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Business Analytics 1. Overfitting and Regularization

Overall Procedure

1. define a prediction function y that depends on some model
parameters © € RY9, e.g., for regression, a linear model:

P
(x:0):=Bo+ B x=Po+> Bixi, ©:=(Bo.f1:---,Bp)
i=1
2. the training error
; 1
. pytrainy L __
f(@,D ) T |Dtrain‘ Z

Uy, 9(x; ©))
(X,y)E'D"ai"
is called objective function

f(e, Dtrain) — é(@, Dtrain)
3. find the parameters ©* that minimize the objective function
numerically.
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Business Analytics 1. Overfitting and Regularization

Overall Procedure

1. define a prediction function y that depends on some model
parameters © € RY9, e.g., for regression, a linear model:

P
9(x;©):=PBo+ B x=PBo+ Y Bixi, ©:=(Bo,P1,---,5p)
i=1
2. define a regularization function

R:RI = RS, eg, R(O):=]0|>= 292

that penalizes complex models. Its combination W|th the training
error pytrainy ._ 1 o s
((©; D) = D] > | Uy, 9(x;©))
(X7y)E’Dtra|n
is called objective function
f(©; D) .= ¢(©; Dtrain) 4 AR(@), A ERS

L£ind thna navamnatave DX dthat ;rlnlimaion $laa AL fivenmtinm
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Business Analytics 1. Overfitting and Regularization

Overfitting

Example:
Assume the true data generating process is

Y=1+Xi1+¢ €e~N(0,0.1)

and we draw the following sample

X1 y
1018
20 3.2
40| 5.4
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Business Analytics 1. Overfitting and Regularization

Overfitting

The linear model with minimal training error is model #1:
y(x1) :=0.7+1.186x;, RMSE(y) = 0.093
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Business Analytics 1. Overfitting and Regularization

NN
Overfitting “

Now lets assume we measure 3 further variables x>, x3 and xg,
not correlated with the target Y at all (noise):

X1 X2 X3 Xz |y

10 10 00 00] 138
20 00 10 00|32
40 00 00 10|54

Now, a linear model with minimal training error is model #2:

§(x1) :=0.7 4+ 1.186 x; — 0.086 x» + 0.128 x3 — 0.044 x4, RMSE(y) =0

And another one is model #3:

9(x1) :=0.04+0.0x3 + 1.8x2 +3.2x3 + 5.4 x4, RMSE(y) =0

These models fit noise or overfit.
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1. Overfitting and Regularization

Overfitting

How to avoid overfitting?

» do not include noisy variables
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Overfitting

How to avoid overfitting?

» do not include noisy variables

— but we do not know which ones are correlated with the target
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Overfitting

How to avoid overfitting?

» do not include noisy variables

— but we do not know which ones are correlated with the target

» employ model selection to find out which variables are noisy
(variable selection)
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Business Analytics 1. Overfitting and Regularization

Overfitting

How to avoid overfitting?

» do not include noisy variables
— but we do not know which ones are correlated with the target

» employ model selection to find out which variables are noisy

(variable selection)
— possible, but usually slow and not very reliable
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Business Analytics 1. Overfitting and Regularization

Overfitting

How to avoid overfitting?
» do not include noisy variables
— but we do not know which ones are correlated with the target
» employ model selection to find out which variables are noisy
(variable selection)

— possible, but usually slow and not very reliable

» force all parameters to be small (shrinking)
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Business Analytics 1. Overfitting and Regularization

Why Small Parameters Prevent Overfitting
Assume we force all parameters 3; to be |5;| < 2.
Then model #3 is no longer allowed:

§(x1) :=0.04+0.0x; +1.8x2 +3.2x3 +5.4x5, RMSE(y) =0

Model #4 is already much better:

y(x1) :=2.040.35x; —0.55x2 + 0.5x3 +2.0xs, RMSE(y) =0

Assume we force all parameters j3; to have Y 7_, |8 < 3.
Model #b5 is again much better:

y(x1) ==054+1.125x; — 0.175x2 — 0.45x3 + 0.4 x4, RMSE(y) =0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Business Analytics

2. Prediction Functions

Linear Model

p
J():=Bo+BTx=Bo+ Y Bixi

i=1
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Business Analytics 2. Prediction Functions

Polynomial Model

of degree 2:
y(X = fBo + Z/BIXI + Z Z /BI,_[XI)<_]
i=1 j=i
e.g.,
)7(X1,X2) :

= Bo + Bix1 + Baxa + Br.1xXE + Baxs + Braxixo
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Business Analytics 2. Prediction Functions

Polynomial Model

of degree 2:

= Bo + Z Bixi + z; Z Bi jXix;
of degree 3: o

= Bo + Zﬁ,x, + Zzﬁux,xj + ZZ Zﬁu XiXj Xk
e.g. o o

P(x1,x2) == Po + B1x1 + Boxa + P11 + Baaxd + Broxixe

2 2
+ B1,1,156 + 82225 + B112X2x0 + B12,2X155
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Business Analytics 2. Prediction Functions

Polynomial Model

of degree 3:

( ﬁO +Z/BIXI +ZZ/BIJXI)<_[ +ZZZ§M kXiXj Xk

i=1 j=1 i=1 j=i k=j

of degree d:

p
y(x): Z Byx? where x7 := HX.J’

JEAPA

p
Apg:={JeNP|> J<d}
i=1
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Business Analytics 2. Prediction Functions

Factorized Polynomial Models

of degree d:

yx) =Y Bux’
with

JED, 4

K
Br=> ol, éxeRP
k=1
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2. Prediction Functions

Kernels

i=1
and a kernel k :RP x RP — R(’,L,

N
(x) == Bo + Y _ ciyik(xi, ), with (x,31), .-, (xw, yn) € D
eg.,

polynomial kernel

k(x,x"):=(1 +xT ')d,

d € N degree
radial basis function kernel

k(x,x") = ey eRt
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2. Prediction Functions

Models — Many Fancy Names

prediction regula- model
function loss rization name
linear L2 — regression, least squares
linear L2 L2 ridge regression
kernel L2 — kernel regression
linear L2 L1 lasso
linear L2 L14+L2  elastic net
linear /kernel e-insensitive L2 support vector regression
linear hinge — perceptron
linear /kernel hinge L2 support vector machine
linear/kernel squared hinge L2 L2 support vector machine
logistic(linear) loglikelihood — — logistic regression

L2

logistic(linear)

loglikelihood

logistic ridge regression
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Business Analytics

3. Sparse Predictors

Sparse predictors

Predictor vectors XIRP are called sparse, if on average only a few of its
components, say pn, < p are non-zero.

[m]

=

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Business Analytics 3. Sparse Predictors

NN
Sparse predictors “

Predictor vectors XIRP are called sparse, if on average only a few of its
components, say pn, < p are non-zero.

Examples:
» the products a customer bought in an online shop.

» the categories a document belongs to.
>
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Business Analytics 3. Sparse Predictors

NN
Sparse predictors “

Predictor vectors XIRP are called sparse, if on average only a few of its
components, say pn, < p are non-zero.

Examples:
» the products a customer bought in an online shop.

» the categories a document belongs to.
>

Sparse predictors

» can be stored more compact in O(pn;) < O(p)
by storing only indices and values of non-zero components:

x = (5,0,0,3,4,0,0,0,0,0) € R <+ x = ((1,5), (4,3), (5,4)) € (NxR]
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Business Analytics 3. Sparse Predictors

. B2
Sparse predictors “
Predictor vectors XIRP are called sparse, if on average only a few of its
components, say pn, < p are non-zero.

Examples:

» the products a customer bought in an online shop.

» the categories a document belongs to.
>

Sparse predictors
» can be stored more compact in O(pn;) < O(p)
by storing only indices and values of non-zero components:
x = (5,0,0,3,4,0,0,0,0,0) € R ¢+ x = ((1,5), (4,3),(5,4)) € (NxR;
» can be multiplied faster with a dense or sparse vector in

O(pnz) < O(p):

Ix]

P
BTx= Z Bixi ¢ BT x = Z/BX,-JXI,Z

i=1 i=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Business Analytics

4. Learning Algorithms

Outline

4. Learning Algorithms

[m]

=

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 /19



Business Analytics 4. Learning Algorithms

Objective Function

objective function f:

© :=argminf(©) = o
©

|Dtrain| Z

ly,9(x;©)) + AR(©)
(ny)e'Dtrain

Learning a model means to find the parameters # with a minimum of the

with \ € Rar fixed.
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Business Analytics 4. Learning Algorithms

Objective Function

Learning a model means to find the parameters # with a minimum of the
objective function f:

O argminf(©) = o Y ((1:9(x:©) + AR(O)
€] .
(X’y)GDtraln

with \ € Rar fixed.

» only for regression and ridge regression this is an unconstrained
quadratic problem that easily can be solved as a system of linear
equations

(XTX+AN3=XTy
» in all other cases a solution needs to be found numerically.
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Business Analytics 4. Learning Algorithms

Objective Function

N
o

21

2.0

1.9

) \&\ﬁ\&%ﬁ\ o
T T

0.8 0.9

18

. 1
@ = argemln f(@) = W

(X,y)ED"ai” o
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Business Analytics 4. Learning Algorithms

Gradient Descent

choose ©(©) ¢ RP

ottl) .= o) _

of
N (e =0,1,2,...
509, t=012
of
e
stoponceH@e(@ ) < e
with

» n(t) € Rt called step size / learning rate.

» ¢ € R™ called minimum gradient norm / stopping criterion
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Business Analytics 4. Learning Algorithms

Gradient Descent

choose ©(©) ¢ RP

ottl) .— o) _ (f>%(@<f>), t=0,1,2
of
Z e
stoponceHae(@ ) < e
with

» () € R* called step size / learning rate

of 1
568 =

8€
|Dtrain | Z

9y OR
(X,y)E'D"a'" y
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» ¢ € R™ called minimum gradient norm / stopping criterion
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Business Analytics 4. Learning Algorithms

Gradient Descent
Example: logistic regression.

ov 1 -1
Uy, 9) = —ylogy — (1 —y)log(l —9) “(y.9)=—y=—(1— _
(v:9) = —ylogy = (1 =y)log(1=y)  75(r.9) = —y5 =
Y-y
- y1-9)
~ _ T 8}/
7(x; ©) = logistic(© ' x) 96, —2(x;0) = logistic(© x)
- (1 — logistic(© " x))x;
OR
—oT - — .
R(©) =070 56, (©) =20
of 1 o
%(e)*w > _(Y(Xye)—Y)XﬂLQ)\e
(th)e’Dtram

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Business Analytics 4. Learning Algorithms

NN
Newton Algorithm “

choose ©(©) ¢ RP

o2f of
Z (e 0 — _Z (e
solve (8@2 (e )> d 8e(@ )

o(t+1) — o) _ (040
stop once ||d|| < e
with
» () € RT called step size / learning rate.

» ¢ € RT called minimum gradient norm / stopping criterion.

] = =
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Business Analytics 4. Learning Algorithms

Stochastic Gradient Descent

Rewrite the objective as a big sum:

= Z f:(©
i=1
A
7(©) = (i, 9(x:©) + - R(®)
then minimize a summand at a time:

choose ©(%) ¢ RP
pick uniformly at random () € {1,...,n}
(nafﬂ

ot+l) ._ o) _ © "), t=0,1,2,...

stop once ||©(t) — @t~ t° [| <e
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Business Analytics 4. Learning Algorithms

) . P2
Stochastic Gradient Descent v

» Stochastic Gradient Descent (SGD) is as simple to derive and
implement as full gradient descent.

» SGD often converges much faster than full gradient descent as
parameters are updated more quickly.

» For stopping, lack of progress on several iterations (ty) has to be
observed.

» Often the regularization term is not spread uniformaly over all

summand functions, but in a clever way s.t. f; depends on as few ©;
as possible (sparse parameter updates).
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