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Business Analytics 0. The Prediction Problem Informally

The Prediction Problem Formally
Let X be any set (called predictor space),
Y be any set (called target space), and
p : X ×Y → R+

0 be an unknown joint distribution / density.
Given

I a sample Dtrain ⊆ X ×Y (called training set), drawn from p,

I a loss function ` : Y ×Y → R that measures how bad it is
to predict value ŷ if the true value is y ,

compute a prediction function

ŷ : X → Y
with minimal risk

risk(ŷ ; p) :=

∫
X ×Y

`(y , ŷ(x)) p(x , y) d(x , y)

Explanation: risk(ŷ ; p) can be estimated by the empirical risk

risk(ŷ ;Dtest) :=
1

|Dtest|
∑

(x,y)∈Dtest

`(y , ŷ(x))
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Business Analytics 1. Continuous Targets (Regression)

Example: House Prices
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Example: House Prices
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Business Analytics 1. Continuous Targets (Regression)

Prediction (without Predictors)
Let Y be any set (called target space), and

p : Y → R+
0 be a distribution / density.

Given
I a sample Dtrain ⊆ Y (called training set), drawn from p,
I a loss function ` : Y ×Y → R that measures how bad it is to predict

value ŷ if the true value is y ,

compute a predicted value
ŷ ∈ Y

with minimal risk

risk(ŷ ; p) :=

∫
Y
`(y , ŷ) p(y) dy

Explanation: risk(ŷ ; p) can be estimated by the empirical risk

risk(ŷ ;Dtest) :=
1

|Dtest|
∑

y∈Dtest

`(y , ŷ)
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Business Analytics 1. Continuous Targets (Regression)

Example: House Prices

I Target space: Y := R+
0

I Loss: `(y , ŷ) := (y − ŷ)2

I Training set: Dtrain := {114300, 114200, 114800, 94700, 119800, . . .}
I Test set: Dtest := {188300, 102700, 172500, 127700, . . .}

Given some sample house prices Dtrain, compute∗) a predicted house
price ŷ with minimal Root Mean Squared Error (RMSE):

RMSE(Dtest, ŷ) :=

√
1

|Dtest|
∑

y∈Dtest

(y − ŷ)2

for house prices Dtest observed in the future.
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Note: ∗) without using Dtest.



Business Analytics 1. Continuous Targets (Regression)

Prediction with Squared Loss
The prediction problem with squared loss `(y , ŷ) := (y − ŷ)2 minimizes
Mean Squared Error (MSE) / Root Mean Squared Error (RMSE):

MSE(Dtest, ŷ) :=
1

|Dtest|
∑

y∈Dtest

(y − ŷ)2

RMSE(Dtest, ŷ) :=

√
1

|Dtest|
∑

y∈Dtest

(y − ŷ)2

Lemma
The predicted value with minimal squared loss / RMSE is the mean:

ŷ :=
1

|Dtrain|
∑

y∈Dtrain

y
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Business Analytics 1. Continuous Targets (Regression)

Prediction with Squared Loss

Lemma
The predicted value with minimal squared loss / RMSE is the mean:

ŷ :=
1

|Dtrain|
∑

y∈Dtrain

y

Proof.

∂MSE

∂ŷ
=

1

|Dtrain|
∑

y∈Dtrain

−2(y − ŷ)
!

= 0

 
1

|Dtrain|
∑

y∈Dtrain

y − 1

|Dtrain|
|Dtrain|ŷ = 0
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Business Analytics 1. Continuous Targets (Regression)

Evaluation: House Prices

test set Dtest:
y (price [$]) ŷ

188,300 129,395.3
102,700 129,395.3
172,500 129,395.3
127,700 129,395.3

97,800 129,395.3
143,100 129,395.3
116,500 129,395.3
142,600 129,395.3
157,100 129,395.3

...
...

RMSE: 27,515.84
MAE: 21,541.31
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Business Analytics 1. Continuous Targets (Regression)

Example: House Prices II

I Target space: Y := R+
0

I Loss: `(y , ŷ) := |y − ŷ |
I Training set: Dtrain := {114300, 114200, 114800, 94700, 119800, . . .}
I Test set: Dtest := {188300, 102700, 172500, 127700, . . .}

Given some sample house prices Dtrain, compute∗) a predicted house
price ŷ with minimal Mean Absolute Error (MAE):

MAE(Dtest, ŷ) :=
1

n

∑
y∈Dtest

|y − ŷ |

for house prices Dtest observed in the future.
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Note: ∗) without using Dtest.



Business Analytics 1. Continuous Targets (Regression)

Prediction with Absolute Loss

The prediction problem with absolute loss `(y , ŷ) := |y − ŷ | minimizes
Mean Absolute Error (MAE):

MAE(Dtest, ŷ) :=
1

|Dtrain|
∑

y∈Dtest

|y − ŷ |

Lemma
The predicted value with minimal absolute error / MAE is the median:

ŷ := median Dtrain :=

{
y((n+1)/2), for n odd
1
2 (y(n/2) + y(n/2+1)), for n even

with Dtrain = {y(1), . . . , y(n)} and y(i) sorted increasingly.
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The predicted value with minimal absolute error / MAE is the median:
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{
y((n+1)/2), for n odd
1
2 (y(n/2) + y(n/2+1)), for n even

with Dtrain = {y(1), . . . , y(n)} and y(i) sorted increasingly.

Proof.

∂MAE

∂ŷ
=

1

|Dtrain|

 ∑
y∈Dtrain:y>ŷ

−1 +
∑

y∈Dtrain:y<ŷ

1

 !
= 0

 there have to be as many y ’s smaller than ŷ as larger than ŷ .
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Business Analytics 1. Continuous Targets (Regression)

Evaluation: House Prices II
test set Dtest:

y (price [$]) ŷ

188,300 126,200
102,700 126,200
172,500 126,200
127,700 126,200

97,800 126,200
143,100 126,200
116,500 126,200
142,600 126,200
157,100 126,200

...
...

MAE: 21,267.44
RMSE: 28,052.88
MAEε=5000: 16,706.98
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Business Analytics 1. Continuous Targets (Regression)

Example: House Prices III

I Target space: Y := R+
0

I Loss: `(y , ŷ) := [|y − ŷ | − ε]0 for ε := 5000

I Training set: Dtrain := {114300, 114200, 114800, 94700, 119800, . . .}
I Test set: Dtest := {188300, 102700, 172500, 127700, . . .}

Given some sample house prices Dtrain, compute∗) a predicted house
price ŷ with minimal ε-insensitive error:

MAEε(Dtest, ŷ) :=
1

n

∑
y∈Dtest

[|y − ŷ | − ε]0

for house prices Dtest observed in the future.
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Note: ∗) without using Dtest. [x]0 := max(x , 0).



Business Analytics 1. Continuous Targets (Regression)

Prediction with ε-insensitive error

For given ε ∈ R+
0 , the prediction problem with ε-insensitive error

`(y , ŷ) := [|y − ŷ | − ε]0 minimizes the ε-insensitive error:

MAEε(Dtest, ŷ) :=
1

n

∑
y∈Dtest

[|y − ŷ | − ε]0

Lemma
The predicted value with minimal ε-insensitive error is:

ŷ :=
1

2
(y(i) + y(n−i+1)) with i := max{i = 1, . . . , n | y(n−i+1) − y(i) > 2ε}

with Dtrain = {y(1), . . . , y(n)} and y(i) sorted increasingly.
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Business Analytics 1. Continuous Targets (Regression)

Prediction with ε-insensitive error

Lemma
The predicted value with minimal ε-insensitive error is:

ŷ :=
1

2
(y(i) + y(n−i+1)) with i := max{i = 1, . . . , n | y(n−i+1) − y(i) > 2ε}

with Dtrain = {y(1), . . . , y(n)} and y(i) sorted increasingly.

Proof.

∂MAEε
∂ŷ

=
1

|Dtrain|

 ∑
y∈Dtrain:y>ŷ+ε

−1 +
∑

y∈Dtrain:y<ŷ−ε

1

 !
= 0

 there have to be as many y ’s smaller than ŷ − ε as larger than
ŷ + ε.
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Business Analytics 1. Continuous Targets (Regression)

Evaluation: House Prices III

test set Dtest:
y (price [$]) ŷ

188,300 128,550
102,700 128,550
172,500 128,550
127,700 128,550

97,800 128,550
143,100 128,550
116,500 128,550
142,600 128,550
157,100 128,550

...
...

MAE: 21,443.02
MAEε=5000: 16,668.60
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Business Analytics 2. Binary Nominal Targets (Binary Classification)
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Business Analytics 2. Binary Nominal Targets (Binary Classification)

Example: Direct Bank Marketing
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Example: Direct Bank Marketing

train set Dtrain:
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Business Analytics 2. Binary Nominal Targets (Binary Classification)

Example: Direct Bank Marketing I

I Target space: Y := {no, yes} = {0, 1}
I Loss: `(y , ŷ) := δ(y 6= ŷ)

I Training set: Dtrain := {0, 0, 0, . . . , 0, 1, 0, . . .}
I Test set: Dtest := {0, 0, 0, . . . , 0, 1, 0, . . .}

Given some customer responses Dtrain, compute∗) a predicted
customer response ŷ with minimal misclassification rate:

MR(Dtest, ŷ) :=
1

n

∑
y∈Dtest

δ(y 6= ŷ)

for customer responses Dtest observed in the future.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Note: ∗) without using Dtest. δ(A) :=

{
1, if A is true

0, else



Business Analytics 2. Binary Nominal Targets (Binary Classification)

Prediction with 0/1 loss (binary classification)

The prediction problem with 0/1 loss (binary classification)
`(y , ŷ) := δ(y 6= ŷ) minimizes the misclassification rate:

MR(Dtest, ŷ) :=
1

n

∑
y∈Dtest

δ(y 6= ŷ)

Lemma
The predicted value with minimal misclassification rate is the
majority class:

ŷ :=

{
1, if n̂1 > n̂0

0, else

with n̂y := |{y ′ ∈ Dtrain | y ′ = y}|, y ∈ Y := {0, 1}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Note: Equivalent to minimizing MR is maximizing accuracy
acc(Dtest, ŷ) := 1

n

∑
y∈Dtest δ(y = ŷ).



Business Analytics 2. Binary Nominal Targets (Binary Classification)

Prediction with 0/1 loss (binary classification)

Lemma
The predicted value with minimal misclassification rate is the
majority class:

ŷ :=

{
1, if n̂1 > n̂0

0, else

with n̂y := |{y ′ ∈ Dtrain | y ′ = y}|, y ∈ Y := {0, 1}

Proof.
MR(Dtrain, ŷ = 0) =

|Dtrain| − n̂0

|Dtrain|

MR(Dtrain, ŷ = 1) =
|Dtrain| − n̂1

|Dtrain|

 minimal for ŷ with maximal n̂ŷ .
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Business Analytics 2. Binary Nominal Targets (Binary Classification)

Evaluation: Direct Bank Marketing

test set Dtest:
y ŷ
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no no
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no no
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Business Analytics 2. Binary Nominal Targets (Binary Classification)

Example: Direct Bank Marketing II

I Target space: Y := {no, yes} = {0, 1}
I Loss: `(y , ŷ) := δ(y 6= ŷ)cy ,ŷ , for c0,1 := 1, c1,0 := 20.

I Training set: Dtrain := {0, 0, 0, . . . , 0, 1, 0, . . .}
I Test set: Dtest := {0, 0, 0, . . . , 0, 1, 0, . . .}

Given some customer responses Dtrain, compute∗) a predicted
customer response ŷ with minimal misclassification cost:

cost(Dtest, ŷ) :=
1

n

∑
y∈Dtest

δ(y 6= ŷ)cy ,ŷ

for customer responses Dtest observed in the future.
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Note: ∗) without using Dtest.



Business Analytics 2. Binary Nominal Targets (Binary Classification)

Prediction with misclassification cost

Given misclassification costs c0,1, c1,0 ∈ R, the prediction problem with
misclassification cost (cost-sensitive binary classification)
`(y , ŷ) := δ(y 6= ŷ)cy ,ŷ minimizes the misclassification cost:

cost(Dtest, ŷ) :=
1

n

∑
y∈Dtest

δ(y 6= ŷ)cy ,ŷ

Lemma
The predicted value with minimal misclassification cost is:

ŷ :=

{
1, if n̂1c1,0 > n̂0c0,1

0, else

with n̂y := |{y ′ ∈ Dtrain | y ′ = y}|, y ∈ Y := {0, 1}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Note: The problem depends only on the cost ratio c0,1/c1,0.



Business Analytics 2. Binary Nominal Targets (Binary Classification)

Prediction with misclassification cost

Lemma
The predicted value with minimal misclassification cost is:

ŷ :=

{
1, if n̂1c1,0 > n̂0c0,1

0, else

with n̂y := |{y ′ ∈ Dtrain | y ′ = y}|, y ∈ Y := {0, 1}

Proof.
cost(Dtrain, ŷ = 0) =

n̂1c1,0

|Dtrain|

cost(Dtrain, ŷ = 1) =
n̂0c0,1

|Dtrain|

 minimal for ŷ with maximal n̂ŷcŷ ,1−ŷ .
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Business Analytics 2. Binary Nominal Targets (Binary Classification)

Evaluation: Direct Bank Marketing II
test set Dtest:

y ŷ

no yes
no yes
no yes

...
...

no yes
yes yes
no yes
no yes
no yes

...
...

MR: 0.889
cost: 0.889
cost (”no”): 2.21

no yes

term deposit subscription (y)

0
50

0
10

00
15

00
20

00

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Business Analytics 3. Nominal Targets (Multiclass Classification)

Outline

0. The Prediction Problem Informally

1. Continuous Targets (Regression)

2. Binary Nominal Targets (Binary Classification)

3. Nominal Targets (Multiclass Classification)

4. Set-valued Targets (Multi-label Classification)

5. Ranking Targets (Ranking)

6. Continuous Targets with Variance

7. Binary, Nominal and Set-valued Targets with Variance

8. Conclusion
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Business Analytics 3. Nominal Targets (Multiclass Classification)

Example: First Highly-Rated Product

train set Dtrain:
product name (movie) ID

Monty Python and the Holy Grail (1974) 168
Conspiracy Theory (1997) 328
Men in Black (1997) 257
Devil’s Advocate, The (1997) 307
Face/Off (1997) 298
English Patient, The (1996) 286
L.A. Confidential (1997) 302
Red Corner (1997) 754
...
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Note: Data derived from Movielens 100k.

http://www.grouplens.org/node/73


Business Analytics 3. Nominal Targets (Multiclass Classification)

Example: First Highly-Rated Product

train set Dtrain:
product name (movie) ID

Monty Python and the Holy Grail (1974) 168
Conspiracy Theory (1997) 328
Men in Black (1997) 257
Devil’s Advocate, The (1997) 307
Face/Off (1997) 298
English Patient, The (1996) 286
L.A. Confidential (1997) 302
Red Corner (1997) 754
...

0
5

10
15

20
25

30

first movies rated with 5 stars by users

movie

fr
eq

ue
nc

y

1 89 211 340 474 603 736 873 1016 1194 1620
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Note: Data derived from Movielens 100k.

http://www.grouplens.org/node/73


Business Analytics 3. Nominal Targets (Multiclass Classification)

Example: First Highly-Rated Product

I Target space: Y := {1, 2, . . . , 1682}
I Loss: `(y , ŷ) := δ(y 6= ŷ)

I Training set: Dtrain := {168, 328, 257, 307, . . .}
I Test set: Dtest := {275, 258, 127, 258, 654, . . .}

Given some first highly-rated products Dtrain, compute∗) a predicted
first highly-rated products ŷ with minimal misclassification rate:

MR(Dtest, ŷ) :=
1

n

∑
y∈Dtest

δ(y 6= ŷ)

for first highly-rated products Dtest observed in the future.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Note: ∗) without using Dtest.



Business Analytics 3. Nominal Targets (Multiclass Classification)

Prediction with 0/1 loss (multiclass classification)

The prediction problem with 0/1 loss (multiclass classification)
`(y , ŷ) := δ(y 6= ŷ) minimizes the misclassification rate:

MR(Dtest, ŷ) :=
1

n

∑
y∈Dtest

δ(y 6= ŷ)

Lemma
The predicted value with minimal misclassification rate is the
majority class:

ŷ := arg max
y∈Y

ny

with n̂y := |{y ′ ∈ Dtrain | y ′ = y}|, y ∈ Y

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Note: Equivalent to minimizing MR is maximizing accuracy
acc(Dtest, ŷ) := 1

n

∑
y∈Dtest δ(y = ŷ).



Business Analytics 3. Nominal Targets (Multiclass Classification)

Prediction with 0/1 loss (multiclass classification)

Lemma
The predicted value with minimal misclassification rate is the
majority class:

ŷ := arg max
y∈Y

ny

with n̂y := |{y ′ ∈ Dtrain | y ′ = y}|, y ∈ Y

Proof.
MR(Dtrain, ŷ) =

|Dtrain| − n̂ŷ

|Dtrain|

 minimal for ŷ with maximal n̂ŷ .
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Business Analytics 3. Nominal Targets (Multiclass Classification)

Evaluation: First Highly-Rated Product

test set Dtrain:
y ŷ

275 286
258 286
127 286
258 286
654 286
69 286
151 286
302 286
286 286
148 286
...

MR: 0.986

0
5

10
15

20
25

30
35

first movies rated with 5 stars by users

movie

fr
eq

ue
nc

y

1 79 181 298 428 589 708 853 1015 1221 1449
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Business Analytics 3. Nominal Targets (Multiclass Classification)

Example: First Highly-Rated Product II

I Target space: Y := {1, 2, . . . , 1682}
I Loss: `(y , ŷ) := δ(y 6= ŷ)cy ,ŷ , for given cy ,ŷ .

I Training set: Dtrain := {168, 328, 257, 307, . . .}
I Test set: Dtest := {275, 258, 127, 258, 654, . . .}

Given some first highly-rated products Dtrain, compute∗) a predicted
first highly-rated product ŷ with minimal misclassification cost:

cost(Dtest, ŷ) :=
1

n

∑
y∈Dtest

δ(y 6= ŷ)cy ,ŷ

for first highly-rated products Dtest observed in the future.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Note: ∗) without using Dtest.



Business Analytics 3. Nominal Targets (Multiclass Classification)

Prediction with misclassification cost

Given a misclassification cost matrix c ∈ R| Y |×| Y |, the prediction
problem with misclassification cost (cost-sensitive classification)
`(y , ŷ) := δ(y 6= ŷ)cy ,ŷ minimizes the misclassification cost:

cost(Dtest, ŷ) :=
1

n

∑
y∈Dtest

δ(y 6= ŷ)cy ,ŷ

Lemma
The predicted value with minimal misclassification cost is:

ŷ := arg min
ŷ∈Y

∑
y∈Y,y 6=ŷ

n̂ycy ,ŷ

with n̂y := |{y ′ ∈ Dtrain | y ′ = y}|, y ∈ Y

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Note: The diagonal cy,y := 0 for all y ∈ Y.



Business Analytics 3. Nominal Targets (Multiclass Classification)

Prediction with misclassification cost

Lemma
The predicted value with minimal misclassification cost is:

ŷ := arg min
ŷ∈Y

∑
y∈Y,y 6=ŷ

n̂ycy ,ŷ

with n̂y := |{y ′ ∈ Dtrain | y ′ = y}|, y ∈ Y

Proof.
cost(Dtrain, ŷ) =

1

|Dtrain|
∑

y∈Y,y 6=ŷ

n̂ycy ,ŷ
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Business Analytics 4. Set-valued Targets (Multi-label Classification)

Outline

0. The Prediction Problem Informally

1. Continuous Targets (Regression)

2. Binary Nominal Targets (Binary Classification)

3. Nominal Targets (Multiclass Classification)

4. Set-valued Targets (Multi-label Classification)

5. Ranking Targets (Ranking)

6. Continuous Targets with Variance

7. Binary, Nominal and Set-valued Targets with Variance

8. Conclusion
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Business Analytics 4. Set-valued Targets (Multi-label Classification)

Example: All Highly-Rated Products

train set Dtrain:
movie IDs

1, 6, 9, 12, 13, . . .
320, 321, 328, 340, 346, 347
42, 89,100,101,109, . . .
4, 7, 8, 9, 12, . . .
6, 50, 201, 286, 298, . . .
9, 15, 28, 83, 173, . . .
4, 12, 13, 23, 28, . . .
50, 125, 181, 255, 269, . . .
...
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Note: Data derived from Movielens 100k.
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Business Analytics 4. Set-valued Targets (Multi-label Classification)

Example: All Highly-Rated Products

train set Dtrain:
movie IDs

1, 6, 9, 12, 13, . . .
320, 321, 328, 340, 346, 347
42, 89,100,101,109, . . .
4, 7, 8, 9, 12, . . .
6, 50, 201, 286, 298, . . .
9, 15, 28, 83, 173, . . .
4, 12, 13, 23, 28, . . .
50, 125, 181, 255, 269, . . .
...

0
2

4
6

8

all movies rated with 5 starts by a user

movie ID

fr
eq

ue
nc

y

1 67 154 256 357 465 568 670 778 879 993 1114 1242
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Note: Data derived from Movielens 100k.

http://www.grouplens.org/node/73


Business Analytics 4. Set-valued Targets (Multi-label Classification)

Example: All Highly-Rated Products

I Target space: Y := P(I ) := {∅, {1}, . . . , {1682}, {1, 2}, {1, 3}, . . .}
with I := {1, 2, . . . , 1682}.

I Training set: Dtrain := {{1, 6, 9, . . .}, {320, 321, 328, . . .}, . . .}
I Test set: Dtest := {{50, 100, 127, . . .}, {50, 258, 294, . . .}, . . .}

What is a good quality measure?

I Recall: recall(y , ŷ) := |y∩ŷ |
|y |

I Precision: precision(y , ŷ) := |y∩ŷ |
|ŷ |

I F1 measure: F1(y , ŷ) := 2 recall(y ,ŷ)precision(y ,ŷ)
recall(y ,ŷ)+precision(y ,ŷ) = 2|y∩ŷ |

|y |+|ŷ |

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 52

Note: Quality measures are maximized, losses are minimized, thus the negative of a quality
measure is a loss.
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I Recall: recall(y , ŷ) := |y∩ŷ |
|y |

— but recall is maximized trivially for ŷ := I .

I Precision: precision(y , ŷ) := |y∩ŷ |
|ŷ |

— but precision is maximized trivially for ŷ := ∅.

I F1 measure: F1(y , ŷ) := 2 recall(y ,ŷ)precision(y ,ŷ)
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Example: All Highly-Rated Products

I Target space: Y := P(I ) := {∅, {1}, . . . , {1682}, {1, 2}, {1, 3}, . . .}
with I := {1, 2, . . . , 1682}.

I Training set: Dtrain := {{1, 6, 9, . . .}, {320, 321, 328, . . .}, . . .}
I Test set: Dtest := {{50, 100, 127, . . .}, {50, 258, 294, . . .}, . . .}

What is a good quality measure?

I Recall: recall(y , ŷ) := |y∩ŷ |
|y |

— but recall is maximized trivially for ŷ := I .

I Precision: precision(y , ŷ) := |y∩ŷ |
|ŷ |

— but precision is maximized trivially for ŷ := ∅.
I F1 measure: F1(y , ŷ) := 2 recall(y ,ŷ)precision(y ,ŷ)

recall(y ,ŷ)+precision(y ,ŷ) = 2|y∩ŷ |
|y |+|ŷ |
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Note: Quality measures are maximized, losses are minimized, thus the negative of a quality
measure is a loss.



Business Analytics 4. Set-valued Targets (Multi-label Classification)

Example: All Highly-Rated Products

I Target space: Y := P(I ) := {∅, {1}, . . . , {1682}, {1, 2}, {1, 3}, . . .}
with I := {1, 2, . . . , 1682}.

I Loss: `(y , ŷ) := 1− F1(y , ŷ) = 1− 2|y∩ŷ |
|y |+|ŷ | (negative F1)

I Training set: Dtrain := {{1, 6, 9, . . .}, {320, 321, 328, . . .}, . . .}
I Test set: Dtest := {{50, 100, 127, . . .}, {50, 258, 294, . . .}, . . .}
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I Training set: Dtrain := {{1, 6, 9, . . .}, {320, 321, 328, . . .}, . . .}
I Test set: Dtest := {{50, 100, 127, . . .}, {50, 258, 294, . . .}, . . .}

Given some sets of highly-rated products Dtrain, compute∗) a predicted
sets of highly-rated products ŷ with minimal negative F1 error:

F1(Dtest, ŷ) :=
1

n

∑
y∈Dtest

1− F1(y , ŷ)

for sets of highly-rated products Dtest observed in the future.
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Note: ∗) without using Dtest.



Business Analytics 4. Set-valued Targets (Multi-label Classification)

Prediction with Negative F1 loss (multi-label classification)

The prediction problem with negative F1 loss (multi-label

classification) `(y , ŷ) := 1− F1(y , ŷ) = 1− 2|y∩ŷ |
|y |+|ŷ | minimizes the

negative F1 error:

1-F1(Dtest, ŷ) :=
1

n

∑
y∈Dtest

1− 2|y ∩ ŷ |
|y |+ |ŷ |
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Business Analytics 5. Ranking Targets (Ranking)

Outline

0. The Prediction Problem Informally

1. Continuous Targets (Regression)

2. Binary Nominal Targets (Binary Classification)

3. Nominal Targets (Multiclass Classification)

4. Set-valued Targets (Multi-label Classification)

5. Ranking Targets (Ranking)

6. Continuous Targets with Variance

7. Binary, Nominal and Set-valued Targets with Variance

8. Conclusion
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Business Analytics 5. Ranking Targets (Ranking)

Example: Product Preferences
Customer Alice:

I product A is better than B

I product C is better than D

I products A/B and C/D are not comparable.

Customer Bob:

I product A is better than B, B is better than C

I product D is better than C

I products A/B and D are not comparable.

Avoid:

I product A is better than A.

I product A is better than B, B better than C,
but A is not better than C.
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Business Analytics 5. Ranking Targets (Ranking)

Example: Product Preferences

Avoid:

I product A is better than A.

I product A is better than B, B better than C,
but A is not better than C.

For a set I :

ranking(I ) := {y ⊆ I × I |∀i ∈ I : (i , i) 6∈ y ,

∀i , j , k ∈ I : (i , j), (j , k) ∈ y ⇒ (i , k) ∈ y}
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Business Analytics 5. Ranking Targets (Ranking)

Example: Product Preferences

I Target space: Y := ranking({A,B,C ,D})
I Training set:
Dtrain := {{(A,B), (C ,D)}, {(A,B), (B,C ), (A,C ), (D,C )}, . . .}

I Test set: Dtest := {{(A,B), (A,C ), (A,D)}, . . .}

How to measure error for rankings?

I 0/1 loss: `(y , ŷ) := δ(y 6= ŷ).
— very rough, e.g., ŷ1 := {(A,B)} as bad as ŷ2 := {(B,A), (D,C )}
for yAlice.

I 1 - Area under the Curve (1-AUC):

AUC(y , ŷ) :=
1

|y |
∑

(i ,j)∈y

δ((i , j) ∈ ŷ)
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Business Analytics 5. Ranking Targets (Ranking)

Prediction with 1-AUC loss (ranking)

The prediction problem with 1-AUC loss (ranking)
`(y , ŷ) := 1− AUC(y , ŷ) = 1− 1

|y |
∑

(i ,j)∈y δ((i , j) ∈ ŷ) minimizes the
1-AUC error:

1-AUC(Dtest, ŷ) :=
1

n

∑
y∈Dtest

1− 1

|y |
∑

(i ,j)∈y

δ((i , j) ∈ ŷ)
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Business Analytics 6. Continuous Targets with Variance

Outline

0. The Prediction Problem Informally

1. Continuous Targets (Regression)

2. Binary Nominal Targets (Binary Classification)

3. Nominal Targets (Multiclass Classification)

4. Set-valued Targets (Multi-label Classification)

5. Ranking Targets (Ranking)

6. Continuous Targets with Variance

7. Binary, Nominal and Set-valued Targets with Variance

8. Conclusion
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Business Analytics 6. Continuous Targets with Variance

Example: House Prices Again

train set Dtrain:
price [$]

114,300
114,200
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Business Analytics 6. Continuous Targets with Variance
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How useful is an average price of ca. 130.000$ if it is untypical?
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Business Analytics 6. Continuous Targets with Variance

Example: House Prices Again

How to predict the certainty? How prices may vary?

I predict minimum and maximum prices?
— OK, but does not tell about typical prices either.

I predict average price plus price range that contains 25%, 50% of all
prices?
— OK, but will also be off for bimodal distributions.

I predict for every possible price a score how likely it is.
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Business Analytics 6. Continuous Targets with Variance

Density
Let Y be a set. A function

p : Y → R+
0

with ∫
Y

p(y)dy = 1

is called density.
For y ∈ Y, p(y) measures how likely y is.

Example:

p(y ; a, b) :=
1

b − a
δ(y ∈ [a, b]), a, b ∈ R, a < b (uniform density)

p(y ;µ, σ2) :=
1√

2πσ2
e
−(y−µ)2

2σ2 , µ, σ2 ∈ R, σ2 > 0 (normal density)
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Business Analytics 6. Continuous Targets with Variance

Likelihood

For a set D ⊆ Y
L(D; p) :=

∏
y∈D

p(y)

is called likelihood and

`(D; p) := − log L(D; p) =
∑
y∈D

log p(y)

is called negative log-likelihood.

The better p models D,

I the higher the likelihood,

I the smaller the negative log-likelihood.
(The negative log-likelihood is a loss.)
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Business Analytics 6. Continuous Targets with Variance

Best Uniform Density for a Data Set?

Let D ⊆ Y be a set. What is the uniform density

p(y ; a, b) :=
1

b − a
δ(y ∈ [a, b]), a, b ∈ R, a < b

that best models D, i.e., with maximal likelihood?

For any y0 ∈ D, let:

a :=y0 −
1

n
, b := y0 +

1

n
, n ∈ N

 L(D; p) ≥n

2

i.e., the likelihood is unbounded: there is no best uniform density.
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Business Analytics 6. Continuous Targets with Variance

Best Normal Density for a Data Set?
The same is true for the normal density with µ = y0 ∈ D.

If we exclude such µ:

− log L(p;D) = |D|1
2

log(2π) + |D|1
2

log σ2 +
∑
y∈D

(y − µ)2

2σ2

∂(− log L)

∂µ
=

∑
y∈D
−2

y − µ
2σ2

!
= 0

 µ =
1

|D|
∑
y∈D

y

∂(− log L)

∂σ2
=

1

2
|D| 1

σ2
−

∑
y∈D

(y − µ)2

2(σ2)2

!
= 0

 σ2 =
1

|D|
∑
y∈D

(y − µ)2
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− log L(p;D) = −
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y∈D

log p(y)

= −
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y∈D

log
1√

2πσ2
e
−(y−µ)2

2σ2

=
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y∈D

1

2
log(2π) +
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y∈D

1

2
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Business Analytics 6. Continuous Targets with Variance

Example: House Prices Again

a := minDtrain = 69100, b := maxDtrain = 188000

 − log L(Dtrain; puniform) = 11.686

− log L(Dtest; puniform) =∞

as Dtest contains a price y = 211200 outside the training range, thus with
puniform(y) = 0.

µ = µDtrain = 129395.3, σ = σDtrain = 26562

 − log L(Dtrain; pnormal) = 11.600

− log L(Dtest; pnormal) = 11.643
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Business Analytics 6. Continuous Targets with Variance

Example: House Prices Again
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Business Analytics 7. Binary, Nominal and Set-valued Targets with Variance

Outline

0. The Prediction Problem Informally

1. Continuous Targets (Regression)

2. Binary Nominal Targets (Binary Classification)

3. Nominal Targets (Multiclass Classification)

4. Set-valued Targets (Multi-label Classification)

5. Ranking Targets (Ranking)

6. Continuous Targets with Variance

7. Binary, Nominal and Set-valued Targets with Variance

8. Conclusion
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Business Analytics 7. Binary, Nominal and Set-valued Targets with Variance

Certainty for Binary Targets

Predict not just the class/label y ∈ Y, but provide

I a probability / certainty factor ŷ ∈ [0, 1] and then predict

ŷ ′ := δ(ŷ > 0.5)

I an unbounded certainty factor / score ŷ ∈ R and then predict

ŷ ′ := δ(ŷ > 0)
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Business Analytics 7. Binary, Nominal and Set-valued Targets with Variance

Binary Targets / Losses for Probabilities
I treat y like a continuous target and use any regression loss, e.g.,

`(y , ŷ) := (y − ŷ)2

I binomial negative log-likelihood:

L(y , ŷ) :=ŷ y (1− ŷ)(1−y)

`(y , ŷ) :=− log L(y , ŷ) = −y log ŷ − (1− y) log(1− ŷ)

Lemma
Both, squared error and binomial negative log-likelihood, are minimized by
the relative positive class frequency:

ŷ :=
n̂1

|Dtrain|
=

1

|Dtrain|
∑

y∈Dtrain

y
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Business Analytics 7. Binary, Nominal and Set-valued Targets with Variance

Binary Targets / Losses for Scores
I treat y like a continuous target and use any regression loss, e.g.,

`(y , ŷ) := (y − ŷ)2

— but this does also penalize ŷ > 1 for y = 1 !
I hinge loss:

`(y , ŷ) :=2[y + ŷ − 2y ŷ ]0 := 2 max(y + ŷ − 2y ŷ , 0)

=2


1− ŷ , if y = 1, ŷ ≤ 1

ŷ , if y = 0, ŷ ≥ 0

0, else

Lemma
Hinge loss is minimized by

ŷ := arg max
ŷ

n̂ŷ
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Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

44 / 52



Business Analytics 7. Binary, Nominal and Set-valued Targets with Variance

Binary Targets / Losses for Scores
I treat y like a continuous target and use any regression loss, e.g.,
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Note: Usually hinge loss is used for target encoding {+1,−1} instead of {0, 1} and then
equals `(y , ŷ) := [1− yŷ ]0.



Business Analytics 7. Binary, Nominal and Set-valued Targets with Variance

Binary Targets / Losses for Scores (2/2)

I squared hinge loss:

`(y , ŷ) :=(2[y + ŷ − 2y ŷ ]0)2 := (2 max(y + ŷ − 2y ŷ , 0))2

=2


(1− ŷ)2, if y = 1, ŷ ≤ 1

ŷ 2, if y = 0, ŷ ≥ 0

0, else

Lemma
Squared hinge loss is minimized by the relative positive class frequency

ŷ :=
n̂1

|Dtrain|
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Note: Usually hinge loss is used for target encoding {+1,−1} instead of {0, 1} and then
squared hinge loss equals `(y , ŷ) := ([1− yŷ ]0)2.



Business Analytics 7. Binary, Nominal and Set-valued Targets with Variance

Certainty for Nominal Targets

Predict not just the class/label ŷ ∈ Y, but provide for each possible label
y ∈ Y
I a probability / certainty factor ŷ(y) ∈ [0, 1] and then predict

ŷ ′ := arg max
y∈Y

ŷ(y)

I an unbounded certainty factor / score ŷ(y) ∈ R and then predict

ŷ ′ := arg max
y∈Y

ŷ(y)
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Business Analytics 7. Binary, Nominal and Set-valued Targets with Variance

Nominal Targets / Losses for Probabilities
I treat y like a continuous target and use any multivariate regression

loss, e.g.,

`(y , ŷ) :=
∑
y ′∈Y

(δ(y = y ′)− ŷ(y))2

I multinomial negative log-likelihood:

L(y , ŷ) :=
∏
y ′∈Y

ŷ(y ′)δ(y ′=y)

`(y , ŷ) :=− log L(y , ŷ) = −
∏
y ′∈Y

δ(y ′ = y) log ŷ(y ′)

Lemma
Both, multivariate squared error and multinomial negative log-likelihood,
are minimized by the relative class frequencies:

ŷ(y ′) :=
n̂y ′

|Dtrain|
=

1

|Dtrain|
∑

y∈Dtrain

δ(y = y ′)
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ŷ(y ′) :=
n̂y ′

|Dtrain|
=

1

|Dtrain|
∑

y∈Dtrain

δ(y = y ′)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

47 / 52



Business Analytics 7. Binary, Nominal and Set-valued Targets with Variance

Nominal Targets / Losses for Probabilities
I treat y like a continuous target and use any multivariate regression

loss, e.g.,

`(y , ŷ) :=
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`(y , ŷ) :=− log L(y , ŷ) = −
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Business Analytics 7. Binary, Nominal and Set-valued Targets with Variance

Certainty for Set-Valued Targets

For set-valued targets, a score/certainty factor for every set y ∈ Y := P(I )
would have to be predicted.

But usually, one predicts just a score ŷ(i) for every label i ∈ I .

If non-negative, such scores induce a distribution on the power set via

p(y) :=
1

Z

∏
i∈y

ŷ(i)
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Note: Z is the normalizing constant, Z :=
∑

y⊆I

∏
i∈y ŷ(i).



Business Analytics 7. Binary, Nominal and Set-valued Targets with Variance

Set-Valued Targets / Losses

I Negative Normalized Discounted Cumulative Gain (neg. NDCG):

`(y , ŷ) :=1− NDCG(y , ŷ)

NDCG(y , ŷ) :=
1∑|y |

i=1
1

log(1+i)

∑
i∈y

1

log(1 + rank(ŷ , i))

with rank(ŷ , i) :=|{i ′ ∈ I | ŷ(i ′) ≥ y(i)}

Example:

y :={1, 3, 6},
y ′ 1 2 3 4 5 6

ŷ(y ′) 0.5 0.4 0.7 0.1 0.0 0.1

rank(ŷ , y ′) 2 3 1 4 6 5

NDCG(y , ŷ) =
1

1
log 2 + 1

log 3 + 1
log 4

(
1

log(1 + 2)
+

1

log(1 + 1)
+

1

log(1 + 5)
)

= 0.947
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NDCG(y , ŷ) :=
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Note: Here NCDG for binary relevances is given. NDCG also is defined more generally for
non-binary relevances.



Business Analytics 7. Binary, Nominal and Set-valued Targets with Variance

Set-Valued Targets / Losses

Lemma
Negative NDCG is minimized by any score ŷ that induces a ranking by
relative class frequency, esp. relative class frequencies themselves:

ŷ(y ′) :=
n̂y ′

|Dtrain|
=

1

|Dtrain|
∑

y∈Dtrain

δ(y = y ′)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

50 / 52



Business Analytics 8. Conclusion

Outline

0. The Prediction Problem Informally

1. Continuous Targets (Regression)

2. Binary Nominal Targets (Binary Classification)

3. Nominal Targets (Multiclass Classification)

4. Set-valued Targets (Multi-label Classification)

5. Ranking Targets (Ranking)

6. Continuous Targets with Variance

7. Binary, Nominal and Set-valued Targets with Variance

8. Conclusion

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

51 / 52



Business Analytics 8. Conclusion

Summary of Tasks & Error Measures

point estimation density estimation
(just the prediction) (prediction plus variance/certainty)

univariate targets:
continuous target Root Mean Squared Error (RMSE) Gaussian Likelihood
(regression) Mean Average Error (MAE)

ε-insensitive error
binary nominal target Misclassification Rate Hinge loss
(binary Misclassification Cost Squared hinge loss
classification) Binomial Likelihood

multivariate targets:
nominal target Misclassification Rate Multinomial Likelihood
(multiclass Misclassification Cost
classification)
set-valued target Recall, Precision, F1 Normalized Discounted
(multi-label Recall@10, Precision@10 Cumulative Gain (NDCG)
classification) Mean Average Precision (MAP)
ranking target Area under the curve (AUC)
(ranking)
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Business Analytics 8. Conclusion

Conclusion

I Prediction is the task to learn an unknown dependency of a target
from predictors from observed data (training data).

I Part of the problem setting is a loss that defines how bad different
incorrect predictions are.

I As the dependency to learn is unknown, different models are assessed
by their performance on an a fresh sample (test set).

I Different prediction problems can be described by

1. the target space Y and
2. the loss `.

I The most common prediction tasks are

1. regression: continuous target (Y := R),
esp. least squares regression (squared loss ` = (y − ŷ)2).

2. binary classification (Y := {0, 1})),
esp. not cost-sensitive (0/1 loss, misclassification rate ` = δ(y 6= ŷ)).
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