Tomáš Horváth

BUSINESS ANALYTICS

Lecture 5

Recommendation Techniques

Information Systems and Machine Learning Lab

University of Hildesheim

Germany

The aim of this lecture is to describe personalization techniques and the main recommender techniques

- User feedback
- Evaluation measures
- Recommendation techniques
 - Demographic, Knowledge-based, Utility-based, Content-based and Collaborative-filtering
- Context-Aware recommendation

I guess, each of us has already met a real recommender system, thus, I expect more passionate discussions \odot

• It means a lot of questions on the slides.

Recommender Systems

A Recommender System (RS) aims to ease the user from an exhaustive process of seeking for relevant information by recommending her items she would be more likely interested in.

• personalization

The more important issues a RS have to deal with are

- large set of items (changing continuously in time)
- different types of users

User's Profile

User's **characteristics** contain personal information about the user

- age, income, marital status, education, profession, nationality, etc.
- also could contain information about the habits of a user
 - preferred sport, hobbies, favourite newspapers, etc.
- the most simple way to obtain these information are questionnaires
 - What are the obstacles here?
 - Can You imagine other ways to obtain these information?

User's **preferences** indicate which items, which properties of items and/or what combination of these properties are preferred by a user

- Can questionnaires be used to obtain user's preferences?
 - If yes then how? If no then why?

We would like to get feedback from users in a way such that they are less burdened.

Information obtained about users by watching their natural interactions with the system¹.

Pohaviour astorory	Minimum scope			
Bellaviour category	Segment	Object	Class	
	View			
	Listen			
Examine	Scroll	Select	Browse	
	Find			
	Query			
		Bookmark		
		Save		
Retain	Print	Delete	Subscribe	
		Purchase		
		E-mail		
		Forward		
Poforonao	Copy&Paste	Reply		
Reference	Quote	Link		
		Cite		
Annotate	Mark-up	Rate Publish	Organize	

¹An augmented categorization and detailed description of implicit feedback can be found in (Kelly & Teevan 2003)

Explicit Feedback

Examples of explicit information collection include the following

- **rating** items on a rating scale¹
- **scoring** items
- ranking a collection of items
- choosing the better² one from two presented items
- **provide** a list of preferred items

rating	scoring	ranking	choosing	provide
r(A) = 3 r(B) = 2 r(C) = 2 r(D) = 4 r(E) = 5	r(A) = 15 r(B) = 10 r(C) = 8 r(D) = 20 r(E) = 50	$E \succeq D \succeq A \succeq B \succeq C$	$\begin{array}{l} E \succeq D, E \succeq A, E \succeq B, E \succeq C \\ D \succeq A, D \succeq B, D \succeq C \\ A \succeq B, A \succeq C \end{array}$	$\{E, D, A\}$

Which type of EF is easier for a user to provide? What is the difference in the semantics of these types of EF?

²In other words, *pairwise ranking*

¹Often a so-called *Likert's scale* is used.

Given

- set of users and items U and I, respectively, and "transformed" feedback values F
 - in case of implicit feedback, usually $F = \{1\} \subset \mathbb{R}$
 - $F = [0, 1] \subset \mathbb{R}$ in case of explicit feedback
- partially observed user-item interactions $\phi|_{D \subset U \times I}$, where $\phi: U \times I \to F$
- metadata of users and items $v: U \to \mathcal{M}_U, \iota: I \to \mathcal{M}_I,$ respectively, with $\mathcal{M}_U, \mathcal{M}_I$ be user and item metadata descriptions
- background knowledge ${\mathcal B}$ about the domain

The task is to

- learn a **user model** $\hat{\phi} : U \times I \to [0, 1]$ such that $acc(\hat{\phi}, \phi, D')$ is maximal, where *acc* is the **accuracy** of $\hat{\phi}$ w.r.t. ϕ measured on a set $D' \subseteq (U \times I) \setminus D$ of "unseen" (or future) user-item pairs.
 - $\hat{\phi}$ predicted user's rating for an item (<u>rating prediction</u>)
 - $\hat{\phi}$ predicted likelihood of user's "positive" implicit feedback for an item (item recommendation)

Recommendation tasks: Example

Rating prediction from explicit feedback

• How would Steve rate the movie Titanic more likely?

	Titanic	Pulp Fiction	Iron Man	Forrest Gump	The Mummy
Joe	1	4	5		3
Ann	5	1		5	2
Mary	4	1	2	5	
Steve	?	3	4		4

Item recommendation from implicit feedback

• Which movie(s) would like Steve to see/buy more likely?

	Titanic	Pulp Fiction	Iron Man	Forrest Gump	The Mummy
Joe	1	1	1		1
Ann	1	1		1	1
Mary	1	1	1	1	
Steve	?	1	1	?	1

Tomáš Horváth

Accuracy Measures for Rating Prediction

The goal is to measure the accuracy of predicted ratings.

• mean average error (MAE) or root mean squared error (RMSE) can be used

$$acc(\hat{\phi}, \phi, D') = 1 - \sqrt{\frac{\sum_{(u,i) \in D'} (\hat{\phi}(u,i) - \phi(u,i))^2}{|D'|}}$$

- average MAE or average RMSE
 - if data are imbalanced then accuracy is influenced by the eror on a few frequent items
 - compute MAE or RMSE for each item and average over all items
- use of distortion measure $d(\hat{\phi}, \phi)$, if the impact of the prediction error does not depends only on its magnitude

Accuracy Measures for Item Recommendation

Goal is to measure the accuracy of predicted user's interest on items.

• we should be aware of items previously unseen by the user

	Recommended	Not recommended
Interested	true positive (TP)	false negative (FN)
Not interested	false positive (FP)	true negative (TN)

$$Precision^{1} = \frac{|\{(u,i) \in D' \mid \phi(u,i) = 1, \hat{\phi}(u,i) > 0\}|}{|\{(u,i) \in D' \mid \hat{\phi}(u,i) > 0\}|} = \frac{TP}{TP + FP}$$

$$Recall^{2} = \frac{|\{(u,i) \in D' \mid \phi(u,i) = 1, \hat{\phi}(u,i) > 0\}|}{|\{(u,i) \in D' \mid \phi(u,i) = 1\}|} = \frac{TP}{TP + FN}$$

- Precision@K if the number of recommended items are K
- longer recommendation lists improve recall while reduce precision
 - we need to find a tradeoff between precision and recall

²How many interesting items are recommended?

¹How many recommended items are interesting?

Precision and Recall Trade-off

• F-measure

$$F = 2\frac{P \cdot R}{P + R}$$

- Precision-Recall and ROC curves¹ provided over a range of recommendation list lengths
 - Area under the ROC² curve (AUC)

¹Do not forget, that P-R and ROC curves are different things.

²Image source: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

Demographic

- Recommendations are based on demographic classes of users.
 - Problem with gathering demographic data
 - Doesn't work well for users who fall in a border between existing classes ("gray sheeps")

Knowledge-based

- Recommendations based on knowledge about users needs and preferences.
 - need to acquire the required knowledge and manage an "expert system"

Utility-based

- The system helps the user to build her utility function, i.e. provide "weights" for item features and/or their preferred combination.
- often is exhaustive for users

Types of RS (2)

Content-based

- Learn user's interests based on the features of items previously rated by the user, using supervised machine learning techniques.
- Useful when we face a "new-item problem"
- often it is hard/expensive to get item features
- tend to "narrow" down the recommendation, i.e. can't recommend items with different features

Collaborative-filtering

- Recognize similarities between users according to their feedbacks and recommend objects preferred by the like-minded users.
- Doesn't work in the case of too few users or/and items ("cold-start" problem)
- Cross-genre recommendation ability
 - if users have similar taste in one domain they should have similar taste in other domains, too

Neighborhood-based CF

Recommendations for the "active" user u on the item i is made directly using feedback values stored in the system.

- user-based
 - computing $\hat{\phi}(u, i)$ from the feedback given by **most similar users** v to the user u, which have already given a feedback for i

$$\mathcal{N}_{i}^{u,k} = \underset{\mathcal{U}}{\operatorname{arg\,max}} \sum_{\substack{v \in \mathcal{U}, v \neq u \\ \mathcal{U} \subseteq \mathcal{U}_{i}, |\mathcal{U}| = k}} sim(u,v)$$

where $\mathcal{U}_i = \{ v \in U \mid \phi(v, i) \text{ is defined on } D \}$

- item-based
 - computing $\hat{\phi}(u, i)$ using feedback values given by the user u to the most similar items j to the item i

$$\mathcal{N}_{u}^{i,k} = \arg \max_{\mathcal{I}} \sum_{\substack{j \in \mathcal{I}, j \neq i \\ \mathcal{I} \subseteq \mathcal{I}_{u}, |\mathcal{I}| = k}} sim(i,j)$$

where $\mathcal{I}_u = \{ j \in I \mid \phi(u, j) \text{ is defined on } D \}$

A row/column in a user-item interaction matrix is a sparse vector

$$sim_{cv}(u,v) = \frac{\sum_{i \in \mathcal{I}_{uv}} \phi_{ui} \cdot \phi_{vi}}{\sqrt{\sum_{i \in \mathcal{I}_u} \phi_{ui}^2 \sum_{i \in \mathcal{I}_v} \phi_{vi}^2}}$$

$$sim_{cv}(i,j) = \frac{\sum_{u \in \mathcal{U}_{ij}} \phi_{ui} \cdot \phi_{uj}}{\sqrt{\sum_{u \in \mathcal{U}_i} \phi_{ui}^2 \sum_{u \in \mathcal{U}_j} \phi_{uj}^2}}$$

More appropriate in case of item recommendation

• doesn't consider differences in mean and variance of the ratings

¹Simplified notation: $\phi(u, i) \rightsquigarrow \phi_{ui}, \mathcal{I}_u \cap \mathcal{I}_v \rightsquigarrow \mathcal{I}_{uv}, \mathcal{U}_i \cap \mathcal{U}_j \rightsquigarrow \mathcal{U}_{ij}$ ³⁵ Horváth ISMLL, University of Hildesheim, Germany

The Pearson Correlation Similarity

$$sim_{pc}(u,v) = \frac{\sum_{i \in \mathcal{I}_{uv}} (\phi_{ui} - \overline{\phi}_u)(\phi_{vi} - \overline{\phi}_v)}{\sqrt{\sum_{i \in \mathcal{I}_{uv}} (\phi_{ui} - \overline{\phi}_u)^2 \sum_{i \in \mathcal{I}_{uv}} (\phi_{vi} - \overline{\phi}_v)^2}}$$

where
$$\overline{\phi}_u = \frac{\sum_{i \in \mathcal{I}_u} \phi(u, i)}{|\mathcal{I}_u|}$$

$$sim_{pc}(i,j) = \frac{\sum_{u \in \mathcal{U}_{ij}} (\phi_{ui} - \overline{\phi}_i)(\phi_{uj} - \overline{\phi}_j)}{\sqrt{\sum_{u \in \mathcal{U}_{ij}} (\phi_{ui} - \overline{\phi}_i)^2 \sum_{i \in \mathcal{U}_{ij}} (\phi_{uj} - \overline{\phi}_j)^2}}$$
$$\overline{\phi}_i = \frac{\sum_{u \in \mathcal{U}_i} \phi(u,i)}{|\mathcal{U}_i|}$$

In which cases can't be this measure computed?

Tomáš Horváth

where

Similarity measures (rating prediction): Example

$sim_{pc}(i, j)$	Titanic	Pulp Fiction	Iron Man	Forrest Gump	The Mummy
Titanic	1.0	-0.956	-0.815	NaN	-0.581
Pulp Fiction	-	1.0	0.948	NaN	0.621
Iron Man	-	-	1.0	NaN	0.243
Forrest Gump	-	-	-	1.0	NaN
The Mummy	-	-	-	-	1.0

NaN values are usually converted to zero

• such cases should be rare in case of enough data

$sim_{pc}(u, v)$	Joe	Ann	Mary	Steve
Joe	1.0	-0.716	-0.762	-0.005
Ann	-	1.0	0.972	0.565
Mary	-	-	1.0	0.6
Steve	-	-	-	1.0

$sim_{cv}(i, j)$	Titanic	Pulp Fiction	Iron Man	Forrest Gump	The Mummy
Titanic	1.0	0.386	0.299	0.982	0.372
Pulp Fiction	-	1.0	0.975	0.272	0.929
Iron Man	-	-	1.0	0.211	0.858
Forrest Gump	-	-	-	1.0	263
The Mummy	-	-	-	-	1.0

$sim_{cv}(u, v)$	Joe	Ann	Mary	Steve
Joe	1.0	0.283	0.372	0.962
Ann	-	1.0	0.915	0.232
Mary	-	-	1.0	0.254
Steve	-	-	-	1.0

Shivers in

Tomáš Horváth

Similarity measures (item recommendation): Example

$sim_{cv}(i, j)$	Titanic	Pulp Fiction	Iron Man	Forrest Gump	The Mummy
Titanic	1.0	0.87	0.67	0.82	0.67
Pulp Fiction	-	1.0	0.87	0.71	0.87
Iron Man	-	-	1.0	0.41	0.67
Forrest Gump	-	-	-	1.0	0.41
The Mummy	-	-	-	-	1.0

$sim_{cv}(u, v)$	Joe	Ann	Mary	Steve
Joe	1.0	0.75	0.75	0.87
Ann	-	1.0	0.75	0.58
Mary	-	-	1.0	0.58
Steve	-	-	-	1.0

Tomáš Horváth

rating prediction

• user-based

$$\hat{\phi}_{ui} = \overline{\phi}_u + \frac{\sum_{v \in \mathcal{N}_i^{u,k}} sim(u,v) \cdot (\phi_{vi} - \overline{\phi}_v)}{\sum_{v \in \mathcal{N}_i^{u,k}} |sim(u,v)|}$$

• item-based

$$\hat{\phi}_{ui} = \overline{\phi}_i + \frac{\sum_{j \in \mathcal{N}_u^{i,k}} sim(i,j) \cdot (\phi_{uj} - \overline{\phi}_j)}{\sum_{v \in \mathcal{N}_u^{i,k}} |sim(i,j)|}$$

item recommendation

• user-based

$$\hat{\phi}_{ui} = \frac{\sum_{v \in \mathcal{N}_i^{u,k}} sim(u,v)}{k}$$

• item-based

$$\hat{\phi}_{ui} = \frac{\sum_{j \in \mathcal{N}_u^{i,k}} sim(i,j)}{k}$$

¹Simplified notation: $\hat{\phi}(u, i) \rightsquigarrow \hat{\phi}_{ui}$

Prediction: Example

rating prediction using two most similar users according to sim_{pc}

•
$$U_{Titanic} = \{Joe, Ann, Mary\}, N_{Titanic}^{Steve, 2} = \{Mary, Ann\}$$

•
$$\overline{\phi}_{Steve} = \frac{11}{3} = 3.67, \ \overline{\phi}_{Mary} = \frac{12}{4} = 3, \ \overline{\phi}_{Ann} = \frac{13}{4} = 3.25$$

$$\hat{\phi}_{ST} = \overline{\phi}_S + \frac{s_{Pc}(S,M) \cdot (\phi_{MT} - \overline{\phi}_M) + s_{Pc}(S,A) \cdot (\phi_{AT} - \overline{\phi}_A)}{|s_{Pc}(S,A)| + |s_{Pc}(S,A)|} = 3.67 + \frac{0.6 \cdot (4-3) + 0.565 \cdot (5-3.25)}{0.6 + 0.565} = 1.366 \cdot (5-3.25) = 1.$$

rating prediction using two most similar items according to sim_{pc}

•
$$\mathcal{I}_{\underline{S}teve} = \{\underline{P}ulp \; Fiction, \underline{I}ron \; Man, \; The \; \underline{M}ummy\}, \; \mathcal{N}_{\underline{S}teve}^{\underline{T}itanic,2} = \{\underline{I}ron \; Man, \; The \; \underline{M}ummy\}$$

•
$$\overline{\phi}_T = \frac{10}{3} = 3.34, \ \overline{\phi}_I = \frac{11}{3} = 3.67, \ \overline{\phi}_M = \frac{9}{3} = 3$$

$$\hat{\phi}_{ST} = \overline{\phi}_T + \frac{s_{pc}(T,I) \cdot (\phi_{SI} - \overline{\phi}_I) + s_{pc}(T,M) \cdot (\phi_{SM} - \overline{\phi}_M)}{|s_{pc}(T,I)| + |s_{pc}(T,M)|} = 3.34 + \frac{-.815 \cdot (4 - 3.67) - .581 \cdot (4 - 3.67)}{0.815 + 0.581} = 2.73$$

item recommendation – two most similar users

•
$$\mathcal{N}_{Titanic}^{Steve,2} = \{Joe, Ann\}, \ \hat{\phi}_{ST} = \frac{s_{cv}(S,J) + s_{cv}(S,M)}{2} = \frac{0.87 + 0.58}{2} = 0.725$$

•
$$\mathcal{N}_{Titanic}^{Steve,2} = \{Ann, Mary\}, \ \hat{\phi}_{ST} = \frac{s_{cv}(S,A) + s_{cv}(S,M)}{2} = \frac{0.58 + 0.58}{2} = 0.58$$

item recommendation – two most similar items

- $\mathcal{N}_{Steve}^{Titanic,2} = \{PulpFiction, IronMan\}, \hat{\phi}_{ST} = \frac{s_{cv}(T,P) + s_{cv}(T,I)}{2} = \frac{0.87 + 0.67}{2} = 0.77$
- $\mathcal{N}_{Steve}^{ForrestGump,2} = \{PulpFiction, IronMan\}, \ \hat{\phi}_{ST} = \frac{s_{cv}(F,P) + s_{cv}(F,I)}{2} = \frac{0.71 + 0.41}{2} = 0.56$

6

Simple

• intuitive and simple to implement, only one parameter to tune Justifiable

• easy to users to understand recommendations

Efficient

- can be speeded-up e.g. by pre-computing nearest neighbors Stable
 - a small amount of new users, items and ratings affect the performance just a little

Serendipity

- ability to recommend an interesting item for a user which he might not have otherwise discovered
 - can be helpful in finding new type or class of interesting items

Latent space representation

- The idea is to map users and items to a common space, where the co-ordinates represent **latent factors**.
 - user's interests and item's implicit properties are both incorporated in ("expressed by") latent factors
 - $\bullet\,$ e.g. amount of action/romance or orientation, in case of movies, \ldots

The task¹ of Matrix Factorization is to approximate the matrix² $\Phi^{n \times m}$ by the matrix $\hat{\Phi}^{n \times m}$ which is a product WH^T of two (smaller) matrices $W^{n \times k}$ and $H^{m \times k}$

$$\hat{\phi}_{ui} = w_u h_i^T = \sum_{k=1}^K w_{uk} h_{ik}$$

where K is the number of latent factors.

 $^{2}\Phi(u,i) = \phi_{ui}$

 $^{^1}$ Note, that there are several methods for Matrix factorization/decomposition, we'll discuss only the one most commonly used in recommender systems.

We would like to minimalize¹ the squared error of approximation

$$error = \sum_{(u,i)\in D} e_{ui}^2 = \sum_{(u,i)\in D} (\phi_{ui} - \hat{\phi}_{ui})^2 = \sum_{(u,i)\in D} (\phi_{ui} - w_u h_i^T)^2$$

Moreover, we add **regularization**² terms to the error function to prevent overfitting

$$error = \sum_{(u,i)\in D} (\phi_{ui} - w_u h_i^T)^2 + \lambda(\|W\|^2 + \|H\|^2)$$

where $\lambda \geq 0$ is a regularization term.

²To prevent Φ containing large numbers.

 $^{^1}$ When the model is trained, we have to minimalize the error on the training set, i.e. on the past user-item-interactions.

MF via Stochastic Gradient Descent

Training is an optimalization problem of minimizing the **objective** function *error* with parameters W, H and a hyper-parameter λ .

- **updating** parameters **iteratively** for each data point ϕ_{ui} in the opposite direction of the **gradient** of the objective function at the given point until a **convergence** criterion is fulfilled.
 - updating the vectors w_u and h_i for the data point $(u, i) \in D$

$$\frac{\partial error}{\partial w_u}(u,i) = -2(e_{ui}h_i - \lambda w_u)$$
$$\frac{\partial error}{\partial h_i}(u,i) = -2(e_{ui}w_u - 2\lambda h_i)$$

$$\begin{split} w_u^{new}|u, i &= w_u^{old} - \alpha \frac{\partial error}{\partial w_u}(u, i) = w_u^{old} + \alpha (e_{ui}h_i^{old} - \lambda w_u^{old}) \\ h_i^{new}|u, i &= h_i^{old} - \alpha \frac{\partial error}{\partial h_i}(u, i) = h_i^{old} + \alpha (e_{ui}w_u^{old} - \lambda h_i^{old}) \end{split}$$

where $\alpha > 0$ is a **learning rate**.

MF via SGD: Algorithm

Hyper-parameters: iter (the maximal number of iterations), α , λ , σ^2 $W \leftarrow \text{ initialize with } \mathcal{N}(0, \sigma^2)$ $H \leftarrow$ initialize with $\mathcal{N}(0, \sigma^2)$ for $iter \leftarrow 1, \ldots, iter \cdot |D|$ do draw randomly (u, i) from D $\phi_{ui} \leftarrow 0$ for $k \leftarrow 1, \ldots, K$ do $\hat{\phi}_{ui} \leftarrow \hat{\phi}_{ui} + W[u][k] \cdot H[i][k]$ end for $e_{ui} = \phi_{ui} - \hat{\phi}_{ui}$ for $k \leftarrow 1, \ldots, K$ do $W[u][k] \leftarrow W[u][k] + \alpha \cdot (e_{ui} \cdot H[i][k] - \lambda \cdot W[u][k])$ $H[i][k] \leftarrow H[i][k] + \alpha \cdot (e_{ui} \cdot W[u][k] - \lambda \cdot H[i][k])$ end for end for return $\{W, H\}$

MF via SGD: $Example^2$

$$\Phi = \frac{\begin{smallmatrix} 1 & 4 & 5 & 3 \\ 5 & 1 & 5 & 2 \\ 4 & 1 & 2 & 5 \\ \hline 3 & 4 & 4 \end{smallmatrix}$$

Let's have the following hyper-parameters: $K = 2, \ \alpha = 0.1, \ \lambda = 0.15, \ iter = 150, \ \sigma^2 = 0.01$ Results¹ are:

$$W = \begin{bmatrix} 1.1995242 & 1.1637173 \\ 1.8714619 & -0.02266505 \\ 2.3267753 & 0.27602595 \\ 2.033842 & 0.539499 \end{bmatrix}$$

T					
$H^{\perp} =$	1.6261001	1.1259034	2.131041	2.2285593	1.6074764
11	-0.40649664	0.7055319	1.0405376	0.39400166	0.49699315

<u>^</u>	1.477499	2.171588	3.767126	3.131717	2.506566
$\Phi =$	3.052397	2.091094	3.964578	4.161733	2.997066
1	3.671365	2.814469	5.245668	5.294111	3.877419
	3.087926	2.670543	4.895569	4.745101	3.537480

 1 Note, that these hyper-parameters are just picked up in an ad-hoc manner. One should search for the "best" hyper-parameter combinations using e.g. grid-search (a brute-force approach).

²Thanks to my colleague Thai-Nghe Nguyen for computing examples.

Tomáš Horváth

Biased Matrix Factorization via SGD

user bias $\overline{\phi}_u$ (item bias $\overline{\phi}_i$) measures how do ratings of the user u (ratings for the item i) differs from the global average rating $\overline{\phi}$.

• the "biased" prediction is $\hat{\phi}_{ui} = \overline{\phi} + \overline{\phi}_u + \overline{\phi}_i + w_u \cdot h_i$

The error function to minimize became

$$error = \sum_{(u,i)\in D} (\phi_{ui} - \overline{\phi} - \overline{\phi}_u - \overline{\phi}_i - w_u \cdot h_i)^2 + \lambda(\|W\|^2 + \|H\|^2 + \overline{\phi}_u^2 + \overline{\phi}_i^2)$$

Updates additional to w_u and h_i are

$$\overline{\phi}_{u}^{new}|u,i=\overline{\phi}_{u}^{old}-\alpha\frac{\partial error}{\partial\overline{\phi}_{u}}(u,i)=\overline{\phi}_{u}^{old}+\alpha(e_{ui}-\lambda\overline{\phi}_{u}^{old})$$

$$\overline{\phi}_{i}^{new}|u,i=\overline{\phi}_{i}^{old}-\alpha\frac{\partial error}{\partial\overline{\phi}_{i}}(u,i)=\overline{\phi}_{i}^{old}+\alpha(e_{ui}-\lambda\overline{\phi}_{i}^{old})$$

Tomáš Horváth

Biased MF with SGD: Algorithm

Hyper-parameters: iter (the maximal number of iterations), α , λ , σ^2 $W \leftarrow \text{initialize with } \mathcal{N}(0, \sigma^2)$ $H \leftarrow \text{initialize with } \mathcal{N}(0, \sigma^2)$ $\overline{\phi} \leftarrow$ initialize with the global average for $u \leftarrow 1, \ldots, |U|$ do $\overline{\phi}_{u}[u] \leftarrow$ average rating of user u end for for $i \leftarrow 1, \ldots, |I|$ do $\overline{\phi}_{i}[i] \leftarrow$ average rating of item i end for for $iter \leftarrow 1, \dots, iter \cdot |D|$ do draw randomly (u, i) from D $\hat{\phi}_{ui} \leftarrow \overline{\phi} + \overline{\phi}_{u}[u] + \overline{\phi}_{i}[i]$ for $k \leftarrow 1, \ldots, K$ do $\hat{\phi}_{ui} \leftarrow \hat{\phi}_{ui} + W[u][k] \cdot H[i][k]$ end for $e_{ui} = \phi_{ui} - \hat{\phi}_{ui}$ $\overline{\phi}_{u}^{new}[u] \leftarrow \overline{\phi}_{u}^{old}[u] + \alpha \cdot (e_{ui} - \lambda \cdot \overline{\phi}_{u}^{old}[u])$ $\overline{\phi}_{i}^{new}[i] \leftarrow \overline{\phi}_{i}^{old}[i] + \alpha \cdot (e_{ui} - \lambda \cdot \overline{\phi}_{i}^{old}[i])$ for $k \leftarrow 1, \ldots, K$ do $W[u][k] \leftarrow W[u][k] + \alpha \cdot (e_{ui} \cdot H[i][k] - \lambda \cdot W[u][k])$ $H[i][k] \leftarrow H[i][k] + \alpha \cdot (e_{ui} \cdot W[u][k] - \lambda \cdot H[i][k])$ end for end for return $\{W, H, \overline{\phi}_{u}, \overline{\phi}_{i}\}$

Biased MF with SGD: Example

 Φ is the same as in the previous case. Let's have the following hyper-parameters: $K = 2, \ \alpha = 0.1, \ \lambda = 0.15, \ iter = 1000, \ \sigma^2 = 0.01$ Results are:

	-1.2818109	0.8797541
W =	0.8263778	-0.658325
	0.5540779	-0.37631336
	0.48018292	-0.24728496

-T					
$H^{I} =$	1.3833797	-0.81226087	-0.82310724	0.122659974	-0.06878678
	-0.9954762	0.51703054	0.5780823	-0.074271396	0.15422797

T	-2.649005	1.496024	1.563638	-0.222567	0.223854
$WH^{\perp} =$	1.798541	-1.011608	-1.060763	0.150258	-0.158375
,, 11	1.141111	-0.644621	-0.673605	0.095912	-0.096151
	0.910441	-0.517887	-0.538193	0.077265	-0.071168

$\overline{\phi}=3.2666667$

 $\hat{\overline{\phi}}_u = (0.09477682, -0.45755777, -0.6332871, 1.2168586)$

 $\hat{\overline{\phi}}_i = (0.3055541, -0.8959325, 0.04974971, 2.1113703, -0.548792)$

 $\hat{\phi}(Steve, Titanic) = 3.26666667 + 1.2168586 + 0.3055541 + 0.910441 = 5.6995204$

Tomáš Horváth

Summary

User feedback

• implicit vs. explicit

Evaluation measures for recommender systems Different approaches

- demographic, knowledge- and utility-based
 - quite old, need to maintain the knowledge-base, expert needed
- content-based
 - often is expensive to get item features
 - useful when the system faces with new user
- collaborative filtering
 - successful approach, no need for item features
 - "cold-start" problem
 - Matrix Factorization with Stochastic Gradient Descent
 - easy to implement
 - works well for sparse data
 - need to search for hyper-parameters

Many other, different techniques!

- D. Kelly and J. Teevan. Implicit feedback for inferring user preference: a bibliography. SIGIR Forum 37, 2 (September 2003), 18-28.
- F. Ricci, L Rokach, B. Shapira, P. B. Kantor: Recommender Systems Handbook. Springer, 2011, ISBN 978-0-387-85819-7, pp. 842.
- Y. Koren, R. Bell, Ch. Volinsky: Matrix Factorization Techniques for Recommender Systems. COMPUTER, 2009, IEEE Computer Society, p. 42-29.

Thanks for Your attention!

Questions?

horvath@ismll.de

