xj) = E{(Xi − µi)(Xj − µj)} = E{XiXj} − µiµj
• σ2i (σii) – variance of xi

covariance matrix

• Σ ≡ Cov(X) = E{(X − µ)(X − µ)T } = E{XXT } − µµT

Σ =


σ21 σ12 . . . σ1d
σ21 σ22 . . . σ2d

...
. . .

...
σd1 σd2 . . . σ2d


Tomáš Horváth ISMLL, University of Hildesheim, Germany 37/48

Multivariate Normal Distribution (2)

The projection of a d-dimensional normal distribution to a vector
w ∈ Rd results in a univariate normal distribution.

• E{wTx} = wTE{x} = wTµ

• V ar(wTx) = E{(wTx−wTµ)2} =
E{(wTx−wTµ)(wTx−wTµ)} = E{wT (x− µ)(x− µ)Tw} =
wTE{(x− µ)(x− µ)T }w = wTΣw

• wTx = w1x1 + · · ·+ wdxd ∼ N (wTµ,wTΣw)

The projection of a d-dimensional normal distribution to a
k-dimensional space results in a k-dimensional normal distribution.

• WTx ∼ N (WTµ,WTΣW), where W is a d× k matrix with
rank1 k < d.

1
The number of linearly independent rows or colunms.

Tomáš Horváth ISMLL, University of Hildesheim, Germany 38/48

PCA: The first principal component

The principal component of the data is w1, i.e. the data, after
projection to w1 are spreaded out the most.

• to make the direction important, ‖w1‖ = 1

• let z1 = wT
1 x be the projection of x to w1

V ar(z1) = wT
1 Σw1

• find w1 which maximizes V ar(z1), subject to wT
1 w1 = 1

• converting this problem to a Lagrange1 problem we get

max
w1

wT
1 Σw1 − α1(w

T
1 w1 − 1)

• from 2Σw1 − 2α1w1 = 0 we get Σw1 = α1w1

• holds if w1 is an eigenvector2 of Σ with the eigenvalue α1

• Since wT
1 Σw1 = α1w

T
1 w1 = α1, the principal component will be the

eigenvector w1 with the largest eigenvalue α1.

1
Shortly, to find an extreme of a function f(x) subject to a constraint g(x), one should define and

extremise a new, Lagrangian function F (x, α) = f(x)− αg(x) to get the solution.
2
There can be more eigenvectors (and corresponding eigenvalues) for a square matrix.

Tomáš Horváth ISMLL, University of Hildesheim, Germany 39/48

PCA: The second principal component

The second principal component w2 should be of unit length, maximize
the variance V ar(z2) = wT

2 Σw2 and be orthogonal1 to w1.

max
w2

wT
2 Σw2 − α2(w

T
2 w2 − 1)− β(wT

2 w1 − 0)

• derivate with respect to w2 and setting it equal to 0 we get
2Σw2 − 2α2w2 − βw1 = 0
• 2wT

1 Σw2 − 2α2w
T
1 w2 − βwT

1 w1 = 0

• (1) wT
1 w2 = 0 =⇒ 2α2w

T
1 w2 = 0

• (2) Σw1 = α1w1 =⇒ wT
1 Σw2 = wT

2 Σw1 = α1w
T
2 w1 = 0

• (1) ∧ (2) =⇒ β = 0

• from β = 0 we get Σw2 = α2w2

• Since wT
2 Σw2 = α2w

T
2 w2 = α2, the second principal component

will be the eigenvector w2 with the second largest eigenvalue α2.

Similarly, the other principal components can be found.

1
Because z2 = wT

2 x should be uncorrelated with z1.

Tomáš Horváth ISMLL, University of Hildesheim, Germany 40/48

PCA howto: 1. Getting the data

n x1 x2
1 3.160724 2.214081
2 4.974025 3.844295
3 5.342253 3.437068
4 5.761281 3.664205
5 4.373575 3.173270
6 2.056070 1.767576
7 3.005617 1.523987
8 2.487312 1.500183
9 4.497077 2.343299
10 4.416509 3.504797

x 4.007444 2.697276

Tomáš Horváth ISMLL, University of Hildesheim, Germany 41/48

PCA howto: 2. Subtract the mean

n x1 x2
1 -0.8467200 -0.4831947
2 0.9665806 1.1470194
3 1.3348088 0.7397920
4 1.7538371 0.9669287
5 0.366130 0.4759943
6 -1.9513746 -0.9297005
7 -1.0018272 -1.1732889
8 -1.5201328 -1.1970934
9 0.4896325 -0.3539773
10 0.4090651 0.8075204

Tomáš Horváth ISMLL, University of Hildesheim, Germany 42/48

PCA howto: 3. Compute Σ, W and α

Covariance matrix

Σ =

[
σ21 σ12
σ21 σ22

]
=

[
1.574702 1.0379763
1.0379763 0.8565907

]
Eigenvalues

α = [2.3139707, 0.1173224]

• α1 = 2.3139707

• α2 = 0.1173224

Eigenvectors

W =

[
−0.8145282 0.5801239
−0.5801239 −0.8145282

]
• w1 = [−0.8145282,−0.5801239]

• w2 = [0.5801239,−0.8145282]

Tomáš Horváth ISMLL, University of Hildesheim, Germany 43/48

PCA: Result

Tomáš Horváth ISMLL, University of Hildesheim, Germany 44/48

PCA: Data transformation (1)

z = WTx

n x1 x2
1 0.9699901 -0.09762680
2 -1.4527205 -0.37354311
3 -1.5164105 0.17177305
4 -1.9894882 0.22985217
5 -0.5743592 -0.17530976
6 2.1287911 -0.37477183
7 1.4966695 0.37449302
8 -1.9326535 0.09320095
9 -0.1934688 0.57237203
10 -0.8016570 -0.42043972

Tomáš Horváth ISMLL, University of Hildesheim, Germany 45/48

PCA: Data transformation (2)

z1 = wT
1 x z2 = wT

2 x

Tomáš Horváth ISMLL, University of Hildesheim, Germany 46/48

Summary

Value editing

• aggregation, missing value completion, noise handling,
normalization, discretization, value transformations, . . .

• A good backround/domain knowledge can be useful!

Feature Selection and Dimensionality reduction

• While some attributes are entirely removed in feature selection,
dimensionality reduction aims at compressing the data with the
lowest loss

Sampling

• Important factors are the sampling technique used and the sample
size.

Lot of other techniques can be found in the literature.

Tomáš Horváth ISMLL, University of Hildesheim, Germany 47/48

Recommended Reading

The slides were created based on the following literature:

• Pang-Ning Tan, Michael Steinbach and Vipin Kumar:
Introduction to Data Mining. Addison-Wesley, 2006, ISBN-13:
978-0-321-32136-7, 769pp.

• Jiawei Han and Micheline Kamber: Data Mining: Concepts and
Techniques (2nd edition). Morgan Kaufmann Publishers, Elsevier
Inc., 2006, ISBN 13: 978-1-55860-901-3, 743pp.

• Ethem Alpaydin: Introduction to Machine Learning. The MIT
Press, 2004, ISBN: 0-262-01211-1, 415pp.

• F. Provost, D. Jensen, T. Oates: Efficient Progressive Sampling,
KDD-99, San Diego CA USA, ACM 1999.

• Lindsay I Smith: A tutorial on principal components analysis,
2002.

Tomáš Horváth ISMLL, University of Hildesheim, Germany 48/48

Thanks for Your attention!

Questions?

horvath@ismll.de

