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Business Analytics 0. Simple Conditional Constant Models

Overall Procedure

given:

1. data set

2. target variable

3. loss

procedure:

1. split the data into a training and a test set.

2. learn a model from the training data.

3. predict with the model for the test data
(withholding the target variable)

4. evaluate the model by comparing the true (withhold) values of the
target variable and the predicted ones.
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Business Analytics 0. Simple Conditional Constant Models

Constant Model

Generally, a model is a function

ŷ : X → Y

predicting different target values for different predictor values
(“conditionally on predictors”).

In section 1.1, our model has been a constant:

ŷ(x) := ŷ ∈ Y

i.e., we predict the same value for all instances (“unconditionally”)
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Business Analytics 0. Simple Conditional Constant Models

Example: House Prices (Histogram)

Histogram of houseprices$Price
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Business Analytics 0. Simple Conditional Constant Models

Example: House Prices (Boxplot)
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Business Analytics 0. Simple Conditional Constant Models

Boxplots
A compact (one-dimensional) representation of a sample Y of a
continuous variable:

I the y axis represents the domain of Y ,
I the box represents the

I first quartile (bottom of the box)
i.e., the value y1 ∈ Y with

|{y ∈ Y | y < y1}| = b1

4
|Y |c

I third quartile (top of the box)
i.e., the value y3 ∈ Y with

|{y ∈ Y | y < y3}| = b3

4
|Y |c

I the line inside the box represents the
I median

i.e., the value y2 ∈ Y with

|{y ∈ Y | y < y2}| = b1

2
|Y |c
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Business Analytics 0. Simple Conditional Constant Models

Boxplots (2/2)

I . . .

I the whiskers represent
I the smallest sample exceeding the lower fence (bottom whisker)

i.e., the value

y0 := min{y ∈ Y | y > y1 − 1.5(y3 − y1)}

I the largest sample below the upper fence (top whisker)
i.e., the value

y5 := max{y ∈ Y | y < y3 + 1.5(y3 − y1)}

I points outside the whiskers represent
I all samples below the lower fence and
I all samples above the upper fence.
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Note: Upper fence = y3 + 1.5IQR, lower fence = y1 − 1.5IQR,
IQR = inter quartals range = y3 − y1.
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Business Analytics 0. Simple Conditional Constant Models

Example: House Prices (Boxplot w. Mean)
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Note: Sometimes means are marked in boxplots, too (here: red diamond).



Business Analytics 0. Simple Conditional Constant Models

Example: House Prices: Predictors

HomeID Price SqFt Bedrooms Bathrooms Offers Brick Neighborhood
1 114300 1790 2 2 2 No East
2 114200 2030 4 2 3 No East
3 114800 1740 3 2 1 No East
4 94700 1980 3 2 3 No East
5 119800 2130 3 3 3 No East
6 114600 1780 3 2 2 No North
7 151600 1830 3 3 3 Yes West
8 150700 2160 4 2 2 No West
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Business Analytics 0. Simple Conditional Constant Models

Example: House Prices: Predictors

Histogram of houseprices$SqFt
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Business Analytics 0. Simple Conditional Constant Models

Example: House Prices: Predictors

Histogram of houseprices$SqFt * 0.09290304
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Business Analytics 0. Simple Conditional Constant Models

Example: House Prices: Predictors
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Business Analytics 0. Simple Conditional Constant Models

Example: House Prices: Predictors

houseprices$Price
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Business Analytics 0. Simple Conditional Constant Models

Scatterplots

To visualize dependencies between a continuous target Y and a
continuous predictor X within a sample D, one can plot a scatterplot of Y
vs X , i.e., points

πY ,X (Dtrain)
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Business Analytics 0. Simple Conditional Constant Models

Example: House Prices: Target vs Single Predictor
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Business Analytics 0. Simple Conditional Constant Models

Example: House Prices: Target vs Single Predictor

● ●●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

2.0 2.5 3.0 3.5 4.0 4.5 5.0

80
00

0
10

00
00

14
00

00
18

00
00

houseprices$Bedrooms

ho
us

ep
ric

es
$P

ric
e

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

11 / 58



Business Analytics 0. Simple Conditional Constant Models

Conditional Boxplots / Grouped Boxplots

To visualize dependencies between a continuous target Y and a nominal
predictor X within a sample D, one can plot a boxplot per group, i.e.,
subset of the sample having the same value for the predictor:

πY (Dtrain|X=x), for x ∈ domX

with D|X=x :={(x ′, y) ∈ D | x ′ = x},
πYD :={y ∈ domY | (x , y) ∈ D}
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Business Analytics 0. Simple Conditional Constant Models

Example: House Prices: Target vs Single Predictor (2/2)
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Business Analytics 0. Simple Conditional Constant Models

Example: House Prices: Target vs Single Predictor (2/2)
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Business Analytics 0. Simple Conditional Constant Models

Conditionally Constant Models

The most simple way to capture such a dependency between a target Y
and a nominal predictor X is to build a separate constant model for
each group, i.e., for each value of X .

I to optimize RMSE, one computes the group means:

ŷ(x) := meanπY (Dtrain|X=x)

I to optimize MAE, one computes the group medians:

ŷ(x) := medianπY (Dtrain|X=x)
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Business Analytics 0. Simple Conditional Constant Models

Example: House Prices: Conditionally Constant Models

X RMSE(Dtrain)

— 28 035.64

Bedrooms 24 194.59
Bathrooms —
Offers 27 401.65
Brick 24 350.58
Neighborhood 18 056.69
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Note: 50:50 train/test split. By Bathrooms fails due to empty cell in train.



Business Analytics 0. Simple Conditional Constant Models

Grouped Boxplots (Several Variables)

To see the effect of several variables X1 and X2 on a target Y jointly, one
can group data by their interaction, i.e., pairs of values (x1, x2):

πY (Dtrain|X1=x1 |X2=x2), for x1 ∈ domX1, x2 ∈ domX2

with D|X=x :={(x ′, y) ∈ D | x ′ = x},
πYD :={y ∈ domY | (x , y) ∈ D}
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Business Analytics 0. Simple Conditional Constant Models

Example: House Prices: Multiple Dependencies
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Business Analytics 0. Simple Conditional Constant Models

Conditionally Constant Models (Several Variables)

One can build more fine-grained models by conditioning on several
variables jointly.

I to optimize RMSE, one computes the group means:

ŷ(x) := meanπY (Dtrain|X1=x1 |X2=x2)

I to optimize MAE, one computes the group medians:

ŷ(x) := medianπY (Dtrain|X1=x1 |X2=x2)
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Business Analytics 0. Simple Conditional Constant Models

Example: House Prices: Conditionally Constant Models

X RMSE(Dtrain)

— 28 035.64

Bedrooms 24 194.59
Bathrooms —
Offers 27 401.65
Brick 24 350.58
Neighborhood 18 056.69

Brick × Neighborhood 16 565.43
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Note: 50:50 train/test split. By Bathrooms fails due to empty cell in train.



Business Analytics 0. Simple Conditional Constant Models

Conditional Constant Models for Classification

For other target spaces and losses such as

I binary classification

I multiclass classification

I multi-label classification

I etc.

conditional constant models work the same way: to compute the group
aggregates for each level of the grouping variable, i.e.,

I binary classification: majority label, relative class frequencies

I multiclass classification: majority label, relative class frequencies

I multi-label classification: relative class frequencies
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Business Analytics 0. Simple Conditional Constant Models

Issues and Ideas

1. empty cells:
I if there are no samples with a specific predictor value in train, one

cannot learn a group aggregate.
I fix: resort to total sample aggregate.

2. continuous predictors:
I for continuous predictors X there are no natural groups with the same

value.
I fix: discretize/bin the continuous predictor.

I disadvantage: information about similarity between different levels is
lost.

I advantage: can capture non-linear effects.

3. low-frequency cells:
I if there are only a few samples with a specific predictor value in train,

the group aggregate may not be learnt accurately.
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Business Analytics 0. Simple Conditional Constant Models

Outlook

1. One does not have to compute all cells on a grid domX1 × domX2,
but one can choose different variables X2(x1) to combine with
different values of x1 ∈ X1 (decision trees).

I conditional constant models on a single predictor can be interpreted as
decision tree stumps.

2. One can represent conditional constant models by linear models (see
section 1.3) on indicator variables for nominal levels.

3. To capture interactions between nominal predictors with many levels,
one can use factorization models (see chapter 5).
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Business Analytics 1. Nearest Neighbor

Outline

0. Simple Conditional Constant Models

1. Nearest Neighbor

2. Naive Bayes

3. Linear Discriminant Analysis (LDA)

4. Model Selection

5. Conclusion
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Business Analytics 1. Nearest Neighbor

Idea
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Business Analytics 1. Nearest Neighbor

Idea

A nearest neighbor model predicts for an instance x ∈ X
the aggregate of the target values y ′

of the nearest neighbors (x ′, y ′) ∈ Dtrain,
i.e., of the training instances with smallest distance d(x , x ′).
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Business Analytics 1. Nearest Neighbor

Idea

A nearest neighbor model predicts for an instance x ∈ X
the aggregate of the target values y ′

of the nearest neighbors (x ′, y ′) ∈ Dtrain,
i.e., of the training instances with smallest distance d(x , x ′).

Distance measures:
I function d : X ×X → R+

0 , e.g., for X := Rm

I Euclidean distance / L2 distance:

d(x , x ′) :=

√√√√ m∑
i=1

(xi − x ′i )
2

I Manhattan distance / L1 distance:

d(x , x ′) :=
m∑
i=1

|xi − x ′i |
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Business Analytics 1. Nearest Neighbor

Idea

A nearest neighbor model predicts for an instance x ∈ X
the aggregate of the target values y ′

of the nearest neighbors (x ′, y ′) ∈ Dtrain,
i.e., of the training instances with smallest distance d(x , x ′).

How many neighbors?

I fix a number k ∈ N of nearest neighbors to select.
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Business Analytics 1. Nearest Neighbor

Idea

A nearest neighbor model predicts for an instance x ∈ X
the aggregate of the target values y ′

of the nearest neighbors (x ′, y ′) ∈ Dtrain,
i.e., of the training instances with smallest distance d(x , x ′).

Aggregate:

I continuous target, RMSE loss: average.

I continuous target, MAE loss: median.
...

I nominal target, misclassification rate: majority class.

I nominal target, squared loss: relative class frequencies.
...

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

24 / 58



Business Analytics 1. Nearest Neighbor

Example: Artificial Houseprice Data

longitude latitude size pageviews price

1 50 50 100 22000 120000
2 45 60 120 13000 130000
3 53 58 90 24000 110000
4 40 52 100 20000 120000
5 45 45 110 19000 130000
6 30 20 150 27000 210000
7 39 22 140 21000 190000
8 25 18 160 15000 250000
9 28 35 160 22000 230000
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Business Analytics 1. Nearest Neighbor

Example: Artificial Houseprice Data
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Note: This is the data as seen by the Euclidean distance without normalization!



Business Analytics 1. Nearest Neighbor

Prediction Formula

ŷ(x) := aggregate(Nk(Dtrain, x))

where Nk(D, x) :=
k

arg min
(x ′,y ′)∈D

d(x , x ′) (neighborhood)

i.e., for continuous targets and RMSE loss

ŷ(x) := mean(πY (Nk(Dtrain, x))) =
1

k

∑
(x ′,y ′)∈Nk (Dtrain,x)

y ′

and for nominal targets and squared loss

p̂(Y = y |x) :=
1

k
|{(x ′, y ′) ∈ Nk(Dtrain, x) | y = y ′}|
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Business Analytics 1. Nearest Neighbor

Inference Algorithm

To compute k-nearest neighbors in a naive way, for every query x ∈ X the
whole training set Dtrain can be sorted by increasing distance d(x , ·) to the
query instance

Dtrain = {(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), . . . , (x(n), y(n))}
with d(x , x(1)) ≤ d(x , x(2)) ≤ d(x , x(3)) ≤ . . . d(x , x(n))

and then the first k instances be taken:

Nk(Dtrain, x) = {(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), . . . , (x(k), y(k))}
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Note: Instead of a full sort with complexity O(n log n), a partial sorting such as partial
quicksort with complexity O(n + k log k) [Ano13] should be used; or a naive online
selection with complexity O(nk).



Business Analytics 2. Naive Bayes

Outline

0. Simple Conditional Constant Models

1. Nearest Neighbor

2. Naive Bayes

3. Linear Discriminant Analysis (LDA)

4. Model Selection

5. Conclusion
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Business Analytics 2. Naive Bayes

Bayes’ Rule

For two random variables X ,Y :

p(Y | X ) =
p(X | Y ) p(Y )

p(X )

p(X = x) =
∑

y ′∈domY

p(X = x | Y = y ′) p(Y = y ′)
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Business Analytics 2. Naive Bayes

Bayes’ Rule / Example: start-ups

domY := {success, failure}, domX := {plan, no plan}

p(X = plan | Y = succ) =
9

10
, p(X = plan | Y = fail) =

1

2

p(Y = succ) =
1

20
= 0.05

p(succ | plan) =
p(plan | succ) p(succ)

p(plan | succ) p(succ) + p(plan | fail) p(fail)

=
9

10 ·
1

20
9

10 ·
1

20 + 1
2 ·

19
20

= 0.087

p(succ | no plan) =
p(no plan | succ) p(succ)

p(no plan | succ) p(succ) + p(no plan | fail) p(fail)

=
1

10 ·
1

20
1

10 ·
1

20 + 1
2 ·

19
20

= 0.0104
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Business Analytics 2. Naive Bayes

Estimate Probabilities from Data

no. X Y

1 plan fail
...

...
...

95 plan fail
96 no plan fail

...
...

...
190 no plan fail
191 plan succ

...
...

...
199 plan succ
200 no plan succ
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Business Analytics 2. Naive Bayes

Bayes’ Rule for Prediction

If used for predicting Y , the denominator in Bayes’ rule can be omitted:

p(Y | X ) =
p(X | Y ) p(Y )

p(X )

∝ p(X | Y ) p(Y )

Example:

p(succ | plan) ∝ p(plan | succ) p(succ) =
9

10
· 1

20
= 0.045

p(fail | plan) ∝ p(plan | fail) p(fail) =
1

2
· 19

20
= 0.0475

 failure is more likely, even with a business plan.
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Business Analytics 2. Naive Bayes

Multiple Predictors / Naive Bayes Assumption

For multiple predictors X1,X2, . . . ,Xp,

p(X1,X2, . . . ,Xp | Y )

usually is hard to estimate.

The Naive Bayes model assumes that all the predictors are
independent given the target:

p(X1,X2, . . . ,Xp | Y ) = p(X1 | Y ) p(X2 | Y ) · · · p(Xp | Y )
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Business Analytics 2. Naive Bayes

Example

Artificial data about visitors of an online shop:

referrer num.visits duration buyer

1 search engine several 15 yes
2 search engine once 10 yes
3 other several 5 yes
4 ad once 15 yes
5 ad once 10 no
6 other once 10 no
7 other once 5 no
8 ad once 5 no
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Example

Artificial data about visitors of an online shop:

referrer num.visits duration buyer

1 search engine several 15 yes
2 search engine once 10 yes
3 other several 5 yes
4 ad once 15 yes
5 ad once 10 no
6 other once 10 no
7 other once 5 no
8 ad once 5 no

p(Y = yes) = 0.5
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Business Analytics 2. Naive Bayes

Example

Artificial data about visitors of an online shop:

referrer num.visits duration buyer

1 search engine several 15 yes
2 search engine once 10 yes
3 other several 5 yes
4 ad once 15 yes
5 ad once 10 no
6 other once 10 no
7 other once 5 no
8 ad once 5 no

p(X1 = search | Y = yes) = 0.5 p(X1 = search | Y = no) = 0.0

p(X1 = ad | Y = yes) = 0.25 p(X1 = ad | Y = no) = 0.5

p(X1 = other | Y = yes) = 0.25 p(X1 = other | Y = no) = 0.5
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Business Analytics 2. Naive Bayes

Example

Artificial data about visitors of an online shop:

referrer num.visits duration buyer

1 search engine several 15 yes
2 search engine once 10 yes
3 other several 5 yes
4 ad once 15 yes
5 ad once 10 no
6 other once 10 no
7 other once 5 no
8 ad once 5 no

p(X2 = several | Y = yes) = 0.5 p(X2 = several | Y = no) = 0.0

p(X2 = once | Y = yes) = 0.5 p(X2 = once | Y = no) = 1.0
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Business Analytics 2. Naive Bayes

Example

Artificial data about visitors of an online shop:

referrer num.visits duration buyer

1 search engine several 15 yes
2 search engine once 10 yes
3 other several 5 yes
4 ad once 15 yes
5 ad once 10 no
6 other once 10 no
7 other once 5 no
8 ad once 5 no

p(X3 = 5 | Y = yes) = 0.25 p(X3 = 5 | Y = no) = 0.5

p(X3 = 10 | Y = yes) = 0.25 p(X3 = 10 | Y = no) = 0.5

p(X3 = 15 | Y = yes) = 0.5 p(X3 = 15 | Y = no) = 0.0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

34 / 58



Business Analytics 2. Naive Bayes

Example / Model Parameters p(Y = yes) = 0.5

p(X1 = search | Y = yes) = 0.5 p(X1 = search | Y = no) = 0.0

p(X1 = ad | Y = yes) = 0.25 p(X1 = ad | Y = no) = 0.5

p(X1 = other | Y = yes) = 0.25 p(X1 = other | Y = no) = 0.5

p(X2 = several | Y = yes) = 0.5 p(X2 = several | Y = no) = 0.0

p(X2 = once | Y = yes) = 0.5 p(X2 = once | Y = no) = 1.0

p(X3 = 5 | Y = yes) = 0.25 p(X3 = 5 | Y = no) = 0.5

p(X3 = 10 | Y = yes) = 0.25 p(X3 = 10 | Y = no) = 0.5

p(X3 = 15 | Y = yes) = 0.5 p(X3 = 15 | Y = no) = 0.0

Will a visitor with X1 =ad, X2=once, X3=10 buy?
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Business Analytics 2. Naive Bayes

Example / Model Parameters p(Y = yes) = 0.5

p(X1 = search | Y = yes) = 0.5 p(X1 = search | Y = no) = 0.0

p(X1 = ad | Y = yes) = 0.25 p(X1 = ad | Y = no) = 0.5

p(X1 = other | Y = yes) = 0.25 p(X1 = other | Y = no) = 0.5

p(X2 = several | Y = yes) = 0.5 p(X2 = several | Y = no) = 0.0

p(X2 = once | Y = yes) = 0.5 p(X2 = once | Y = no) = 1.0

p(X3 = 5 | Y = yes) = 0.25 p(X3 = 5 | Y = no) = 0.5

p(X3 = 10 | Y = yes) = 0.25 p(X3 = 10 | Y = no) = 0.5

p(X3 = 15 | Y = yes) = 0.5 p(X3 = 15 | Y = no) = 0.0

Will a visitor with X1 =ad, X2=once, X3=10 buy?

qyes = q(Y = yes | X1 = ad,X2 = once,X3 = 10)

= p(Y = yes) p(X1 = ad | Y = yes)

p(X2 = once | Y = yes) p(X3 = 10) | Y = yes)

= 0.5 · 0.25 · 0.5 · 0.25 = 0.015625
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Business Analytics 2. Naive Bayes

Example / Model Parameters p(Y = yes) = 0.5

p(X1 = search | Y = yes) = 0.5 p(X1 = search | Y = no) = 0.0

p(X1 = ad | Y = yes) = 0.25 p(X1 = ad | Y = no) = 0.5

p(X1 = other | Y = yes) = 0.25 p(X1 = other | Y = no) = 0.5

p(X2 = several | Y = yes) = 0.5 p(X2 = several | Y = no) = 0.0

p(X2 = once | Y = yes) = 0.5 p(X2 = once | Y = no) = 1.0

p(X3 = 5 | Y = yes) = 0.25 p(X3 = 5 | Y = no) = 0.5

p(X3 = 10 | Y = yes) = 0.25 p(X3 = 10 | Y = no) = 0.5

p(X3 = 15 | Y = yes) = 0.5 p(X3 = 15 | Y = no) = 0.0

Will a visitor with X1 =ad, X2=once, X3=10 buy?

qno = q(Y = no | X1 = search,X2 = once,X3 = 10)

= p(Y = no) p(X1 = ad | Y = no)

p(X2 = once | Y = no) p(X3 = 10) | Y = no)

= 0.5 · 0.5 · 1.0 · 0.5 = 0.125
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Business Analytics 2. Naive Bayes

Example / Model Parameters p(Y = yes) = 0.5

p(X1 = search | Y = yes) = 0.5 p(X1 = search | Y = no) = 0.0

p(X1 = ad | Y = yes) = 0.25 p(X1 = ad | Y = no) = 0.5

p(X1 = other | Y = yes) = 0.25 p(X1 = other | Y = no) = 0.5

p(X2 = several | Y = yes) = 0.5 p(X2 = several | Y = no) = 0.0

p(X2 = once | Y = yes) = 0.5 p(X2 = once | Y = no) = 1.0

p(X3 = 5 | Y = yes) = 0.25 p(X3 = 5 | Y = no) = 0.5

p(X3 = 10 | Y = yes) = 0.25 p(X3 = 10 | Y = no) = 0.5

p(X3 = 15 | Y = yes) = 0.5 p(X3 = 15 | Y = no) = 0.0

Will a visitor with X1 =ad, X2=once, X3=10 buy?

p(Y = yes | X1 = ad,X2 = once,X3 = 10) =
qno

qno + qyes

=
0.015625

0.015625 + 0.125
= 0.111
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Business Analytics 2. Naive Bayes

Learning Algorithm

Given training data Dtrain, compute

αy := p̂(Y = y) :=
|{(x ′, y ′) ∈ Dtrain | y ′ = y}|

|Dtrain|

βy ,i ,x := p̂(Xi = x | Y = y) :=
|{(x ′, y ′) ∈ Dtrain | y ′ = y , x ′i = x}|
|{(x ′, y ′) ∈ Dtrain | y ′ = y}|

for y ∈ domY , x ∈ domXi , i = 1, . . . , p.

For nominal predictor variables with rare levels, usually a Laplace
smoothing of size n0 ∈ R+

0 is added:

βy ,i ,x := p̂(Xi = x | Y = y) :=
|{(x ′, y ′) ∈ Dtrain | y ′ = y , x ′ = x}|+ n0

|{(x ′, y ′) ∈ Dtrain | y ′ = y}|+ n0| domXi |
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Business Analytics 2. Naive Bayes

Inference Algorithm
Given x := (x1, x2, . . . , xp) ∈ domX , i.e., xi ∈ domXi , i = 1, . . . , p,
compute

p̂(Y = y |X1 = x1, . . . ,Xp = xp)

=
p̂(Y = y)

∏p
i=1 p̂(Xi = xi | Y = y)∑

y ′∈domY p̂(Y = y ′)
∏p

i=1 p̂(Xi = xi | Y = y ′)

=
αy

∏p
i=1 βy ,i ,xi∑

y ′∈domY αy ′
∏p

i=1 βy ′,i ,xi

for all y ∈ domY .

Computed via qy := αy

p∏
i=1

βy ,i ,xi

Q :=
∑

y∈domY

qy

p(Y = y |X1 = x1, . . . ,Xp = xp) =
qy
Q
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Business Analytics 2. Naive Bayes

Continuous Predictors

For nominal predictors Xi , we can simply estimate

p(Xi = x | Y = y)

for all possible values x by their (smoothed) relative frequency within
instances with target y (categorical distribution).

For a continuous predictor Xi this will not work.
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Business Analytics 2. Naive Bayes

Continuous Predictors: Gaussian Naive Bayes

But we can replace the categorical distribution by any other distribution
for Xi , e.g., a Gaussian distribution

p(Xi = x | Y = y) =
1√

2πσ2
y ,i

e

−(x−µy,i )
2

2σ2
y,i , µy ,i , σ

2
y ,i ∈ R

Their parameters µy ,i , σ
2
y ,i have to be learned from data:

µy ,i := meanπXi
(Dtrain|Y=y ) =

∑
(x ′,y ′)∈Dtrain,y ′=y x

′
i

|{(x ′, y ′) ∈ Dtrain | y ′ = y}|

σ2
y ,i := varianceπXi

(Dtrain|Y=y ) =

∑
(x ′,y ′)∈Dtrain,y ′=y (x ′i − µy ,i )2

|{(x ′, y ′) ∈ Dtrain | y ′ = y}|
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Business Analytics 2. Naive Bayes

Which Loss does Naive Bayes Minimize?
Naive Bayes maximizes the likelihood (= minimizes the negative
log-likelihood):

`(D, p̂) =
∏

(x ,y)∈D

p̂(X = x ,Y = y)

=
∏

(x ,y)∈D

p̂(Y = y)p̂(X = x | Y = y)

Proof.

`(D, p̂) =
∏

y∈domY

p̂(Y = y)ny
p∏

i=1

∏
x∈domXi

p̂(Xi = x | Y = y)ny,i,x

which according to lemma 1 assumes its minimum for

p̂(Y = y) =
ny∑

y ′∈domY ny ′
, p̂(Xi = x | Y = y) =

ny ,i ,x∑
x ′∈domXi

ny ,i ,x ′

with ny := |{(x ′, y ′) ∈ D | y ′ = y}|, ny ,i ,x := |{(x ′, y ′) ∈ D | y ′ = y , x ′i = x}|
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Business Analytics 2. Naive Bayes

A Simple Bayesian Network

Y

X1 X2
. . . Xp

p(V) =
∏
V∈V

p(V | parents of V )

NB
= p(Y )

p∏
i=1

p(Xi | Y ), V := {Y ,X1, . . . ,Xp}
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Business Analytics 3. Linear Discriminant Analysis (LDA)

Outline

0. Simple Conditional Constant Models

1. Nearest Neighbor

2. Naive Bayes

3. Linear Discriminant Analysis (LDA)

4. Model Selection

5. Conclusion
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Business Analytics 3. Linear Discriminant Analysis (LDA)

Assumptions

Linear Discriminant Analysis (LDA) relies on the same decomposition

p(Y | X1, . . . ,Xp) ∝ p(X1, . . . ,Xp | Y ) p(Y )

as Naive Bayes, but does not assume that all the Xi are independent, but
are multivariate normal distributed

p(X = x | Y = y) =
1√

(2π)p|Σ|
e−

1
2

(x−µy )T Σ−1(x−µy )

with

I target-specific means µy ∈ Rp and a

I shared covariance matrix Σ ∈ Rp×p.
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Business Analytics 3. Linear Discriminant Analysis (LDA)

Learning Algorithm

Given training data Dtrain, compute

αy := p̂(Y = y) :=
|{(x ′, y ′) ∈ Dtrain | y ′ = y}|

|Dtrain|

µy := meanπX (Dtrain|Y=y )

=

∑
(x ′,y ′)∈Dtrain,y ′=y x

′

|{(x ′, y ′) ∈ Dtrain | y ′ = y}|

Σ :=
1

|Dtrain|
∑

y∈domY

|(Dtrain|Y=y )| cov πX (Dtrain|Y=y )

=

∑
(x ′,y ′)∈Dtrain(x ′ − µy ′)T (x ′ − µy ′)

|Dtrain|

for y ∈ domY .
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Business Analytics 3. Linear Discriminant Analysis (LDA)

Inference Algorithm

Given x ∈ domX := Rp, compute

p̂(Y = y | X = x) ∝p̂(X = x | Y = y) p̂(Y = y)

=
1√

(2π)p|Σ|
e−

1
2

(x−µy )T Σ−1(x−µy )αy

∝e−
1
2

(x−µy )T Σ−1(x−µy )αy

for all y ∈ domY .

Computed via qy := e−
1
2

(x−µy )T Σ−1(x−µy )αy

Q :=
∑

y∈domY

qy

p̂(Y = y | X = x) =
qy
Q
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Business Analytics 3. Linear Discriminant Analysis (LDA)

LDA, QDA and Gaussian Naive Bayes

Quadratic Discriminant Analysis (QDA):

I the covariance matrix Σ also is target specific:

p(X = x | Y = y) =
1√

(2π)p|Σy|
e−

1
2

(x−µy )T Σ−1
y (x−µy )

I its estimation is simply

Σy := cov πX (Dtrain|Y=y ) =

∑
(x ′,y ′)∈Dtrain,y ′=y (x ′ − µy ′)T (x ′ − µy ′)
|{(x ′, y ′) ∈ Dtrain | y ′ = y}|

I QDA requires | domY | as many parameters to be estimated for the
covariance matrices compared to LDA, and the full covariance matrix
requires already p(p+1)

2 parameters.
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Business Analytics 3. Linear Discriminant Analysis (LDA)

QDA and Gaussian Naive Bayes

The Gaussian Naive Bayes model is a special case of a QDA with
diagonal covariance matrices:

Σy =


σ2
y ,1 0 . . . . . . 0

0 σ2
y ,2 0 . . . 0

...
. . .

. . .
. . .

...
0 . . . 0 σ2

y ,p−1 0

0 . . . . . . 0 σ2
y ,p
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Business Analytics 4. Model Selection

Outline

0. Simple Conditional Constant Models

1. Nearest Neighbor

2. Naive Bayes
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4. Model Selection

5. Conclusion
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Business Analytics 4. Model Selection

Which Model to Use?

Now we know different prediction models, e.g.,

I constant model,

I conditionally constant model,

I nearest neighbor model,

I Naive Bayes model,

I Linear Discriminant Analysis model.

Which one should we use for a specific task?

I depends on the task at hand.

How can we find out?

I perform model selection.
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Business Analytics 4. Model Selection

Model Selection

We could use every model with 1/5 of our customers, and then we will see
which was best.

I but we would like to know before we use the models for the real
application.

We could do as if we would use the model, i.e.,

1. split the training data in proper training data and validation data,

2. train the models only on the proper training data,

3. evaluate the models on the validation data,

4. select the model that performs best on the validation data,

5. use this model for our application.
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Business Analytics 4. Model Selection

Model Selection

We could use every model with 1/5 of our customers, and then we will see
which was best.

I but we would like to know before we use the models for the real
application.

We could do as if we would use the model, i.e.,

1. split the training data in proper training data and validation data,

2. train the models only on the proper training data,

3. evaluate the models on the validation data,

4. select the model that performs best on the validation data,

5. re-train the model on the whole training data.

6. use this model for our application.
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Business Analytics 4. Model Selection

How to Split the Data?

Different types of splits are possible:

I 50% proper training, 50% validation
I 80% proper training, 20% validation

I too few training data: training the models may be unreliable.
I too few validation data: validation may be unreliable.

I n-fold cross validation:

1. chop the data into n chunks of the same size,
2. for i = 1, . . . , n,

I use all chunks but the i-th as proper training,
I use the i-th chunk as validation
I train and evaluate all models

3. average all n evaluations
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Business Analytics 4. Model Selection

Which Model Configuration to Use?

Some models have different configurations:
I conditional constant model:

I predictor variable X to condition on.

I nearest neighbor model:
I neighborhood size k .

I Naive Bayes model:
I Laplace smoothing n0.

I Linear Discriminant Analysis:
I [none]

often described by hyperparameters.

Which hyperparameter value to use?

I depends on the data — use model selection to find out!
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Business Analytics 4. Model Selection

Which Predictor Variables to Use?

We can generically configure any model by selecting the predictor variables
to use:

I use only the most-predictive one,

I use the 7 most predictive ones,

I use the 10% most predictive ones,

I use random 10 ones,

I use all,
...

Which predictor variables to use (variable selection)?

I depends on the data — use model selection to find out!

?

I but there are 2p many different such configurations !
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Business Analytics 4. Model Selection

Sequential Model Selection

To search for a good subset of predictor variables,
greedy stepwise removal (backward search) is applied:

1. start with all variables V := {1, 2, . . . , p}.
2. train and evaluate the model on all variables.

3. for every variable v ∈ V :

3.1 train and evaluate a model on variables V \ {v}.
4. if the best model V \ {v} improves the model on V :

4.1 V := V \ {v}
4.2 go back to step 3.

5. return V
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Note: The subset of predictor variables also can be interpreted as a (set-valued)
hyperparameter.



Business Analytics 4. Model Selection

Hyperparameter Interaction: Grid Search
Usually, hyperparameters interact, e.g.,
I using all variables, k = 10 neighbors may be optimal, but
I using only 10 variables, k = 20 neighbors may be optimal.

Therefore,
I sequential model selection via sequential hyperparameter selection

(select one hyperparameter at a time), generally is not save!
I Usually, all combinations of hyperparameter values have to be

searched.

For numerical hyperparameters, one searches on a grid,
e.g., for the neighborhood size:

1. coarse grid: k = 1, 1
9n,

2
9n, . . . , n.

I let k0 be the best hyperparameter value on the coarse grid,
k−1, k+1 the one left and right of k0.

2. finer grid: k−1 + i
11 (k+1 − k−1), i = 1, . . . , 10.
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Business Analytics 4. Model Selection

Model Selection vs Model Combination: Ensembles

Instead of selecting the best model ŷ out of a set of candidate models
{ŷ1, . . . , ŷq}, one also can combine them, e.g.,

I voting (for nominal targets):
choose the value most frequently predicted by member models

ŷ(x) := arg max
y ′∈domY

q∑
i=1

δ(y ′ = ŷi (x))

I averaging:
predict the mean of the values predicted by the member models

ŷ(x) := mean{ŷi (x) | i = 1, . . . , q} =
1

q

q∑
i=1

ŷi (x)
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Business Analytics 4. Model Selection

Ensembles / Example

Binary classification: p(Y = 1).

instance NN NB LDA voting averaging

1 0.6 0.7 0.3 1.0 0.53
2 0.7 0.1 0.6 1.0 0.48
...
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Business Analytics 4. Model Selection

Model Selection vs Model Combination: Ensembles 2

Instead of selecting the best model ŷ out of a set of candidate models
{ŷ1, . . . , ŷq}, one also can combine them, e.g.,
I weighted voting/averaging:

I let wi ∈ R+
0 be a weight indicating the quality of model ŷi , e.g., its

accuracy on a validation split,
I predict the weighted mean of the values predicted by the member

models

ŷ(x) :=
1∑q

i=1 wi

q∑
i=1

wi ŷi (x)

I stacking:
I learn a 2nd stage model ŷ2nd for the training data

Dtrain
2nd := {((ŷ1(x), . . . , ŷq(x)), y) | (x , y) ∈ Dvalid}

I predict the value of the 2nd stage model for the predictions of the
member models:

ŷ(x) := ŷ2nd(ŷ1(x), . . . , ŷq(x))
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Business Analytics 5. Conclusion

Outline

0. Simple Conditional Constant Models

1. Nearest Neighbor
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Business Analytics 5. Conclusion

Summary Simple Models

predictor
target continuous nominal

continuous Nearest Neighbor Nearest Neighbor
(regression)

nominal Nearest Neighbor Nearest Neighbor
(classification) Naive Bayes / Gaussian Naive Bayes

LDA (LDA)
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Note: LDA (as any model for continuous predictors) can be used for nominal predictors
after coding them as binary indicator variables.



Business Analytics 5. Conclusion

Conclusion
I Prediction can be accomplished by several very simple models:

I Nearest Neighbor: predicting the aggregated values of the closest
training instances,

I Naive Bayes: predicting the class that explains the predictors best,
individually.

I Linear Discriminant Analysis: predicting the class that explains the
predictors best, collectively.

I Simple prediction models can be trained by a single pass over the
data.

I These simple prediction models can be used to get a first idea about
the scale of the prediction quality, i.e., how difficult a prediction
problem is.

I These models usually do not provide state-of-the-art prediction
quality and therefore should not be used in practice.
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Business Analytics

Readings

I Nearest Neighbor:
I [HTFF05], ch. 13.3, [Bis06], ch. 2.5.2, [Mur12], ch. 1.4.2

I Naive Bayes:
I [HTFF05], ch. 6.6.3, [Mur12], ch. 10.2.1

I LDA:
I [HTFF05], ch. 4.3, [Bis06], ch. 4.1.4 and 4.1.6, [Mur12], ch. 4.2.2
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Business Analytics

References

Lemma
f (x) =

∏k
i=1 x

ni
i assumes its maximum on X := {x ∈ Rk |

∑k
i=1 xi = 1}

at x∗ with x∗i := ni∑k
i=1 ni

(i = 1, . . . , k).

Proof.

g(x1, . . . , xk−1) := log f (x1, . . . , xk−1, 1−
k−1∑
i=1

xi )

= nk log(1−
k−1∑
i=1

xi ) +
k−1∑
i=1

ni log xi

∂g

∂xi
= nk

1

1−
∑k−1

j=1 xj
(−1) + ni

1

xi

!
= 0, ∀i

 − nkxi + ni (1−
k−1∑
j=1

xj) = 0, ∀i (∗)
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k−1∑
i=1

ni )(1−
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nk
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