

Business Analytics 1. Prediction, 1.3 Regularized Loss Models

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) University of Hildesheim, Germany

- キロト + 母 ト + 臣 ト + 臣 - シタぐ

Outline

- 1. Overfitting and Regularization
- 2. Prediction Functions
- 3. Sparse Predictors
- 4. Learning Algorithms

Outline

1. Overfitting and Regularization

- 2. Prediction Functions
- 3. Sparse Predictors
- 4. Learning Algorithms

Overall Procedure

1. define a prediction function \hat{y} that depends on some model parameters $\Theta \in \mathbb{R}^{q}$, e.g., for regression, a linear model:

$$\hat{y}(x;\Theta) := \beta_0 + \beta^T x = \beta_0 + \sum_{i=1}^p \beta_i x_i, \quad \Theta := (\beta_0, \beta_1, \dots, \beta_p)$$

2. the training error

$$\ell(\Theta; \mathcal{D}^{\mathsf{train}}) := rac{1}{|\mathcal{D}^{\mathsf{train}}|} \sum_{(x,y)\in \mathcal{D}^{\mathsf{train}}} \ell(y, \hat{y}(x; \Theta))$$

is called **objective function**

$$f(\Theta; \mathcal{D}^{\mathsf{train}}) := \ell(\Theta; \mathcal{D}^{\mathsf{train}})$$

find the parameters Θ* that minimize the objective function numerically.

Overall Procedure

1. define a prediction function \hat{y} that depends on some model parameters $\Theta \in \mathbb{R}^{q}$, e.g., for regression, a linear model:

$$\hat{y}(x;\Theta) := \beta_0 + \beta^T x = \beta_0 + \sum_{i=1}^p \beta_i x_i, \quad \Theta := (\beta_0, \beta_1, \dots, \beta_p)$$

2. define a regularization function

$$R: \mathbb{R}^q \to \mathbb{R}^+_0, \quad \text{e.g., } R(\Theta) := ||\Theta||^2 = \sum_{i=1}^q \Theta_i^2$$

that penalizes complex models. Its combination with the **training** error $\ell(\Theta; \mathcal{D}^{\text{train}}) := \frac{1}{|\mathcal{D}^{\text{train}}|} \sum_{(x,y)\in \mathcal{D}^{\text{train}}} \ell(y, \hat{y}(x; \Theta))$

is called objective function

$$f(\Theta; \mathcal{D}^{ ext{train}}) := \ell(\Theta; \mathcal{D}^{ ext{train}}) + \lambda R(\Theta), \quad \lambda \in \mathbb{R}_0^+$$

2 find the concentration Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

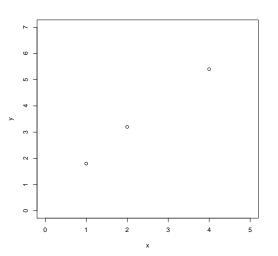
Example: Assume the true data generating process is

$$Y = 1 + X_1 + \epsilon, \quad \epsilon \sim \mathcal{N}(0, 0.1)$$

and we draw the following sample

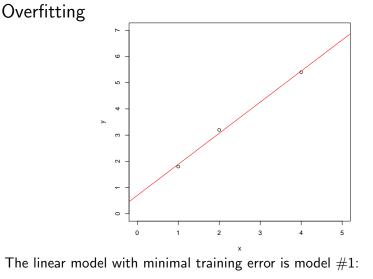
<i>x</i> ₁	y
1.0	1.8
2.0	3.2
4.0	5.4

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ りゃぐ



(ロト(昂)(ラ)(ラ)、ラ)、 シクヘル Laboration Support and Machine Laboration Lab (ISML1), University of Wildochrim, Commun.

Jniversitat



 $\hat{y}(x_1) := 0.7 + 1.186 x_1$, RMSE $(\hat{y}) = 0.093$

うとの 所 ふかく ボット 御 くう

Now lets assume we measure 3 further variables x_2 , x_3 and x_4 , not correlated with the target Y at all (noise):

<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	y
1.0	1.0	0.0	0.0	1.8
2.0	0.0	1.0	0.0 0.0	3.2
4.0	0.0	0.0	1.0	5.4

Now, a linear model with minimal training error is model #2:

$$\hat{y}(x_1) := 0.7 + 1.186 x_1 - 0.086 x_2 + 0.128 x_3 - 0.044 x_4$$
, RMSE $(\hat{y}) = 0$

And another one is model #3:

$$\hat{y}(x_1) := 0.0 + 0.0 x_1 + 1.8 x_2 + 3.2 x_3 + 5.4 x_4$$
, RMSE $(\hat{y}) = 0$

These models fit noise or overfit.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Э

イロト 不得 トイヨト イヨト

How to avoid overfitting?

do not include noisy variables

- 4 日 > 4 個 > - 4 目 > - 4 目 > - 9 4 @ >

How to avoid overfitting?

- do not include noisy variables
 - but we do not know which ones are correlated with the target

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

San

Э

イロト 不得 トイヨト イヨト

How to avoid overfitting?

- do not include noisy variables
 - but we do not know which ones are correlated with the target
- employ model selection to find out which variables are noisy (variable selection)

- イロト イロト イヨト イヨト ヨー つくぐ

How to avoid overfitting?

- do not include noisy variables
 - but we do not know which ones are correlated with the target
- employ model selection to find out which variables are noisy (variable selection)
 - possible, but usually slow and not very reliable

< ロ > < 団 > < 三 > < 三 > < 三 > < 三 > < < つ < < </p>

How to avoid overfitting?

- do not include noisy variables
 - but we do not know which ones are correlated with the target
- employ model selection to find out which variables are noisy (variable selection)
 - possible, but usually slow and not very reliable
- ► force all parameters to be small (shrinking)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

イロト 不得 トイヨト イヨト

Business Analytics 1. Overfitting and Regularization

Why Small Parameters Prevent Overfitting Assume we force all parameters β_i to be $|\beta_i| \le 2$. Then model #3 is no longer allowed:

$$\hat{y}(x_1) := 0.0 + 0.0 x_1 + 1.8 x_2 + 3.2 x_3 + 5.4 x_4$$
, RMSE $(\hat{y}) = 0$

Model #4 is already much better:

$$\hat{y}(x_1) := 2.0 + 0.35 x_1 - 0.55 x_2 + 0.5 x_3 + 2.0 x_4$$
, RMSE $(\hat{y}) = 0$

Assume we force all parameters β_i to have $\sum_{i=0}^{p} |\beta_i| \le 3$. Model #5 is again much better:

$$\hat{y}(x_1) := 0.5 + 1.125 x_1 - 0.175 x_2 - 0.45 x_3 + 0.4 x_4, \quad \mathsf{RMSE}(\hat{y}) = 0$$

Outline

1. Overfitting and Regularization

2. Prediction Functions

- 3. Sparse Predictors
- 4. Learning Algorithms

Linear Model

$$\hat{y}(x) := \beta_0 + \beta^T x = \beta_0 + \sum_{i=1}^p \beta_i x_i$$

・ロト ・四 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Polynomial Model

of degree 2:

$$\hat{y}(x) := \beta_0 + \sum_{i=1}^p \beta_i x_i + \sum_{i=1}^p \sum_{j=i}^p \beta_{i,j} x_i x_j$$

e.g.,

$$\hat{y}(x_1, x_2) := \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{1,1} x_1^2 + \beta_{2,2} x_2^2 + \beta_{1,2} x_1 x_2$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 19

Polynomial Model

$$\hat{y}(x) := \beta_0 + \sum_{i=1}^p \beta_i x_i + \sum_{i=1}^p \sum_{j=i}^p \beta_{i,j} x_i x_j$$

of degree 3:

$$\hat{y}(x) := \beta_0 + \sum_{i=1}^{p} \beta_i x_i + \sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{i,j} x_i x_j + \sum_{i=1}^{p} \sum_{j=i}^{p} \sum_{k=j}^{p} \beta_{i,j,k} x_i x_j x_k$$

e.g.,

$$\begin{aligned} \hat{y}(x_1, x_2) &:= \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{1,1} x_1^2 + \beta_{2,2} x_2^2 + \beta_{1,2} x_1 x_2 \\ &+ \beta_{1,1,1} x_1^3 + \beta_{2,2,2} x_2^3 + \beta_{1,1,2} x_1^2 x_2 + \beta_{1,2,2} x_1 x_2^2 \end{aligned}$$

シックシード エル・エット 中国・エロ・

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

9 / 19

Universiter Hildeshein

Polynomial Model

of degree 3:

$$\hat{y}(x) := \beta_0 + \sum_{i=1}^p \beta_i x_i + \sum_{i=1}^p \sum_{j=1}^p \beta_{i,j} x_i x_j + \sum_{i=1}^p \sum_{j=i}^p \sum_{k=j}^p \beta_{i,j,k} x_i x_j x_k$$

of degree d:

$$\hat{y}(x) := \sum_{J \in \Delta_{p,d}} \beta_J x^J \qquad \text{where } x^J := \prod_{i=1}^p x_i^{J_i}, \quad J \in \Delta_{p,d}$$
$$\Delta_{p,d} := \{J \in \mathbb{N}^p \mid \sum_{i=1}^p J_i \le d\}$$

Business Analytics 2. Prediction Functions

Factorized Polynomial Models

of degree d:

$$\hat{y}(x) := \sum_{J \in \Delta_{p,d}} \beta_J x^J$$

with

$$\beta_J := \sum_{k=1}^K \phi_k^J, \quad \phi_k \in \mathbb{R}^p$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

うへで 10 / 19

Э

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Business Analytics 2. Prediction Functions

Kernels

$$\hat{y}(x) := \beta_0 + \sum_{i=1}^N \alpha_i y_i k(x_i, x), \quad \text{with } (x_1, y_1), \dots, (x_N, y_N) \in \mathcal{D}^{\text{tra}}$$

and a kernel $k : \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}^+_0, \quad \text{e.g.},$

polynomial kernel

$$k(x,x') := (1 + x^T x')^d, \quad d \in \mathbb{N}$$
 degree

radial basis function kernel

$$k(x,x') := e^{\gamma x^T x'}, \quad \gamma \in \mathbb{R}^+$$

- イロト イヨト イヨト ヨー クタウ

Models — Many Fancy Names

prediction		regula-	model
function	loss	rization	name
linear	L2	—	regression, least squares
linear	L2	L2	ridge regression
kernel	L2	—	kernel regression
linear	L2	L1	lasso
linear	L2	L1+L2	elastic net
linear/kernel	ϵ -insensitive	L2	support vector regression
÷	:	:	:
: linear	: hinge	: 	: perceptron
inear linear/kernel	: hinge hinge	: L2	: perceptron support vector machine
	-	: L2 L2	
linear/kernel	hinge		support vector machine
linear/kernel linear/kernel	hinge squared hinge		support vector machine L2 support vector machine

Outline

- 1. Overfitting and Regularization
- 2. Prediction Functions
- 3. Sparse Predictors
- 4. Learning Algorithms

Predictor vectors $X\mathbb{R}^p$ are called **sparse**, if on average only a few of its components, say $p_{nz} < p$ are non-zero.

Predictor vectors $X\mathbb{R}^p$ are called **sparse**, if on average only a few of its components, say $p_{nz} < p$ are non-zero.

Examples:

- ► the products a customer bought in an online shop.
- ► the categories a document belongs to.

▶ ...

- イロト (四) (日) (日) (日) (日) (日)

Predictor vectors $X\mathbb{R}^p$ are called **sparse**, if on average only a few of its components, say $p_{nz} < p$ are non-zero.

Examples:

- ► the products a customer bought in an online shop.
- ► the categories a document belongs to.
- ▶ ...

Sparse predictors

can be stored more compact in O(p_{nz}) < O(p) by storing only indices and values of non-zero components:

 $x = (5, 0, 0, 3, 4, 0, 0, 0, 0, 0) \in \mathbb{R}^{10} \leftrightarrow x = ((1, 5), (4, 3), (5, 4)) \in (\mathbb{N} imes \mathbb{R}^{10})$

< ロ > < 団 > < 三 > < 三 > < 三 > < 三 < つ < </p>

Predictor vectors $X\mathbb{R}^p$ are called **sparse**, if on average only a few of its components, say $p_{nz} < p$ are non-zero.

Examples:

- ► the products a customer bought in an online shop.
- ► the categories a document belongs to.

▶ ...

Sparse predictors

can be stored more compact in O(pnz) < O(p)
 by storing only indices and values of non-zero components:

 $x = (5, 0, 0, 3, 4, 0, 0, 0, 0, 0) \in \mathbb{R}^{10} \leftrightarrow x = ((1, 5), (4, 3), (5, 4)) \in (\mathbb{N} imes \mathbb{R}^{10})$

► can be **multiplied faster** with a dense or sparse vector in $O(p_{nz}) < O(p)$: $\beta^T x = \sum_{i=1}^p \beta_i x_i \leftrightarrow \beta^T x = \sum_{i=1+0}^{|x|} \beta_{x_{i,1}} x_{i,2}$

Outline

- 1. Overfitting and Regularization
- 2. Prediction Functions
- 3. Sparse Predictors
- 4. Learning Algorithms

Objective Function

Learning a model means to find the parameters $\hat{\theta}$ with a **minimum of the objective function** f:

$$\hat{\Theta} := \argmin_{\Theta} f(\Theta) := \frac{1}{|\mathcal{D}^{\mathsf{train}}|} \sum_{(x,y) \in \mathcal{D}^{\mathsf{train}}} \ell(y, \hat{y}(x; \Theta)) + \lambda R(\Theta)$$

with $\lambda \in \mathbb{R}_0^+$ fixed.

- 4日 > 4 目 > 4 目 > 4 目 > - 目 - のへで

Objective Function

Learning a model means to find the parameters $\hat{\theta}$ with a **minimum of the objective function** f:

$$\hat{\Theta} := \argmin_{\Theta} f(\Theta) := \frac{1}{|\mathcal{D}^{\mathsf{train}}|} \sum_{(x,y) \in \mathcal{D}^{\mathsf{train}}} \ell(y, \hat{y}(x; \Theta)) + \lambda R(\Theta)$$

with $\lambda \in \mathbb{R}_0^+$ fixed.

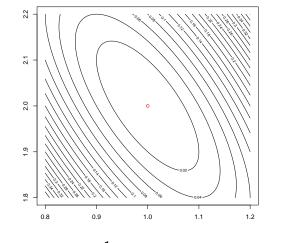
 only for regression and ridge regression this is an unconstrained quadratic problem that easily can be solved as a system of linear equations

$$(X^T X + \lambda I)\hat{\beta} = X^T y$$

▶ in all other cases a solution needs to be found numerically.

< ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 < ○へ ??</p>

Objective Function



Shivers/

Gradient Descent

choose
$$\Theta^{(0)} \in \mathbb{R}^{p}$$

 $\Theta^{(t+1)} := \Theta^{(t)} - \eta^{(t)} \frac{\partial f}{\partial \Theta}(\Theta^{(t)}), \quad t = 0, 1, 2, \dots$
stop once $||\frac{\partial f}{\partial \Theta}(\Theta^{(t)})|| < \epsilon$

with

- $\eta^{(t)} \in \mathbb{R}^+$ called step size / learning rate.
- $\epsilon \in \mathbb{R}^+$ called minimum gradient norm / stopping criterion.

Gradient Descent

choose
$$\Theta^{(0)} \in \mathbb{R}^{p}$$

 $\Theta^{(t+1)} := \Theta^{(t)} - \eta^{(t)} \frac{\partial f}{\partial \Theta}(\Theta^{(t)}), \quad t = 0, 1, 2, \dots$
stop once $||\frac{\partial f}{\partial \Theta}(\Theta^{(t)})|| < \epsilon$

with

- $\eta^{(t)} \in \mathbb{R}^+$ called step size / learning rate.
- $\epsilon \in \mathbb{R}^+$ called minimum gradient norm / stopping criterion.

$$\frac{\partial f}{\partial \Theta}(\Theta) = \frac{1}{|\mathcal{D}^{\mathsf{train}}|} \sum_{(x,y)\in\mathcal{D}^{\mathsf{train}}} \frac{\partial \ell}{\partial \hat{y}}(y, \hat{y}(x; \Theta)) \frac{\partial \hat{y}}{\partial \Theta}(x; \Theta) + \lambda \frac{\partial R}{\partial \Theta}(\Theta)$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

 \exists

・ロト ・四ト ・ヨト ・ヨト

Gradient Descent Example: logistic regression.

$$\ell(y, \hat{y}) = -y \log \hat{y} - (1 - y) \log(1 - \hat{y}) \qquad \frac{\partial \ell}{\partial \hat{y}}(y, \hat{y}) = -y \frac{1}{\hat{y}} - (1 - y) \frac{-1}{1 - \hat{y}}$$
$$= \frac{\hat{y} - y}{\hat{y}(1 - \hat{y})}$$
$$\hat{y}(x; \Theta) = \text{logistic}(\Theta^T x) \qquad \frac{\partial \hat{y}}{\partial \Theta_j}(x; \Theta) = \text{logistic}(\Theta^T x)$$
$$\cdot (1 - \text{logistic}(\Theta^T x))x_j$$
$$R(\Theta) = \Theta^T \Theta \qquad \frac{\partial R}{\partial \Theta_j}(\Theta) = 2\Theta_j$$
$$\rightsquigarrow \quad \frac{\partial f}{\partial \Theta}(\Theta) = \frac{1}{|\mathcal{D}^{\text{train}}|} \sum_{(x, y) \in \mathcal{D}^{\text{train}}} (\hat{y}(x; \Theta) - y)x + 2\lambda\Theta$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

うへで 16 / 19

 \exists

・ロト ・四ト ・モト ・モト

Universiter Hidesheif

Newton Algorithm

choose
$$\Theta^{(0)} \in \mathbb{R}^{p}$$

solve $\left(\frac{\partial^{2}f}{\partial\Theta^{2}}(\Theta^{(t)})\right) d^{(t)} = -\frac{\partial f}{\partial\Theta}(\Theta^{(t)})$
 $\Theta^{(t+1)} := \Theta^{(t)} - \eta^{(t)}d^{(t)}$
stop once $||d^{(t)}|| < \epsilon$

with

- $\eta^{(t)} \in \mathbb{R}^+$ called step size / learning rate.
- ▶ $\epsilon \in \mathbb{R}^+$ called minimum gradient norm / stopping criterion.

<ロ> < 母> < 母> < 注> < 注> < 注) < つへ()</p>

Stochastic Gradient Descent

Rewrite the objective as a big sum:

$$\begin{split} f(\Theta) &= \sum_{i=1}^{n} f_i(\Theta), \\ f_i(\Theta) &:= \ell(y_i, \hat{y}(x_i; \Theta) + \frac{\lambda}{n} R(\Theta) \end{split}$$

then minimize a summand at a time:

choose
$$\Theta^{(0)} \in \mathbb{R}^{p}$$

pick uniformly at random $i^{(t)} \in \{1, \dots, n\}$
 $\Theta^{(t+1)} := \Theta^{(t)} - \eta^{(t)} \frac{\partial f_{i^{(t)}}}{\partial \Theta} (\Theta^{(t)}), \quad t = 0, 1, 2, \dots$
stop once $||\Theta^{(t)} - \Theta^{(t-t_0)}|| < \epsilon$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

18 / 19

Stochastic Gradient Descent

- Stochastic Gradient Descent (SGD) is as simple to derive and implement as full gradient descent.
- SGD often converges much faster than full gradient descent as parameters are updated more quickly.
- ► For stopping, lack of progress on several iterations (t₀) has to be observed.
- Often the regularization term is not spread uniformaly over all summand functions, but in a clever way s.t. *f_i* depends on as few Θ_j as possible (sparse parameter updates).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

(日)