Business Analytics
 Exercise Sheet 9

Martin Wistuba (wistuba@ismll.de)
Information Systems and Machine Learning Lab (ISMLL)
Universität Hildesheim

1 July 2014
Submission until 8 July 2014 23:59

Exercise 23: PCA - Stochastic Gradient Descent (5 points)

Principal Component Analysis (PCA) is a dimensionality reduction technique which aims at projecting a dataset $X \in \mathbb{R}^{N \times M}$ via latent principal components $V \in \mathbb{R}^{K \times M}$ for $K \ll M$. The procedure aims at learning both the latent components and a linear combinations of the components via weights $Z \in \mathbb{R}^{N \times K}$, such that the original data is approximated via the following loss L :

$$
\begin{equation*}
\underset{Z, V}{\operatorname{argmin}} L=\|X-Z \cdot V\|^{2}=\sum_{i=1}^{N} \sum_{j=1}^{M}\left(X_{i, j}-\sum_{k=1}^{K} Z_{i, k} V_{k, j}\right)^{2} \tag{1}
\end{equation*}
$$

(a) Explain the relation between the PCA definition above and the truncated SVD dimensionality reduction? (1 point)
(b) One method used to compute the PCA of a dataset is called Stochastic Gradient Descent and is shown in Algorithm 1. The values of Z, V are updated to decrease the loss L in the negative direction of the gradient by step η. The procedure is conducted for every cell of X for a total of E many epochs. Each update rule learns the error with respect to one cell (i, j) at a time, hence via the gradient $L_{i, j}$ defoned in line 3.

```
Algorithm 1 Compute PCA through Stochastic Gradient Descent
Require: Original Data \(X \in \mathbb{R}^{N \times M}\), Number of latent dimensions \(K\), Learning Rate \(\eta\), Number of
    epochs \(E\)
Ensure: Low-rank data \(Z \in \mathbb{R}^{N \times K}\), Principal components \(V \in \mathbb{R}^{K \times M}\)
    for \(1, \ldots, E\) do
        for \(i=1, \ldots, N j=1, \ldots, M, k=1, \ldots, K\) do
            \(L_{i, j} \leftarrow\left(X_{i, j}-\sum_{k=1}^{K} Z_{i, k} V_{k, j}\right)^{2}\)
            \(V_{k, j} \leftarrow V_{k, j}-\eta \frac{\partial L_{i, j}}{\partial V_{k, j}}\)
            \(Z_{i, k} \leftarrow Z_{i, k}-\eta \frac{\partial L_{i, j}}{\partial Z_{i, k}}\)
        end for
    end for
    return \(Z, V\)
```

Derive the update rule gradients $\frac{\partial L_{i, j}}{\partial V_{k, j}}=?, \frac{\partial L_{i, j}}{\partial Z_{i, k}}=$? ($\mathbf{3}$ points)
(c) Argue how can we find a good value for E ? Does it depend on η ? (1 points)

Exercise 24: PCA - Gradient Descent (5 points)

(a) What is the difference between a full gradient descent and stochastic gradient descent? ($\mathbf{1}$ point)
(b) Another method to compute the PCA of a dataset is through gradient descent, where the latent data Z and the principal components Z are updated via computing the full gradient over L, as shown in Algorithm 2.

```
Algorithm 2 Compute PCA through Gradient Descent
Require: Original Data \(X \in \mathbb{R}^{N \times M}\), Number of latent dimensions \(K\), Learning Rate \(\eta\), Number of
    epochs \(E\)
Ensure: Low-rank data \(Z \in \mathbb{R}^{N \times K}\), Principal components \(V \in \mathbb{R}^{K \times M}\)
    for \(1, \ldots, E\) do
        for \(i=1, \ldots, N j=1, \ldots, M, k=1, \ldots, K\) do
            \(V_{k, j} \leftarrow V_{k, j}-\eta \frac{\partial L}{\partial V_{k, j}}\)
            \(Z_{i, k} \leftarrow Z_{i, k}-\eta \frac{\partial L}{\partial Z_{i, k}}\)
        end for
    end for
    return \(Z, V\)
```

Derive the update rule gradients $\frac{\partial L}{\partial V_{k, j}}=$?, $\frac{\partial L}{\partial Z_{i, k}}=$? ($\mathbf{3}$ points)
(c) Argument on the advantages and disadvantages of both learning algorithms. (1 points)

Submission

- Electronically to wistuba@ismll.de. Text submitted as pdf, code submitted as source files. No archives.

