
Tomáš Horváth
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Overview

The aim of this lecture is to get insight to time series mining

• Representation of time series

• Distance measures

• Time series Classification

• Forecasting
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Univariate time series

A univariate time series x of length l is a sequence
x = (x0, x1, . . . , xl−1), where xj ∈ R for each 0 ≤ j < l.

D = {(xi, c(xi))}ni=1 is a labeled time series dataset, where c : T → C is
a mapping from the set T of time series to a set C of classes.
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Raw Representation

Listing all the values is not necessary the most approppriate way,
especially, when the aim is to classify time series.
• classification algorithms deal with the features of instances

• approximate/condensed representations of time series are desirable
• the patterns are usually most interesting than individual points
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Different types of representation

Discrete Fourier1 Transform (DFT)

Haar Wavelet1 transformation (DHWT)

Piecewise Linear Approximation (PLA)

• interpolation

• regression

Piecewise Constant Approximation (PCA)

• Piecewise Aggregate Approximation (PAA)

• Adaptive Piecewise Constant Approximation (APCA)

Symbolic Aggregate Approximation (SAX)

1
Just the basic definitions will be discussed here, since more detailed descriptions are out of the scope

of the lecture. See the references at the end of this presentation for more details.
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Fourier Series

We can write a Fourier series of any continuous, differentiable and
T-periodic1 function f : R→ C as

f(x) =
a0
2

+

∞∑
k=1

ak cos(kωx) + bk sin(kωx), ω =
2π

T

with coefficients ak, bk ∈ C, such that

ak =
1
π
ω

+ π
ω∫

− π
ω

f(x) cos(kωx) dx

bk =
1
π
ω

+ π
ω∫

− π
ω

f(x) sin(kωx) dx

1
A function f : R→ C is T-periodic if f(x + T ) = f(x) for each x ∈ R.
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Fourier Series: Example
f(x) = −sin(x) + cos(x) + 8 sin(2x)− cos(2x) + 11 cos(3x)− 5 sin(5x) + 7 cos(5x)

f(x) = −sin(x) + cos(x)
f(x) = −sin(x) + cos(x) + 8 sin(2x)− cos(2x)
f(x) = −sin(x) + cos(x) + 8 sin(2x)− cos(2x) + 11 cos(3x)
f(x) = −sin(x) + cos(x) + 8 sin(2x)− cos(2x) + 11 cos(3x)− 5 sin(5x) + 7 cos(5x)
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Complex Fourier Series

Euler formula
eix = cos(x) + i · sin(x)

We can write a complex Fourier series of any continuous,
differentiable and T-periodic function f : R→ C as

f(x) =
∑
k∈Z

cke
ikωx, ω =

2π

T

with complex coefficients ck ∈ C, such that

ck =
1
2π
ω

+ π
ω∫

− π
ω

f(x) e−ikωx dx
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Fourier transform

A Fourier transform1 of a continuous, differentiable and T-periodic
function f : R→ C is a mapping F : R→ C defined as

F (ω) =
1√
2π

+∞∫
−∞

f(x) e−iωx dx

If F also satisfies some regularity conditions than we can define the
inverze Fourier transform as

f(x) =
1√
2π

+∞∫
−∞

F (ω) eiωx dω

1
Called also as a Fourier spectrum of f
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Discrete Fourier transform (DFT)

A Discrete Fourier transform Fd(f) of a finite, discrete function
f : {0, 1, . . . , n− 1} → C is a mapping Fd : {0, 1, . . . , n− 1} → C
defined as

Fd(ω) =
1√
n

n−1∑
x=0

f(x)
(
cos(2π

ωx

n
)−i·sin(2π

ωx

n
)
)

=
1√
n

n−1∑
x=0

f(x)e−i2π
ωx
n

An inverze discrete Fourier transform is defined as

f(x) =
1√
n

n−1∑
ω=0

Fd(ω)
(
cos(2π

ωx

n
)+i·sin(2π

ωx

n
)
)

=
1√
n

n−1∑
ω=0

Fd(ω)ei2π
ωx
n
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Computation of DFT

f(x) consists of real and imaginary parts

• f(x) = f(x)re + i · f(x)im ∈ C

Thus, we compute1 Fd(ω) for each ω ∈ {0, 1, . . . , n− 1} as

Fd(ω) = 1√
n

n−1∑
x=0

f(x)
(
cos(2π ωxn )− i · sin(2π ωxn )

)
= 1√

n

n−1∑
x=0

f(x)re cos(2π
ωx
n ) + f(x)imsin(2π ωxn )

+ i · 1√
n

n−1∑
x=0
−f(x)re sin(2π ωxn ) + f(x)imcos(2π

ωx
n )

1
An efficient way of computation called fast Fourier transform (FFT) can be found in the literature.

FFT works well for the sequences of even length, best for lengths of 2k, where k ∈ N.
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DFT: Example (1)

Sample 16 points from the example before
• f ′(x′) = −sin(x′) + cos(x′) + 8 sin(2x′)− cos(2x′) + 11 cos(3x′)− 5 sin(5x′) + 7 cos(5x′) for

x′ ∈ {−8, . . . ,−1, 1, . . . , 8}
• f ′(−8) = 7.828, f ′(−1) = −19.175, . . . , f ′(1) = 3.280, . . . , f ′(8) = −6.209

x f(x)re f(x)im
0 7.828 +0.000i
1 -21.142 +0.000i
2 7.533 +0.000i
3 2.436 +0.000i
4 7.524 +0.000i
5 -11.663 +0.000i
6 9.169 +0.000i
7 -19.175 +0.000i
8 3.280 +0.000i
9 0.682 +0.000i

10 -22.918 +0.000i
11 15.738 +0.000i
12 -3.027 +0.000i
13 9.387 +0.000i
14 -2.325 +0.000i
15 -6.209 +0.000i

DFT
=⇒

ω Fd(ω)re Fd(ω)im
0 -22.883 +0.000i
1 12.733 +4.840i
2 -37.048 +4.288i
3 -19.404 -0.111i
4 24.146 +15.526i
5 1.691 +38.107i
6 50.269 -40.172i
7 23.171 +85.261i
8 37.010 +0.000i
9 23.171 -85.261i

10 50.269 +40.172i
11 1.691 -38.107i
12 24.146 -15.526
13 -19.404 +0.111i
14 -37.048 -4.288i
15 12.733 -4.840i
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DFT: Example (2)

Real and Imaginary parts of DFT on Australian Beer Production data
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Haar wavelet and basis functions

The Haar wavelet ψ : R→ R is
defined as

ψ(x) =


+1, x ∈ 〈0, 12)
−1, x ∈ 〈12 , 1)

0, else

Haar basis functions ψs,t : R→ R, s, t ∈ Z are defined as

ψs,t =
√

2s · ψ(2sx− t) =
√

2s ·


+1, x ∈ 〈2−st, 2−s(t+ 1

2))
−1, x ∈ 〈2−s(t+ 1

2), 2−s(t+ 1))
0, else
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Haar basis functions: Example
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Haar Wavelet representation

Every function f : R→ R satisfying some regularity conditions can be
written as

f(x) =
∑
s∈Z

∑
t∈Z

cs,t ψs,t(x)

with cs,t ∈ R, such that

cs,t =
√

2s
( 2−s(t+ 1

2
)∫

2−st

f(x)dx−
2−s(t+1)∫

2−s(t+ 1
2
)

f(x)dx
)

=
1√
2

(as+1,2t−as+1,2t+1)

where as,t can be computed recursively as

as,t =
√

2s

2−s(t+1)∫
2−st

f(x) dx =
1√
2

(as+1,2t + as+1,2t+1)
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Discrete Haar Wavelet Transform (DHWT)

A finite, discrete function f : {0, 1, . . . , n− 1} → R, with length
n = 2k, k ∈ N can be represented as

f(x) = a−n,0 +

−1∑
s=−n

2n+s−1∑
t=0

cs,t ·
√

2s · ψs,t(x)

where the initial values a0,t are the original values of f , i.e. a0,t = f(t).

DHWT allows time series to be viewed in multiple resolutions
corresponding to frequencies or spectrums1

• coefficients as,t are the smoothed values of f in the corresponding
spectrum s

• coefficients cs,t represent the differences in values of f in the
corresponding spectrum s

1
Averages and differences are computed across a window of values.
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DHWT: Example

t 0 1 2 3 4 5 6 7
f(t) 1 3 5 4 8 2 -1 7

a−1,t
4√
2

9√
2

10√
2

6√
2

– – – –

c−1,t
−2√

2
1√
2

6√
2

−8√
2

– – – –

a−2,t
13
2

16
2

– – – – – –

c−2,t
−5
2

4
2

– – – – – –

a−3,t
29

2
√

2
– – – – – – –

c−3,t
−3

2
√

2
– – – – – – –

(1, 3, 5, 4, 8, 2,−1, 7)  ( 29
2
√

2
, −3

2
√

2
, −5

2
, 4
2
, −2√

2
, 1√

2
, 6√

2
, −8√

2
)
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Piecewise Linear Approximation

Regression

Interpolation
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PLA: Sliding Windows

Anchor a left point and approximate data to the right with increasing
size of a window while the error is under a given treshold
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PLA: Top-down approach

Taking into account every possible partition split at the best location
recursively while the error is above a given threshold
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PLA: Bottom-up approach

Starting from the finest possible approximation merge segments while
the error is above the given threshold
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Piecewise Aggregate Approximation

Replace x = (x1, . . . , xn) with a vector x = (x1, . . . , xN ), where N is a
factor1 of n and the elements of x are computed as

xi =
N

n

n
N
i∑

j= n
N
(i−1)+1

xj

1
We assume this just for the convenience, for other N it would work, too.
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Symbolic Aggregate Approximation

Approach

1 normalize time series x to N (0, 1)

2 provide PAA on the normalized x

3 discretize resulting averages of PAA into discrete symbols
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SAX: Breakpoints

An important thing is to discretize1 in a way that symbols of the
alphabet α = {α1, . . . , αk} are produced with equiprobability.

• It was empirically discovered on more than 50 datasets that
normalized subsequences are normally distributed.

Breakpoints are defined as β = {β1, . . . , βk−1}, with βi < βi + 1 for
all i, 1 ≤ i < k − 1, such that2

∀i ∈ {0, . . . , k − 1}
βi+1∫
βi

1√
2π
e−

x2

2 dx =
1

k

where β0 = −∞, βk =∞.

Breakpoints can be found by looking up in a statistical table.
1
For more details about mapping the averages to symbols, please, see the references.

2
The area under the N (1, 0) Gaussian function from βi to βi+1 is equal to 1

k
.
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Breakpoints: Example

k 3 4 5 6 7
β1 -0.43 -0.67 -0.84 -0.97 -1.07
β2 0.43 0 -0.25 -0.43 -0.57
β3 – 0.67 0.25 0 -0.18
β4 – – 0.84 0.43 0.18
β5 – – – 0.97 0.57
β6 – – – – 1.07

SAX
=⇒

(2, 5, 6, 4, 3, 4, 3, 1, 2, 4) (CACDC)

Tomáš Horváth ISMLL, University of Hildesheim, Germany 25/57



Critical points

There are cases, especially in financial time series, when data contain
some critical points.

• difficult to identify them by PAA, and thus SAX, too.
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Extended SAX

For each segment Sk we also store the symbols smin and smax for the
minimal and maximal values of the segment in addition to the symbol
smean representing the mean value of the segment.

< s1, s2, s3 >=



< smax, smean, smin > if pmax < pmean < pmin
< smin, smean, smax > if pmin < pmean < pmax
< smin, smax, smean > if pmin < pmax < pmean
< smax, smin, smean > if pmax < pmin < pmean
< smean, smax, smin > if pmean < pmax < pmin
< smean, smin, smax > if pmean < pmin < pmax

where pmin, pmean and pmax are the positions for the minimal, mean
and maximal values in the segment, respectively.
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Extended SAX: Example

SAX: “BC”
Extended SAX: “CBAECC”
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Static distance measures

For two time series with the same length.

• Euclidean distance

dEU (x1, x2) =

√√√√ l∑
j=1

(x1j − x2j)2

• Euclidean distance on the representations of time series

dREU (x1, x2) =

√√√√ l∑
j=1

(R(x1)j −R(x2)j)2

where R : T → C can be – among other possibilities – defined as

R(x) = DFT (x),
R(x) = DHWT (x) or
R(x) = PAA(x)
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Dynamic distance measures

Static distance measures compare the values at the same positions,
while dynamic distance measures rather compute the so-called “cost
of transformation“ of one time series to another.
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Warping path

We have

• sequences x = (x1, . . . , xn) and y = (y1, . . . , ym)

• local distance measure c defined as c : R× R→ R≥0
• cost matrix C ∈ Rn×m defined by C(i, j) = c(xi, yj)

The goal is to find an alignment between x and y having minimal
overall cost1.

An (n,m)-warping path is a sequence p = (p1, . . . , pL) with
pl = (il, jl) for 1 ≤ il ≤ n, 1 ≤ jl ≤ m and 1 ≤ l ≤ L satisfying the
following conditions:

• Boundary condition: p1 = (1, 1) and pL = (n,m)

• Monotonicity condition: n1 ≤ ... ≤ nL and m1 ≤ ... ≤ mL

• Step size condition: pl+1 − pl ∈ {(1, 0), (0, 1), (1, 1)} for 1 ≤ l < L

1
Running along a ”valley“ of low costs within C.
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The DTW distance

An (n,m)-warping path defines an alignment between the two time
series x and y by assigning the element xil of x to the element yjl of y.

The total cost cp(x, y) of p is defined as

cp(x, y) =

L∑
l=1

c(xil , yjl)

The DTW distance is defined as

DTW (x, y) = min { cp(x, y) | p is an (n,m)-warping path }
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Some properties of DTW

Let x = (1, 2, 3), y = (1, 2, 2, 3) and z = (1, 3, 3) be time series and
c(a, b) = I(a 6= b)

• c is a metric1

DTW does not satisfy triangle inequality

• DTW (x, y) = 0, DTW (x, z) = 1, DTW (z, y) = 2

DTW is generally not unique

• p1 = ( (1, 1), (2, 2), (3, 2), (4, 3) ), cp1(x, y) = 2

• p2 = ( (1, 1), (2, 1), (3, 2), (4, 3) ), cp2(x, y) = 2

• p3 = ( (1, 1), (2, 2), (3, 3), (4, 3) ), cp3(x, y) = 2

1
i.e. satisfies non-negativity (c(a, b) ≥ 0), identity (c(a, b) = 0 iff a = b), symmetry (c(a, b) = c(b, a))

and triangular inequality (c(a, d) ≤ c(a, b) + c(b, d)) conditions
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Accumulated cost matrix

One way to determine DTW (x, y) would be to try all the possible
warping paths between x and y.

• computationally not feasible – exponential complexity

An accumulated cost matrix D ∈ Rn×m is defined as

D(i, j) = DTW (x1:i, y1:j)

where i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and x1:i, y1:j are prefix sequences
(x1, . . . , xi) and (y1, . . . , yj), respectively.

Obviously, the following holds

DTW (x, y) = D(n,m)
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Efficient computation of D (1)

Theorem: D satisfies the following identities:

D(i, 1) =

i∑
k=1

c(xk, y1) for 1 ≤ i ≤ n

D(1, j) =

j∑
k=1

c(x1, yk) for 1 ≤ j ≤ m

and

D(i, j) = min{D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)}+ c(xi, yj)

for 1 < i ≤ n and 1 < j ≤ m.

In particular, DTW (x, y) = D(n, n) can be computed in O(nm).
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Efficient computation of D (2)

Proof: If i ∈ {1, . . . , n} and j = 1 then there is only one possible
warping path between x1:j and y1:1 with a total cost

∑i
k=1 c(xk, y1).

Thus, the formula for D(i, 1) is proved as can be analogously proved
the formula for D(1, j), too.

For i, j > 1 let p = (p1, . . . , pL) be an optimal warping path for x1:i and
y1:j .
From the boundary condition we have pL = (i, j).
From the step size condition we have
(a, b) ∈ {(i− 1, j − 1), (i− 1, j), (i, j − 1)} for (a, b) = pL−1.
Since p is an optimal path for x1:i and y1:j , so is (p1, . . . , pL−1) for x1:a
and y1:b. Because D(i, j) = c(q1,...,qL−1)(x1:a, y1:b) + c(xi, yj), the
formula for D(i, j) holds.
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Efficient computation of D (3)

Initialization

• D(i, 0) =∞ for 1 ≤ i ≤ n
• D(0, j) =∞ for 1 ≤ j ≤ m
• D(0, 0) = 0

The matrix D can be computed in a column-wise or a row-wise
fashion. The computation of the whole matrix is needed for getting an
optimal warping path.
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DTW: Example

Tomáš Horváth ISMLL, University of Hildesheim, Germany 38/57



Avoiding the computation of the entire D

Restricting the size of the warping window to a pre-defined constant θ

• D(i, j) is calculated only for those cells (i, j) for which |i− j| ≤ θ.
• restricting the computation “near” to the main diagonal of D.

• constant window size or Itakura Parallelogram
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Time-Series Classification

Conventional classification techniques can be used depending on the
time-series representation and the distance measure used

• Instance-based
• employing DTW
• empirically showed that using nearest-neighbor classifiers with

DTW distance measure performs very well

• Memory-based techniques
• TS should be represented as vectors of the same length

• PAA, SAX, first k koefficients of DFT, HWT, . . .
• Other features derived from TS, as e.g. average, min, max, motifs,

wildcards, . . . .
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Motifs & Wildcards

Motifs – characteristical, recurrent patterns in time series

Wildcards – constructed from the taxonomy of symbols
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Forecasting: Example

# of new customers of a small company

Year
Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 4 6 9 12 8 14 16 15 14 11 12 10
2 11 13 14 17 19 19 21 20 18 17 15 14

How many customers will join the company in March of the Year 3?
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Seasonality, Trend & Noise in TS

The main components time series usually consist of are

• Noise
• a “random” fluctuation in time series
• we cannot explain, thus, it is hard to predict

• Trend
• the number of new customers are growing from Year to Year
• possible to detect

• Seasonality
• more new customers are joining the company in summer
• possible to detect

In case of no trend and seasonality, a simple smoothing (e.g. averaging)
could be eligible to forecast, while if a trend is present, some regression
techniques could be used.
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Forecasting: A straight approach (1)

Getting the seasonality and the trend

• Compute the Seasonal Indices

1 compute the ratios of the value of each month to the average value
of the corresponding Year1

2 compute the average ratios2 for given months.

# of new customers of a small company

Year
Month

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1 4 6 9 12 8 14 16 15 14 11 12 10
2 11 13 14 17 19 19 21 20 18 17 15 14
SI 0.52 0.67 0.84 1.06 0.94 1.22 1.37 1.29 1.19 1.02 1.00 0.88

• Compute the trend using regression from total Yearly sales

Year (Y) Total sales (T)
1 131
2 198

T = 67 · Y + 64

1
Average values are 10.92 and 16.5 for Years 1 and 2, respectively.

2
The SI for March is (9/10.92 + 14/16.5)/2 = 0.84.

Tomáš Horváth ISMLL, University of Hildesheim, Germany 44/57



Forecasting: A straight approach (2)

Forecasting for March of the Year 3

1 Predict the total number of new customers for the Year 3

T = 67 · 3 + 64 = 265

2 compute average monthly value for the Year 3, i.e. 265/12 = 22.08
3 multiply the average monthly value for the Year 3 with the

seasonal index for March to get the forecast, i.e.
22.08 · 0.84 = 18.55
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Smoothing

In our previous example, we computed the trend and the seasonality,
however, didn’t count with the noise.

• smoothing the time series would be beneficiary for “getting rid” of
the noise

The most simplest smoothing techniques are

• Moving Average

x̃t =
xt + xt−1 + · · ·+ xt−n+1

N

• Centered Moving Average

x̃t =
xt−k + xt−k+1 · · ·+ xt + xt+1 + · · ·+ xt+k

2k + 1
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Moving Average: Example
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Single Exponential Smoothing

If there is no significant trend nor seasonality in a time series, we
can use its average to estimate future values.

• A simple average weights each value equally, however the values
which are far from the smoothed one should have less weights.

Single Exponential Smoothing (SES) weight past observations with
exponentially decreasing weights, i.e.

x̃t = αxt−1 + (1− α)x̃t−1

where 0 < α ≤ 1, t ≥ 3 and x̃2 = x1.

Forecasting with SES is then made in the following way

x̂t+1 = αxt + (1− α)x̃t = x̃t + α(xt − x̃t)
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SES: Bootstrapping & Example

When there are no actual observations for forecasting, we use the last
data point xn, i.e.

x̃n+k = αxn + (1− α)x̃n+k−1, k ≥ 1

We choose α, which results in a smallest error.
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Double Exponential Smoothing

If a trend is present in the data, SES doesn’t work well. In this case
we need to

• adjust the smoothed values to the trend of the previous values, and

• update, and also, smooth the trend simultaneously

Double Exponential Smoothing (DES) is computed as:

x̃t = αxt + (1− α)(x̃t−1 + r̃t−1), 0 ≤ α ≤ 1

r̃t = γ(x̃t − x̃t−1) + (1− γ)r̃t−1, 0 ≤ γ ≤ 1

where t ≥ 2 and r̃ refers to a smoothed trend, initialized e.g. as

r̃1 = x2 − x1 or r̃1 =
xn − x1
n− 1

The m-periods-ahead forecast is computed as

x̂t+m = x̃t +m · r̃t
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DES: Example

The results of DES for α = 0.9 and different values for γ

We choose α, γ, which results in a smallest error when comparing the
original series to one-step-ahead forecast

• Since we use the current value of the time series to compute the
smoothed value
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The Holt-Winters Method

The Holt-Winters method (HWM) is computed as:

x̃t = α
xt
s̃t−L

+ (1− α)(x̃t−1 + r̃t−1), 0 ≤ α ≤ 1

r̃t = γ(x̃t − x̃t−1) + (1− γ)r̃t−1, 0 ≤ γ ≤ 1

s̃t = β
xt
x̃t

+ (1− β)s̃t−L, 0 ≤ β ≤ 1

where t > L, L is the length of a season and s̃ refers to a sequence of
smoothed seasonal indices, initialized1 e.g. as was showed before.

The trend factor can be initialized2 as

r̃L =
1

L

(
xL+1 − x1

L
+ · · ·+ xL+L − xL

L

)
The m-periods-ahead forecast is computed as

x̂t+m = (x̃t +m · r̃t) · s̃t−L+m
1
At least one complete season is needed to initialize seasonal indices.

2
The use of two complete seasons is advisable to initialize the trend factor.
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HWM: Example (1)

Results of a simple implementation for different extremes of (α, γ, β)
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HWM: Example (2)

Different initialization techniques, also the normalization of seasonal
factors should be considered when forecasting1

1
See (Chatfield & Yar, 1988) in the references, for more details.
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Summary

Representation of time series

• Discrete Fourier & Haar transforms
• While FT captures the “global” periodic behavior, HT captures

both “local and global” character of time series.

• PLA, PAA and SAX
• One can combine the bottom-up with and Sliding Windows

approaches for more efficient computation.
• Despite its simplicity, PAA is often enough to use. Moreover, its

runtime is linear.
• SAX representation enables us to use “string-processing” techniques

such as subsequence matching, etc.

• Also other techniques, for example, Singular Value Decomposition.
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Summary

Distance measures

• Static distance measures
• When time-series are of the same lengths
• Use different features derived from time series to represent them in

a common space

• Dynamic Time Warping
• Works well even if time series are of different length
• Computes a “cost of transformation” between two time series
• Plays an important role in classification of time-series with k-NN

• Motifs and Wildcards

• Different variations and speed-ups of DTW

• Forecasting
• Seasonality, Trend and Noise
• Simple, Double and the Holt-Winters smoothing
• Good and well-suited initialization is important
• Other forecasting methods, as for example ARIMA
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Thanks for Your attention!

Questions?

horvath@ismll.de


