Business Analytics

1. Prediction, 1.3 Regularized Loss Models

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
University of Hildesheim, Germany

Outline

1. Overfitting and Regularization
2. Prediction Functions
3. Sparse Predictors
4. Learning Algorithms

Outline

1. Overfitting and Regularization

2. Prediction Functions

3. Sparse Predictors

4. Learning Algorithms

Overall Procedure

1. define a prediction function \hat{y} that depends on some model parameters $\Theta \in \mathbb{R}^{q}$, e.g., for regression, a linear model:

$$
\hat{y}(x ; \Theta):=\beta_{0}+\beta^{T} x=\beta_{0}+\sum_{i=1}^{p} \beta_{i} x_{i}, \quad \Theta:=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)
$$

2. the training error

$$
\ell\left(\Theta ; \mathcal{D}^{\text {train }}\right):=\frac{1}{\left|\mathcal{D}^{\text {train }}\right|} \sum_{(x, y) \in \mathcal{D}^{\text {train }}} \ell(y, \hat{y}(x ; \Theta))
$$

is called objective function

$$
f\left(\Theta ; \mathcal{D}^{\text {train }}\right):=\ell\left(\Theta ; \mathcal{D}^{\text {train }}\right)
$$

3. find the parameters Θ^{*} that minimize the objective function numerically.

Overall Procedure

1. define a prediction function \hat{y} that depends on some model parameters $\Theta \in \mathbb{R}^{q}$, e.g., for regression, a linear model:

$$
\hat{y}(x ; \Theta):=\beta_{0}+\beta^{T} x=\beta_{0}+\sum_{i=1}^{p} \beta_{i} x_{i}, \quad \Theta:=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)
$$

2. define a regularization function

$$
R: \mathbb{R}^{q} \rightarrow \mathbb{R}_{0}^{+}, \quad \text { e.g., } R(\Theta):=\|\Theta\|^{2}=\sum_{i=1}^{q} \Theta_{i}^{2}
$$

that penalizes complex models. Its combination with the training error

$$
\ell\left(\Theta ; \mathcal{D}^{\text {train }}\right):=\frac{1}{\left|\mathcal{D}^{\text {train }}\right|} \sum_{(x, y) \in \mathcal{D}^{\text {train }}} \ell(y, \hat{y}(x ; \Theta))
$$

is called objective function

$$
f\left(\Theta ; \mathcal{D}^{\text {train }}\right):=\ell\left(\Theta ; \mathcal{D}^{\text {train }}\right)+\lambda R(\Theta), \quad \lambda \in \mathbb{R}_{0}^{+}
$$

Overfitting

Example:

Assume the true data generating process is

$$
Y=1+X_{1}+\epsilon, \quad \epsilon \sim \mathcal{N}(0,0.1)
$$

and we draw the following sample

x_{1}	y
1.0	1.8
2.0	3.2
4.0	5.4

Overfitting

Overfitting

The linear model with minimal training error is model $\# 1$:

$$
\hat{y}\left(x_{1}\right):=0.7+1.186 x_{1}, \quad \operatorname{RMSE}(\hat{y})=0.093
$$

Overfitting

Now lets assume we measure 3 further variables x_{2}, x_{3} and x_{4}, not correlated with the target Y at all (noise):

x_{1}	x_{2}	x_{3}	x_{4}	y
1.0	1.0	0.0	0.0	1.8
2.0	0.0	1.0	0.0	3.2
4.0	0.0	0.0	1.0	5.4

Now, a linear model with minimal training error is model \#2:

$$
\hat{y}\left(x_{1}\right):=0.7+1.186 x_{1}-0.086 x_{2}+0.128 x_{3}-0.044 x_{4}, \quad \operatorname{RMSE}(\hat{y})=0
$$

And another one is model \#3:

$$
\hat{y}\left(x_{1}\right):=0.0+0.0 x_{1}+1.8 x_{2}+3.2 x_{3}+5.4 x_{4}, \quad \operatorname{RMSE}(\hat{y})=0
$$

These models fit noise or overfit.

Overfitting

How to avoid overfitting?

- do not include noisy variables

Overfitting

How to avoid overfitting?

- do not include noisy variables
- but we do not know which ones are correlated with the target

Overfitting

How to avoid overfitting?

- do not include noisy variables
- but we do not know which ones are correlated with the target
- employ model selection to find out which variables are noisy (variable selection)

Overfitting

How to avoid overfitting?

- do not include noisy variables
- but we do not know which ones are correlated with the target
- employ model selection to find out which variables are noisy (variable selection)
- possible, but usually slow and not very reliable

Overfitting

How to avoid overfitting?

- do not include noisy variables
- but we do not know which ones are correlated with the target
- employ model selection to find out which variables are noisy (variable selection)
- possible, but usually slow and not very reliable
- force all parameters to be small (shrinking)

Why Small Parameters Prevent Overfitting

Assume we force all parameters β_{i} to be $\left|\beta_{i}\right| \leq 2$.
Then model \#3 is no longer allowed:

$$
\hat{y}\left(x_{1}\right):=0.0+0.0 x_{1}+1.8 x_{2}+3.2 x_{3}+5.4 x_{4}, \quad \operatorname{RMSE}(\hat{y})=0
$$

Model \#4 is already much better:

$$
\hat{y}\left(x_{1}\right):=2.0+0.35 x_{1}-0.55 x_{2}+0.5 x_{3}+2.0 x_{4}, \quad \operatorname{RMSE}(\hat{y})=0
$$

Assume we force all parameters β_{i} to have $\sum_{i=0}^{p}\left|\beta_{i}\right| \leq 3$.
Model \#5 is again much better:

$$
\hat{y}\left(x_{1}\right):=0.5+1.125 x_{1}-0.175 x_{2}-0.45 x_{3}+0.4 x_{4}, \quad \operatorname{RMSE}(\hat{y})=0
$$

Outline

1. Overfitting and Regularization

2. Prediction Functions
3. Sparse Predictors

4. Learning Algorithms

Linear Model

$$
\hat{y}(x):=\beta_{0}+\beta^{T} x=\beta_{0}+\sum_{i=1}^{p} \beta_{i} x_{i}
$$

Polynomial Model

of degree 2 :

$$
\hat{y}(x):=\beta_{0}+\sum_{i=1}^{p} \beta_{i} x_{i}+\sum_{i=1}^{p} \sum_{j=i}^{p} \beta_{i, j} x_{i} x_{j}
$$

e.g.,

$$
\hat{y}\left(x_{1}, x_{2}\right):=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{1,1} x_{1}^{2}+\beta_{2,2} x_{2}^{2}+\beta_{1,2} x_{1} x_{2}
$$

Polynomial Model

of degree 2 :

$$
\hat{y}(x):=\beta_{0}+\sum_{i=1}^{p} \beta_{i} x_{i}+\sum_{i=1}^{p} \sum_{j=i}^{p} \beta_{i, j} x_{i} x_{j}
$$

of degree 3 :

$$
\hat{y}(x):=\beta_{0}+\sum_{i=1}^{p} \beta_{i} x_{i}+\sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{i, j} x_{i} x_{j}+\sum_{i=1}^{p} \sum_{j=i}^{p} \sum_{k=j}^{p} \beta_{i, j, k} x_{i} x_{j} x_{k}
$$

e.g.,

$$
\begin{aligned}
\hat{y}\left(x_{1}, x_{2}\right):= & \beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{1,1} x_{1}^{2}+\beta_{2,2} x_{2}^{2}+\beta_{1,2} x_{1} x_{2} \\
& +\beta_{1,1,1} x_{1}^{3}+\beta_{2,2,2} x_{2}^{3}+\beta_{1,1,2} x_{1}^{2} x_{2}+\beta_{1,2,2} x_{1} x_{2}^{2}
\end{aligned}
$$

Polynomial Model

of degree 3 :

$$
\hat{y}(x):=\beta_{0}+\sum_{i=1}^{p} \beta_{i} x_{i}+\sum_{i=1}^{p} \sum_{j=1}^{p} \beta_{i, j} x_{i} x_{j}+\sum_{i=1}^{p} \sum_{j=i}^{p} \sum_{k=j}^{p} \beta_{i, j, k} x_{i} x_{j} x_{k}
$$

of degree d :

$$
\begin{aligned}
\hat{y}(x):=\sum_{J \in \Delta_{p, d}} \beta_{J} x^{J} \quad \text { where } x^{J} & :=\prod_{i=1}^{p} x_{i}^{J_{i}}, \quad J \in \Delta_{p, d} \\
\Delta_{p, d} & :=\left\{J \in \mathbb{N}^{p} \mid \sum_{i=1}^{p} J_{i} \leq d\right\}
\end{aligned}
$$

Factorized Polynomial Models

of degree d :

$$
\hat{y}(x):=\sum_{J \in \Delta_{p, d}} \beta_{J} x^{J}
$$

with

$$
\beta_{J}:=\sum_{k=1}^{K} \phi_{k}^{J}, \quad \phi_{k} \in \mathbb{R}^{p}
$$

$$
\hat{y}(x):=\beta_{0}+\sum_{i=1}^{N} \alpha_{i} y_{i} k\left(x_{i}, x\right), \quad \text { with }\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right) \in \mathcal{D}^{\mathrm{tra}}
$$ and a kernel $k: \mathbb{R}^{p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}_{0}^{+}$, e.g.,

polynomial kernel

$$
k\left(x, x^{\prime}\right):=\left(1+x^{T} x^{\prime}\right)^{d}, \quad d \in \mathbb{N} \text { degree }
$$

radial basis function kernel

$$
k\left(x, x^{\prime}\right):=e^{\gamma x^{T} x^{\prime}}, \quad \gamma \in \mathbb{R}^{+}
$$

Models - Many Fancy Names

prediction function	loss	regula- rization	model name
linear	L 2	-	regression, least squares linear
L 2	L 2	ridge regression	
kernel	L 2	-	kernel regression
linear	L 2	L 1	lasso
linear	L 2	$\mathrm{~L} 1+\mathrm{L} 2$	elastic net
linear/kernel	ϵ-insensitive	L 2	support vector regression
\vdots	\vdots	\vdots	\vdots
linear	hinge	-	perceptron
linear/kernel	hinge	L 2	support vector machine
linear/kernel	squared hinge	L 2	L2 support vector machine
logistic(linear)	loglikelihood	-	logistic regression
logistic(linear)	loglikelihood	L 2	logistic ridge regression
\vdots	\vdots	\vdots	\vdots

Outline

1. Overfitting and Regularization

2. Prediction Functions

3. Sparse Predictors

4. Learning Algorithms

Sparse predictors

Predictor vectors $X \mathbb{R}^{p}$ are called sparse, if on average only a few of its components, say $p_{\mathrm{nz}}<p$ are non-zero.

Sparse predictors

Predictor vectors $X \mathbb{R}^{p}$ are called sparse, if on average only a few of its components, say $p_{\mathrm{nz}}<p$ are non-zero.

Examples:

- the products a customer bought in an online shop.
- the categories a document belongs to.

Sparse predictors

Predictor vectors $X \mathbb{R}^{p}$ are called sparse, if on average only a few of its components, say $p_{\mathrm{nz}}<p$ are non-zero.

Examples:

- the products a customer bought in an online shop.
- the categories a document belongs to.

Sparse predictors

- can be stored more compact in $O\left(p_{\mathrm{nz}}\right)<O(p)$ by storing only indices and values of non-zero components:

$$
x=(5,0,0,3,4,0,0,0,0,0) \in \mathbb{R}^{10} \leftrightarrow x=((1,5),(4,3),(5,4)) \in(\mathbb{N} \times \mathbb{R})
$$

Sparse predictors

Predictor vectors $X \mathbb{R}^{p}$ are called sparse, if on average only a few of its components, say $p_{\mathrm{nz}}<p$ are non-zero.

Examples:

- the products a customer bought in an online shop.
- the categories a document belongs to.

Sparse predictors

- can be stored more compact in $O\left(p_{\mathrm{nz}}\right)<O(p)$ by storing only indices and values of non-zero components:

$$
x=(5,0,0,3,4,0,0,0,0,0) \in \mathbb{R}^{10} \leftrightarrow x=((1,5),(4,3),(5,4)) \in(\mathbb{N} \times \mathbb{R})
$$

- can be multiplied faster with a dense or sparse vector in $O\left(p_{\mathrm{nz}}\right)<O(p):$

$$
\beta^{T} x=\sum_{i=1}^{p} \beta_{i} x_{i} \leftrightarrow \beta^{T} x=\sum_{i=1}^{|x|} \beta_{x_{i, 1}} x_{i, 2}
$$

Outline

1. Overfitting and Regularization

2. Prediction Functions

3. Sparse Predictors

4. Learning Algorithms

Objective Function

Learning a model means to find the parameters $\hat{\theta}$ with a minimum of the objective function f :

$$
\hat{\Theta}:=\underset{\Theta}{\arg \min } f(\Theta):=\frac{1}{\left|\mathcal{D}^{\text {train }}\right|} \sum_{(x, y) \in \mathcal{D}^{\text {train }}} \ell(y, \hat{y}(x ; \Theta))+\lambda R(\Theta)
$$

with $\lambda \in \mathbb{R}_{0}^{+}$fixed.

Objective Function

Learning a model means to find the parameters $\hat{\theta}$ with a minimum of the objective function f :

$$
\hat{\Theta}:=\underset{\Theta}{\arg \min } f(\Theta):=\frac{1}{\mid \mathcal{D}^{\text {train }}} \sum_{(x, y) \in \mathcal{D}^{\text {train }}} \ell(y, \hat{y}(x ; \Theta))+\lambda R(\Theta)
$$

with $\lambda \in \mathbb{R}_{0}^{+}$fixed.

- only for regression and ridge regression this is an unconstrained quadratic problem that easily can be solved as a system of linear equations

$$
\left(X^{T} X+\lambda I\right) \hat{\beta}=X^{T} y
$$

- in all other cases a solution needs to be found numerically.

Objective Function

$$
\hat{\Theta}:=\underset{\Theta}{\arg \min } f(\Theta):=\frac{1}{\left|\mathcal{D}^{\text {train }}\right|} \sum_{(x, y) \in \mathcal{D}^{\text {train }}} \ell(y, \hat{y}(x ; \Theta))+\lambda R(\Theta)
$$

Gradient Descent

$$
\begin{aligned}
& \text { choose } \Theta^{(0)} \in \mathbb{R}^{p} \\
& \Theta^{(t+1)}:=\Theta^{(t)}-\eta^{(t)} \frac{\partial f}{\partial \Theta}\left(\Theta^{(t)}\right), \quad t=0,1,2, \ldots \\
& \text { stop once }\left\|\frac{\partial f}{\partial \Theta}\left(\Theta^{(t)}\right)\right\|<\epsilon
\end{aligned}
$$

with

- $\eta^{(t)} \in \mathbb{R}^{+}$called step size / learning rate.
- $\epsilon \in \mathbb{R}^{+}$called minimum gradient norm / stopping criterion.

Gradient Descent

$$
\begin{aligned}
& \text { choose } \Theta^{(0)} \in \mathbb{R}^{p} \\
& \Theta^{(t+1)}:=\Theta^{(t)}-\eta^{(t)} \frac{\partial f}{\partial \Theta}\left(\Theta^{(t)}\right), \quad t=0,1,2, \ldots \\
& \text { stop once }\left\|\frac{\partial f}{\partial \Theta}\left(\Theta^{(t)}\right)\right\|<\epsilon
\end{aligned}
$$

with

- $\eta^{(t)} \in \mathbb{R}^{+}$called step size / learning rate.
- $\epsilon \in \mathbb{R}^{+}$called minimum gradient norm / stopping criterion.

$$
\frac{\partial f}{\partial \Theta}(\Theta)=\frac{1}{\left|\mathcal{D}^{\text {train }}\right|} \sum_{(x, y) \in \mathcal{D}^{\text {train }}} \frac{\partial \ell}{\partial \hat{y}}(y, \hat{y}(x ; \Theta)) \frac{\partial \hat{y}}{\partial \Theta}(x ; \Theta)+\lambda \frac{\partial R}{\partial \Theta}(\Theta)
$$

Gradient Descent

Example: logistic regression.

$$
\begin{array}{rlrl}
\ell(y, \hat{y}) & =-y \log \hat{y}-(1-y) \log (1-\hat{y}) & \frac{\partial \ell}{\partial \hat{y}}(y, \hat{y}) & =-y \frac{1}{\hat{y}}-(1-y) \frac{-1}{1-\hat{y}} \\
& =\frac{\hat{y}-y}{\hat{y}(1-\hat{y})} \\
\hat{y}(x ; \Theta) & =\operatorname{logistic}\left(\Theta^{T} x\right) & \frac{\partial \hat{y}}{\partial \Theta_{j}}(x ; \Theta) & =\operatorname{logistic}\left(\Theta^{T} x\right) \\
R(\Theta) & =\Theta^{T} \Theta \quad\left(1-\log \operatorname{sistic}\left(\Theta^{T} x\right)\right) x_{j} \\
& \rightsquigarrow \frac{\partial R}{\partial \Theta_{j}}(\Theta)=2 \Theta_{j}
\end{array}
$$

Newton Algorithm

$$
\begin{aligned}
& \text { choose } \Theta^{(0)} \in \mathbb{R}^{p} \\
& \text { solve }\left(\frac{\partial^{2} f}{\partial \Theta^{2}}\left(\Theta^{(t)}\right)\right) d^{(t)}=-\frac{\partial f}{\partial \Theta}\left(\Theta^{(t)}\right) \\
& \Theta^{(t+1)}:=\Theta^{(t)}-\eta^{(t)} d^{(t)} \\
& \text { stop once }\left\|d^{(t)}\right\|<\epsilon
\end{aligned}
$$

with

- $\eta^{(t)} \in \mathbb{R}^{+}$called step size / learning rate.
- $\epsilon \in \mathbb{R}^{+}$called minimum gradient norm / stopping criterion.

Stochastic Gradient Descent

Rewrite the objective as a big sum:

$$
\begin{aligned}
& f(\Theta)=\sum_{i=1}^{n} f_{i}(\Theta), \\
& f_{i}(\Theta):=\ell\left(y_{i}, \hat{y}\left(x_{i} ; \Theta\right)+\frac{\lambda}{n} R(\Theta)\right.
\end{aligned}
$$

then minimize a summand at a time:
choose $\Theta^{(0)} \in \mathbb{R}^{p}$
pick uniformly at random $i^{(t)} \in\{1, \ldots, n\}$
$\Theta^{(t+1)}:=\Theta^{(t)}-\eta^{(t)} \frac{\partial f_{i}(t)}{\partial \Theta}\left(\Theta^{(t)}\right), \quad t=0,1,2, \ldots$
stop once $\left\|\Theta^{(t)}-\Theta^{\left(t-t_{0}\right)}\right\|<\epsilon$

Stochastic Gradient Descent

- Stochastic Gradient Descent (SGD) is as simple to derive and implement as full gradient descent.
- SGD often converges much faster than full gradient descent as parameters are updated more quickly.
- For stopping, lack of progress on several iterations $\left(t_{0}\right)$ has to be observed.
- Often the regularization term is not spread uniformaly over all summand functions, but in a clever way s.t. f_{i} depends on as few Θ_{j} as possible (sparse parameter updates).

