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Business Analytics 1. Overfitting and Regularization

Overall Procedure

1. define a prediction function ŷ that depends on some model
parameters Θ ∈ Rq, e.g., for regression, a linear model:

ŷ(x ; Θ) := β0 + βT x = β0 +

p∑
i=1

βixi , Θ := (β0, β1, . . . , βp)

2. the training error

`(Θ;Dtrain) :=
1

|Dtrain|
∑

(x ,y)∈Dtrain

`(y , ŷ(x ; Θ))

is called objective function

f (Θ;Dtrain) := `(Θ;Dtrain)

3. find the parameters Θ∗ that minimize the objective function
numerically.
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that penalizes complex models. Its combination with the training
error

`(Θ;Dtrain) :=
1

|Dtrain|
∑

(x ,y)∈Dtrain

`(y , ŷ(x ; Θ))

is called objective function

f (Θ;Dtrain) := `(Θ;Dtrain) + λR(Θ), λ ∈ R+
0

3. find the parameters Θ∗ that minimize the objective function
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Business Analytics 1. Overfitting and Regularization

Overfitting

Example:
Assume the true data generating process is

Y = 1 + X1 + ε, ε ∼ N (0, 0.1)

and we draw the following sample

x1 y

1.0 1.8
2.0 3.2
4.0 5.4
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Business Analytics 1. Overfitting and Regularization

Overfitting
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The linear model with minimal training error is model #1:

ŷ(x1) := 0.7 + 1.186 x1, RMSE(ŷ) = 0.093
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Business Analytics 1. Overfitting and Regularization

Overfitting

Now lets assume we measure 3 further variables x2, x3 and x4,
not correlated with the target Y at all (noise):

x1 x2 x3 x4 y

1.0 1.0 0.0 0.0 1.8
2.0 0.0 1.0 0.0 3.2
4.0 0.0 0.0 1.0 5.4

Now, a linear model with minimal training error is model #2:

ŷ(x1) := 0.7 + 1.186 x1 − 0.086 x2 + 0.128 x3 − 0.044 x4, RMSE(ŷ) = 0

And another one is model #3:

ŷ(x1) := 0.0 + 0.0 x1 + 1.8 x2 + 3.2 x3 + 5.4 x4, RMSE(ŷ) = 0

These models fit noise or overfit.
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Business Analytics 1. Overfitting and Regularization

Overfitting

How to avoid overfitting?

I do not include noisy variables

— but we do not know which ones are correlated with the target

I employ model selection to find out which variables are noisy
(variable selection)

— possible, but usually slow and not very reliable

I force all parameters to be small (shrinking)
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Business Analytics 1. Overfitting and Regularization

Why Small Parameters Prevent Overfitting
Assume we force all parameters βi to be |βi | ≤ 2.
Then model #3 is no longer allowed:

ŷ(x1) := 0.0 + 0.0 x1 + 1.8 x2 + 3.2 x3 + 5.4 x4, RMSE(ŷ) = 0

Model #4 is already much better:

ŷ(x1) := 2.0 + 0.35 x1 − 0.55 x2 + 0.5 x3 + 2.0 x4, RMSE(ŷ) = 0

Assume we force all parameters βi to have
∑p

i=0 |βi | ≤ 3.
Model #5 is again much better:

ŷ(x1) := 0.5 + 1.125 x1 − 0.175 x2 − 0.45 x3 + 0.4 x4, RMSE(ŷ) = 0
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Business Analytics 2. Prediction Functions

Linear Model

ŷ(x) := β0 + βT x = β0 +

p∑
i=1

βixi

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 / 19



Business Analytics 2. Prediction Functions

Polynomial Model

of degree 2:

ŷ(x) := β0 +

p∑
i=1

βixi +

p∑
i=1

p∑
j=i

βi ,jxixj

e.g.,

ŷ(x1, x2) := β0 + β1x1 + β2x2 + β1,1x
2
1 + β2,2x

2
2 + β1,2x1x2

of degree 3:

ŷ(x) := β0 +

p∑
i=1

βixi +

p∑
i=1

p∑
j=1

βi ,jxixj +

p∑
i=1

p∑
j=i

p∑
k=j

βi ,j ,kxixjxk

of degree d :

ŷ(x) :=
∑

J∈∆p,d

βJx
J where xJ :=

p∏
i=1

xJii , J ∈ ∆p,d

∆p,d := {J ∈ Np |
p∑

i=1

Ji ≤ d}
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ŷ(x1, x2) := β0 + β1x1 + β2x2 + β1,1x
2
1 + β2,2x

2
2 + β1,2x1x2

+ β1,1,1x
3
1 + β2,2,2x

3
2 + β1,1,2x

2
1x2 + β1,2,2x1x

2
2

of degree d :
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Business Analytics 2. Prediction Functions

Factorized Polynomial Models

of degree d :

ŷ(x) :=
∑

J∈∆p,d

βJx
J

with

βJ :=
K∑

k=1

φJk , φk ∈ Rp
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Business Analytics 2. Prediction Functions

Kernels

ŷ(x) := β0 +
N∑
i=1

αiyik(xi , x), with (x1, y1), . . . , (xN , yN) ∈ Dtrain

and a kernel k :Rp × Rp → R+
0 , e.g.,

polynomial kernel

k(x , x ′) := (1 + xT x ′)d , d ∈ N degree

radial basis function kernel

k(x , x ′) := eγx
T x ′ , γ ∈ R+
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Business Analytics 2. Prediction Functions

Models — Many Fancy Names

prediction regula- model
function loss rization name
linear L2 — regression, least squares
linear L2 L2 ridge regression
kernel L2 — kernel regression
linear L2 L1 lasso
linear L2 L1+L2 elastic net
linear/kernel ε-insensitive L2 support vector regression
...

...
...

...

linear hinge — perceptron
linear/kernel hinge L2 support vector machine
linear/kernel squared hinge L2 L2 support vector machine
logistic(linear) loglikelihood — logistic regression
logistic(linear) loglikelihood L2 logistic ridge regression
...

...
...

...
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Business Analytics 3. Sparse Predictors
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Business Analytics 3. Sparse Predictors

Sparse predictors
Predictor vectors XRp are called sparse, if on average only a few of its
components, say pnz < p are non-zero.

Examples:
I the products a customer bought in an online shop.
I the categories a document belongs to.
I . . .

Sparse predictors
I can be stored more compact in O(pnz) < O(p)

by storing only indices and values of non-zero components:

x = (5, 0, 0, 3, 4, 0, 0, 0, 0, 0) ∈ R10 ↔ x = ((1, 5), (4, 3), (5, 4)) ∈ (N×R)∗

I can be multiplied faster with a dense or sparse vector in
O(pnz) < O(p):

βT x =

p∑
i=1

βixi ↔ βT x =

|x |∑
i=1

βxi,1xi ,2
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Business Analytics 4. Learning Algorithms

Objective Function

Learning a model means to find the parameters θ̂ with a minimum of the
objective function f :

Θ̂ := arg min
Θ

f (Θ) :=
1

|Dtrain|
∑

(x ,y)∈Dtrain

`(y , ŷ(x ; Θ)) + λR(Θ)

with λ ∈ R+
0 fixed.

I only for regression and ridge regression this is an unconstrained
quadratic problem that easily can be solved as a system of linear
equations

(XTX + λI )β̂ = XT y

I in all other cases a solution needs to be found numerically.
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Business Analytics 4. Learning Algorithms

Objective Function
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Business Analytics 4. Learning Algorithms

Gradient Descent

choose Θ(0) ∈ Rp

Θ(t+1) := Θ(t) − η(t) ∂f

∂Θ
(Θ(t)), t = 0, 1, 2, . . .

stop once || ∂f
∂Θ

(Θ(t))|| < ε

with

I η(t) ∈ R+ called step size / learning rate.

I ε ∈ R+ called minimum gradient norm / stopping criterion.

∂f

∂Θ
(Θ) =

1

|Dtrain|
∑

(x ,y)∈Dtrain

∂`

∂ŷ
(y , ŷ(x ; Θ))

∂ŷ

∂Θ
(x ; Θ) + λ

∂R

∂Θ
(Θ)
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∂ŷ
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Business Analytics 4. Learning Algorithms

Gradient Descent
Example: logistic regression.

`(y , ŷ) = −y log ŷ − (1− y) log(1− ŷ)
∂`

∂ŷ
(y , ŷ) = −y 1

ŷ
− (1− y)

−1

1− ŷ

=
ŷ − y

ŷ (1− ŷ)

ŷ(x ; Θ) = logistic(ΘT x)
∂ŷ

∂Θj
(x ; Θ) = logistic(ΘT x)

· (1− logistic(ΘT x))xj

R(Θ) = ΘTΘ
∂R

∂Θj
(Θ) = 2Θj

 
∂f

∂Θ
(Θ) =

1

|Dtrain|
∑

(x ,y)∈Dtrain

(ŷ(x ; Θ)− y)x + 2λΘ
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Business Analytics 4. Learning Algorithms

Newton Algorithm

choose Θ(0) ∈ Rp

solve

(
∂2f

∂Θ2
(Θ(t))

)
d (t) = − ∂f

∂Θ
(Θ(t))

Θ(t+1) := Θ(t) − η(t)d (t)

stop once ||d (t)|| < ε

with

I η(t) ∈ R+ called step size / learning rate.

I ε ∈ R+ called minimum gradient norm / stopping criterion.
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Business Analytics 4. Learning Algorithms

Stochastic Gradient Descent

Rewrite the objective as a big sum:

f (Θ) =
n∑

i=1

fi (Θ),

fi (Θ) := `(yi , ŷ(xi ; Θ) +
λ

n
R(Θ)

then minimize a summand at a time:

choose Θ(0) ∈ Rp

pick uniformly at random i (t) ∈ {1, . . . , n}

Θ(t+1) := Θ(t) − η(t)∂fi (t)

∂Θ
(Θ(t)), t = 0, 1, 2, . . .

stop once ||Θ(t) −Θ(t−t0)|| < ε
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Business Analytics 4. Learning Algorithms

Stochastic Gradient Descent

I Stochastic Gradient Descent (SGD) is as simple to derive and
implement as full gradient descent.

I SGD often converges much faster than full gradient descent as
parameters are updated more quickly.

I For stopping, lack of progress on several iterations (t0) has to be
observed.

I Often the regularization term is not spread uniformaly over all
summand functions, but in a clever way s.t. fi depends on as few Θj

as possible (sparse parameter updates).
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