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Business Analytics 1. k-means & k-medoids

Partitions

Let X be a set. A set P C P(X) of subsets of X is called
a partition of X if the subsets

1. are pairwise disjoint: AnNnB=1(, ABeP,A#B
2. cover X: U A= X, and
AeP

3. do not contain the empty set: () & P.
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Business Analytics 1. k-means & k-medoids

. N R
Partitions v

Let X :={x1,...,xn} be a finite set. A set P:={Xj,..., Xk} of subsets
X C X is called a partition of X if the subsets

1. are pairwise disjoint: XeNX;=0, kje{l,...,K}Lk#j
K
2. cover X: UXk:X, and
k=1

3. do not contain the empty set: Xx #0, ke {l,...,K}.

The sets X are also called clusters, a partition P a clustering.
K € N is called number of clusters.

Part(X) denotes the set of all partitions of X.
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Business Analytics

1. k-means & k-medoids

Partitions

Let X := {x,

.,xn} be a finite set. A surjective function

p:{1l,...,N} = {1,....K}
is called a partition function of X.
The sets Xy := p~1(k) form a partition P := {X,

Xk},
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Business Analytics 1. k-means & k-medoids

. N R
Partitions v

Let X :={x1,...,xn} be a finite set. A binary N x K matrix
P e {0, 1}NxK

is called a partition matrix of X if it

K
1. is row-stochastic: Z Pir=1 ie{l,...,N}, ke{l,.
k=1
2. does not contain a zero column:  Xj , # (O,... O, ke{l,...,K}.

The sets Xy :={i € {1,...,N} | Pix =1} form a partition
P={Xi,...,Xx}.

P_k is called membership vector of class k.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Business Analytics 1. k-means & k-medoids

The Cluster Analysis Problem

Given
» aset X called data space, e.g., X :=R"™,
» aset X C X called data, and
» a function

D: | J Part(X) - R{
XCx

called distortion measure where D(P) measures how bad a partition
P € Part(X) for a data set X C X is,

find a partition P = {X1, Xa,... Xk} € Part (X) with minimal distortion
D(P).
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Business Analytics 1. k-means & k-medoids

The Cluster Analysis Problem (given K)

Given
» a set X called data space, e.g., X :=R"™,
» aset X C X called data,

» a function

D: | J Part(X) - R{
XCx

called distortion measure where D(P) measures how bad a partition
P € Part(X) for a data set X C X' is, and
» a number K € N of clusters,

find a partition P = {X1, Xo,... Xk} € Part x(X) with K clusters with
minimal distortion D(P).
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Business Analytics 1. k-means & k-medoids

) ) . P2
k-means: Distortion Sum of Distances to Cluster Center@

Sum of squared distances to cluster centers:

K n
D(P) =" lIxi — pull?

k=1 i=1:
Pi k=1

with

Wk = mean {X,"P,'*:]_,I':]_,...,n}
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Business Analytics 1. k-means & k-medoids

) ) . P2
k-means: Distortion Sum of Distances to Cluster Center@

Sum of squared distances to cluster centers:
n

n K K
D(P) := ZZPi,k||Xi—Mk||2:Z l1xi — gl
1

i=1 k=1 k=1 i=L
Pi k=1

with

i P

pk = Ep—m— =mean {x; | Pixy=1,i=1,...,n
Zlephk {’| I }
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Business Analytics 1. k-means & k-medoids

) ) . P2
k-means: Distortion Sum of Distances to Cluster Center@

Sum of squared distances to cluster centers:

n K K n
D(P):=> > Pisllxi —mel> =D > lIxi — el ?
k=1 i=1

i=1 k=1
Pi k=1

with

pk i= mean {x; | Piy =1,i=1,...,n}

Minimizing D over partitions with varying number of clusters leads to
singleton clustering with distortion 0; only the cluster analysis problem
with given K makes sense.

Minimizing D is not easy as reassigning a point to a different cluster also
shifts the cluster centers.
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Business Analytics 1. k-means & k-medoids

k-means: Minimizing Distances to Cluster Centers
Add cluster centers p as auxiliary optimization variables:

n K
D(P, 1) =Y Prallxi — pl|?

i=1 k=1
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Business Analytics 1. k-means & k-medoids

k-means: Minimizing Distances to Cluster Centers
Add cluster centers p as auxiliary optimization variables:

n K
D(P, 1) =Y Prallxi — pl|?
i—1 k=1

Block coordinate descent:

1. fix u, optimize P ~~ reassign data points to clusters:

Piy = argmin [|x; — pul|?
ke{l,...K}
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Business Analytics 1. k-means & k-medoids

k-means: Minimizing Distances to Cluster Centers

Add cluster centers p as auxiliary optimization variables:

n K
D(P, 1) =Y Prallxi — pl|?

i=1 k=1

Block coordinate descent:

1. fix u, optimize P ~~ reassign data points to clusters:

Piy = argmin [|x; — pul|?
ke{l,...K}

2. fix P, optimize p ~~ recompute cluster centers:

= S0 Pikxi
Y Pik

Iterate until partition is stable.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

36



Business Analytics 1. k-means & k-medoids
e K
k-means: Initialization “

k-means is usually initialized by picking K data points as cluster centers at
random:

1. pick the first cluster center u1 out of the data points at random and

then

sequentially select the data point with the largest sum of distances to
already choosen cluster centers as next cluster center

k—1
Wk = Xi, 1= argmaxZHx,- —wl? k=2,....K
i€{l,...n} y—
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Business Analytics 1. k-means & k-medoids

e e 21
k-means: Initialization “
k-means is usually initialized by picking K data points as cluster centers at
random:

1.

pick the first cluster center u1 out of the data points at random and
then

sequentially select the data point with the largest sum of distances to
already choosen cluster centers as next cluster center

k—1
Wk = Xi, 1= argmaxZHx,- —wl? k=2,....K
i€{l,...n} y—

Different initializations may lead to different local minima.

» run k-means with different random initializations and

» keep only the one with the smallest distortion (random restarts).
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Business Analytics 1. k-means & k-medoids

Example
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Business Analytics 1. k-means & k-medoids
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Business Analytics 1. k-means & k-medoids

Example
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Business Analytics 1. k-means & k-medoids
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Business Analytics 1. k-means & k-medoids
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Business Analytics 1. k-means & k-medoids

Example
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Business Analytics 1. k-means & k-medoids
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Business Analytics

1. k-means & k-medoids

How Many Clusters K7
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Business Analytics

1. k-means & k-medoids

How Many Clusters K7
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Business Analytics 1. k-means & k-medoids

k-medoids: k-means for General Distances
One can generalize k-means to general distances d:

n K
D(P, 1) ==Y > Pjsd(xi, k)

i=1 k=1
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Business Analytics 1. k-means & k-medoids

k-medoids: k-means for General Distances
One can generalize k-means to general distances d:

n K
D(P, 1) ==Y > Pjsd(xi, k)

i=1 k=1

» step 1 assigning data points to clusters remains the same

Pi k== argmin d(x;, k)
ke{l,...,.K}

» but step 2 finding the best cluster representatives i is not solved
by the mean and may be difficult in general.
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Business Analytics 1. k-means & k-medoids

k-medoids: k-means for General Distances
One can generalize k-means to general distances d:

n K
D(P, 1) ==Y > Pjsd(xi, k)

i=1 k=1

» step 1 assigning data points to clusters remains the same

Pi k== argmin d(x;, k)
ke{l,...,.K}

» but step 2 finding the best cluster representatives i is not solved
by the mean and may be difficult in general.

idea k-medoids: choose cluster representatives out of cluster data points:

n
Mk = Xj, ji= arg min Z P;,kd(XhXj)
JE{L,n} P =1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

36



Business Analytics 1. k-means & k-medoids

. . N
k-medoids: k-means for General Distances v

k-medoids is a “kernel method": it requires no access to the variables, just
to the distance measure.

For the Manhattan distance/L; distance, step 2 finding the best cluster
representatives iy can be solved without restriction to cluster data points:

(tk)j := median{(x;); | Pixk =1,i=1,...,n}, j=1,...,m
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Business Analytics 2. Hierarchical Cluster Analysis

Hierarchies

Let X be a set.
A tree (H,E), E C H x H edges pointing towards root

» with leaf nodes h corresponding bijectively to elements x;, € X

» plus a surjective map L: H — {0,...,d},d € N with
» L(root) =0 and

» L(h) =d for all leaves h € H and
» L(h) < L(g) forall (g,h) € E
called level map

is called an hierarchy over X.
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Business Analytics 2. Hierarchical Cluster Analysis

Hierarchies

Let X be a set.
A tree (H,E), E C H x H edges pointing towards root

» with leaf nodes h corresponding bijectively to elements x;, € X

» plus a surjective map L: H — {0,...,d},d € N with
» L(root) =0 and

» L(h) =d for all leaves h € H and
» L(h) < L(g) forall (g,h) € E
called level map

is called an hierarchy over X.

d is called the depth of the hierarchy.

Hier(X) denotes the set of all hierarchies over X
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2. Hierarchical Cluster Analysis

Hierarchies / Example

X : X1 X2 X3 X4 X5
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Business Analytics 2. Hierarchical Cluster Analysis

Hierarchies / Example

o

7

X : X1 X2 X3 X4 X5 X6
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Business Analytics 2. Hierarchical Cluster Analysis
o
(0]

A /\\

X : X1 X3 X4

Hierarchies / Example
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Business Analytics 2. Hierarchical Cluster Analysis

/\

o L=3
7N\ /\ -
X2 X5 X6

X X1 X3 X4 L=5

Hierarchies / Example
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Business Analytics 2. Hierarchical Cluster Analysis

Hierarchies: Nodes Correspond to Subsets

Let (H, E) be such an hierarchy:
» nodes of an hierarchy correspond to subsets of X:
» leaf nodes h correspond to a singleton subset by definition.

subset(h) := {xs}, xn € X corresponding to leaf h

» interior nodes h correspond to the union of the subsets of their children:

subset(h) := U subset(g)

gEH
(g.h)€EE

» thus the root node h corresponds to the full set X:

subset(h) = X
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Business Analytics 2. Hierarchical Cluster Analysis

Hierarchies: Nodes Correspond to Subsets

{x1, x3, Xa, X2, X5, Xp }

/

{Xl, X3, X4}
{x2, x5, X6}

T

{X2’ X5}

W
7N\

X: {xa} {x3} {xa} {x} {xs} {x6}
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Business Analytics 2. Hierarchical Cluster Analysis

Hierarchies: Levels Correspond to Partitions

Let (H, E) be such an hierarchy:

> levels £ € {0,...,d} correspond to partitions

PUH,L):={he H|L(h) >, Bg c H: L(g) > L,h C g}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
14 / 36



Business Analytics 2. Hierarchical Cluster Analysis

Hierarchies: Levels Correspond to Partitions

{x1, x3, Xa, X2, X5, X6 } {{x1,x3,xa, %2, %5, %6} }
A
{x1,x3, %} ’\ {{x1, x5, xa}, {x2, x5, x6 } }
{x2, x5, X6} {{x1, 3}, {xa}, {x2, x5, %6 } }
A

{x2, x5 {{x1, 3}, {xa}, {x2, x5}, {x6} }

{x1,x3} /\ {{x1, 3} {xa}, {xe}, {xs}, {x6}}
AN

(al {a) {al {eb {s) o {6} {{a) sl (ad, el {xs) {6}
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Business Analytics 2. Hierarchical Cluster Analysis

B
The Hierarchical Cluster Analysis Problem “

Given
» aset X called data space, e.g., X :=R"™,
» aset X C X called data and

» a function

D: | J Hier(X) = R{
XCX

called distortion measure where D(P) measures how bad a hierarchy
H € Hier(X) for a data set X C X is,

find a hierarchy H € Hier(X) with minimal distortion D(H).
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Business Analytics 2. Hierarchical Cluster Analysis

Distortions for Hierarchies

Examples for distortions for hierarchies:

n

D(H):= Y D(Px(H))

K=1

where
» Pk (H) denotes the partition at level K — 1 (with K classes) and

» D denotes a distortion for partitions.
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Business Analytics 2. Hierarchical Cluster Analysis

Agglomerative and Divisive Hierarchical Clustering

Hierarchies are usually learned by greedy search level by level:
» agglomerative clustering;:
1. start with the singleton partition P,:

Pn::{Xk|k:1,...,n}, XkZ:{Xk}, k:l,...,n

2. in each step K = n,...,2 build Px_; by joining the two clusters
k.0 € {1,...,K} that lead to the minimal distortion

DXty Xes o3 Xy Xit, Xi U Xo)

Note: )/(; denotes that the class X is omitted from the partition.
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Business Analytics 2. Hierarchical Cluster Analysis

Agglomerative and Divisive Hierarchical Clustering

Hierarchies are usually learned by greedy search level by level:
» divisive clustering:
1. start with the all partition P;:

P1 = {X}

2. in each step K =1,n— 1 build Pk, by splitting one cluster X in two
clusters X/, X; that lead to the minimal distortion

DUX1, - Xes oo Xu, X X)), Xe = XL UX]

Note: )/(; denotes that the class X is omitted from the partition.
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Business Analytics 2. Hierarchical Cluster Analysis

Class-wise Defined Partition Distortions v

If the partition distortion can be written as a sum of distortions of its
classes,

K
DUX1,...., Xk}) =Y D(Xy)
k=1

then the optimal pair does only depend on Xj, Xp:

D({X, - Xiy -+, Xe, o, Xi, Xi U Xe) = D(Xe U Xe) — (D(Xe) + D(X0))
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Business Analytics 2. Hierarchical Cluster Analysis

Closest Cluster Pair Partition Distortions

For a cluster distance

d:P(X)x P(X) = R§
with d(AU B, C) > min{d(A, C),d(B,C)}, AB,CCX

a partition can be judged by the closest cluster pair it contains:

D({Xi, ..., Xk}) = min_d(X,X)
k4

Such a distortion has to be maximized.

To increase it, the closest cluster pair has to be joined.
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Business Analytics

2. Hierarchical Cluster Analysis

Single Link Clustering

dsi(A, B) == min

d(x,y), A BCX
xEA,yeB (X y)
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Business Analytics

2. Hierarchical Cluster Analysis

Complete Link Clustering

da(A, B) ==

max d
xeA,yéB (X’y)’
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Business Analytics

2. Hierarchical Cluster Analysis

Average Link Clustering

dai(A, B) :=

1
W Z d(x,y),

x€EA,yeB
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Business Analytics 2. Hierarchical Cluster Analysis

Recursion Formulas for Cluster Distances

Ao (Xi U X, Xi) = xEX-[Jn)g'n}/EXk dx.y)
i \j s,

_ . . d , , . d ,
mm{xe)ra;pexk (X y) xe)mlynGXk (X y)}

= min{d5|(X,~, Xk)a dsI(va Xk)}

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 36



Business Analytics 2. Hierarchical Cluster Analysis

Recursion Formulas for Cluster Distances

dsi(Xi U Xj, Xi) = min{dy(Xi, X), dsi(Xj, Xi)}

da(Xi U Xj, X)) == xex-m)?-xyexk d(x,y)
i o

_ d d
max{, 3y, d0ey) e, Aoy}

= max{du (X, Xk), da (X, Xi)}
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Business Analytics 2. Hierarchical Cluster Analysis

Recursion Formulas for Cluster Distances

di(Xi U Xj, Xi) = min{ds(Xi, Xk), dsi(Xj, Xic) }
doi(Xi U Xj, Xi) = max{da(Xi, Xk), dai(Xj, Xk) }

1
(X UX, X)) = d(x,
al( J k) ‘XI_U)GHXk’XGXIUEX;yGXk ( y)

| Xi] 1
= d
| Xi U XG] X[ X 2 dbey)

xe€Xi,yeXy
X 1
+ d(x,y)
XX X% 2
X; X;
1Xi da (Xi, X)) + ¢d3|(xj,xk)

X+ 1G] X[ =+ 1]
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Business Analytics 2. Hierarchical Cluster Analysis

Recursion Formulas for Cluster Distances

di(Xi U Xj, Xi) = min{ds(Xi, Xk), dsi(Xj, Xi) }
doi(X;i U Xj, Xi) = max{da(Xi, Xk), dai(Xj, X) }
| Xi| 1

dai(Xi U X, Xi) = oo dai (X5, Xi) + mdal
/ j

— Xi. X
X+ 1% (%5, %)

~> agglomerative hierarchical clustering requires to compute the
distance matrix D € R"™" only once:

Dij:=d(xi,x), i,j=1,...,K
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Business Analytics

3. Gaussian Mixture Models

Outline

3. Gaussian Mixture Models
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Business Analytics 3. Gaussian Mixture Models

.. i . P2
Soft Partitions: Row Stochastic Matrices v
Let X := {x1,...,xn} be a finite set. A N x K matrix

P[0, VK

is called a soft partition matrix of X if it

K

1. is row-stochastic: Z Pix=1 ie{l,...,N}, ke{l,.
k=1

2. does not contain a zero column:  Xj , # (O,. .. 07, ke{l,... K}

P;  is called the membership degree of instance / in class k or the
cluster weight of instance / in cluster k.

P_k is called membership vector of class k.

1boét Bafit pXKi)ridenotessthalisetsaf aUsﬁm-ftgpamaihi@nsméEtXi%gs.
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Business Analytics 3. Gaussian Mixture Models

The Soft Clustering Problem

Given
» aset X called data space, e.g., X :=R",
» aset X C X called data, and

» a function

D: U SoftPart(X) — Ry
XCXx

called distortion measure where D(P) measures how bad a soft
partition P € SoftPart(X) for a data set X C X s,

find a soft partition P € SoftPart (X) with minimal distortion D(P).
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Business Analytics 3. Gaussian Mixture Models

NN
The Soft Clustering Problem (with given K) “

Given
» a set X called data space, e.g., X :=R"™,
» aset X C X called data,

» a function

D: | SoftPart(X) — R{
XCx

called distortion measure where D(P) measures how bad a soft
partition P € SoftPart(X) for a data set X C X is, and

» a number K € N of clusters,

find a soft partition P € SoftPart (X)C [0, 1]X*¥ with K clusters with
minimal distortion D(P).

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
25

36



Business Analytics 3. Gaussian Mixture Models

NN
Mixture Models v

Mixture models assume that there exists an unobserved nominal
variable Z with K levels:

K
p(X.2) = p(2)o(X | 2) = [T(rupl | 2 = k120

The complete data loglikelihood of the completed data (X, Z) then is

n K
U(©;X,2):=Y > 8(Zi = k)(Inmc + Inp(X = xi | Z = k; b))
i=1 k=1
With@::(71'1,...,7TK,91,...,9K)

£ cannot be computed because z;'s are unobserved
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Business Analytics 3. Gaussian Mixture Models
: . K
Mixture Models: Expected Loglikelihood “

Given an estimate ©(t~1) of the parameters, mixtures aim to optimize the
expected complete data loglikelihood:

Q(e;0t 1) .= E[¢(©; X, Z) | ©(t=1)]
:}jiﬁwz:m\mdFWmm+mMX:mzzk@»
i=1 k=1
which is relaxed to

n K

ZZW (Inme +Inp(X =x; | Z=k;0k))

i=1 k=1

Q(e,r; (1)

+ (rix — E[6(Z; = k) | x;, ©1])2
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Business Analytics 3. Gaussian Mixture Models

B
Mixture Models: Expected Loglikelihood “

Block coordinate descent (EM algorithm): alternate until convergence
1. expectation step:
D = B[3(Z, = k) | 3.007D)] = p(Z = k| X = x; (D)
p(X=x|Z= k;@(f—l))p(z _ k;@(t_l))
ZkK’:l p(X =x; | Z=K;0t="1))p(Z = k;0(t-1))
p(X = x | Z = k; 8 yrl=D)

i ©)
ZkKl:]_ p(X = X; | 7/ = k/, 9/((1'*1))71_/((1‘71)

2. maximization step:
(1) .= argmax Q(©, rt=1); o(t~1))
©

n K
= argmax ZZ rik(Inme +Inp(X = x; | Z = k; 0x))

T1yeees TR 01,0k i=1 k=1
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Business Analytics 3. Gaussian Mixture Models

B
Mixture Models: Expected Loglikelihood “

2. maximization step:

n K
o) =  argmax ZZ rik(Inme +Inp(X =x; | Z = k; 0k))

1o s TR 01,50 ,0K i=1 k=1

Dliy ik
a0 - B 1)
1 ri k 8p(X:X,'|Z:k;9k)
’ — k
Zp(x — x| Z = k; 0x) 90 0. ¥ (+)

=

(*) needs to be solved for specific cluster specific distributions p(X|Z2).
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Business Analytics 3. Gaussian Mixture Models

Gaussian Mixtures

Gaussian mixtures:

» use Gaussians for p(X|Z):

1 1 Ts—1
X=x|Z=k)= ——e 20m) 5 0= 9, = (s, Tp
p( \ ) 2m) 54| k (bk> Tk
n -1
(t) > i1 ’i(,i )Xi )
R S N (=18 (2)

2i=1 ik
> ’i(,Z_l)(Xi - Mg))T(Xi - ,Lts(t))
2'7_1 r.(';(_l)
Z?:l ri(j:l)X,-TX,' — 'qu) TMS:)

= (3)
n -1
>t ri(,i :

s =
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Business Analytics 3. Gaussian Mixture Models

Gaussian Mixtures: EM Algorithm, Summary
1. expectation step: Vi, k

',:'(5:1) — 1 e*%(xif.“y 2 )T)Zt H “L(x— #t 1)) (Oa)
| (@2m)mzi Y]
(f 1)
(t—1) /k
R () (Ob)
k=1 /k’

2. minimization step: Vk

n 1
(t) ZI 1 I(i( )
T ==L LK

n

n t—1
(t) _ >ie1 :(k )x;

uk Zn . (1;( 1) (2)
n (t=1) T (7 (1)
. X' Xj —

zE(t) _ >t ik X ™ Py (3)

Zln 1 I(tI; Y
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Business Analytics 3. Gaussian Mixture Models

Gaussian Mixtures for Soft Clustering

» The responsibilities r € [0, 1]V*K

are a soft partition.
P:=r
» The negative expected loglikelihood can be used as cluster distortion:

D(P):=— max Q(O,r)

» To optimize D, we simply can run EM.
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Business Analytics 3. Gaussian Mixture Models

Gaussian Mixtures for Soft Clustering

» The responsibilities r € [0,1]V*X are a soft partition.
P:=r
» The negative expected loglikelihood can be used as cluster distortion:
D(P) = — max Q(O,r)

» To optimize D, we simply can run EM.

For hard clustering:

» assign points to the cluster with highest responsibility (hard EM):

r,.(’fl) =d0(k = i/rglma; ?,-(7271)) (0b")
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Business Analytics 3. Gaussian Mixture Models

B
Model-based Cluster Analysis “

Different parametrizations of the covariance matrices ¥ restrict possible
cluster shapes:

» full X:
all sorts of ellipsoid clusters.

» diagonal X:

ellipsoid clusters with axis-parallel axes
> unit X:

spherical clusters.

One also distinguishes
» cluster-specific X:
each cluster can have its own shape.

» shared ¥, = X:
all clusters have the same shape.
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Business Analytics 3. Gaussian Mixture Models

k-means: Hard EM with spherical clusters

1. expectation step: Vi, k

..I(i D _ 1 efé(X “k ))Tz(t DE (i*#it_l)) (02)
(2m)m|zy )
_ #e_i(xi_uffl))r(x )
(2m)m
,(5( 1) — 6(/{ = arg max r/(Z/ )) (Ob/)
K'=1,...,K
1
arg max r(k, Y = arg max 76_%(X"_“i T Oi—n )
K=1,..K =1,k \/(27)7
= argmax —(x - mENT (= )
= argmin ||x; — u{" V|12
K'=1,...,.K
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4. Conclusion

Outline

4. Conclusion

[m]

=

nae
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Business Analytics 4. Conclusion

Conclusion (1/2)

» Cluster analysis aims at detecting latent groups in data,
without labeled examples (++ record linkage).

» Latent groups can be described in three different granularities:
» partitions segment data into K subsets (hard clustering).
» hierarchies structure data into an hierarchy,
in a sequence of consistent partitions (hierarchical clustering).
» soft clusterings / row-stochastic matrices build overlapping groups
to which data points can belong with some membership degree (soft
clustering).

» k-means finds a K-partition by finding K cluster centers with
smallest Euclidean distance to all their cluster points.

» k-medoids generalizes k-means to general distances; it finds a
K-partition by selecting K data points as cluster representatives
with smallest distance to all their cluster points.
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Business Analytics 4. Conclusion

NS
Conclusion (2/2) i

» hierarchical single link, complete link and average link methods

» find a hierarchy by greedy search over consistent partitions,
» starting from the singleton parition (agglomerative)

» being efficient due to recursion formulas,

> requiring only a distance matrix.

» Gaussian Mixture Models find soft clusterings by modeling data by
a class-specific multivariate Gaussian distribution p(X | Z) and
estimating expected class memberships (expected likelihood).

» The Expectation Maximiation Algorithm (EM) can be used to
learn Gaussian Mixture Models via block coordinate descent.

» k-means is a special case of a Gaussian Mixture Model
» with hard/binary cluster memberships (hard EM) and
» spherical cluster shapes.

[m] = = =
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Readings

» k-means:
» [HTFFO5], ch. 14.3.6, 13.2.3, 8.5 [Bis06], ch. 9.1, [Mur12], ch. 11.4.2

» hierarchical cluster analysis:
» [HTFFO5], ch. 14.3.12, [Murl2], ch. 25.5. [PTVF07], ch. 16.4.

» Gaussian mixtures:
» [HTFFO5], ch. 14.3.7, [Bis06], ch. 9.2, [Murl2], ch. 11.2.3, [PTVF07],
ch. 16.1.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
37 / 36



Business Analytics

References

ﬁ Christopher M. Bishop.
Pattern recognition and machine learning, volume 1.
springer New York, 2006.
Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin.

The elements of statistical learning: data mining, inference and prediction.
The Mathematical Intelligencer, 27(2):83-85, 2005.

ﬁ Kevin P. Murphy.
Machine learning: a probabilistic perspective.
The MIT Press, 2012.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes.
Cambridge University Press, 3rd edition, 2007.

[m] = = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



	1. k-means & k-medoids
	2. Hierarchical Cluster Analysis
	3. Gaussian Mixture Models
	4. Conclusion
	Appendix

