

Business Analytics

3. Dimensionality Reduction

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
University of Hildesheim, Germany

Jrivers/ide

Outline

- 1. Principal Components Analysis
- 2. Probabilistic PCA & Factor Analysis
- 3. Non-linear Dimensionality Reduction
- 4. Independent Component Analysis
- 5. Supervised Dimensionality Reduction
- 6. Conclusion

Outline

- 1. Principal Components Analysis

- 4. Independent Component Analysis

The Dimensionality Reduction Problem

Given

- ▶ a set \mathcal{X} called **data space**, e.g., $\mathcal{X} := \mathbb{R}^m$,
- ▶ a set $X \subseteq \mathcal{X}$ called data,
- ► a function

$$D: \bigcup_{X\subseteq\mathcal{X},K\in\mathbb{N}} (\mathbb{R}^K)^X \to \mathbb{R}_0^+$$

called **distortion** where D(P) measures how bad a low dimensional representation $P: X \to \mathbb{R}^K$ for a data set $X \subseteq \mathcal{X}$ is, and

▶ a number $K \in \mathbb{N}$ of latent dimensions,

find a low dimensional representation $P: X \to \mathbb{R}^K$ with K dimensions with minimal distortion D(P).

Distortions for Dimensionality Reduction (1/2)

Let $d_{\mathcal{X}}$ be a distance on \mathcal{X} and $d_{\mathcal{Z}}$ be a distance on the latent space \mathbb{R}^K , usually just the Euclidean distance

$$d_Z(v, w) := ||v - w||_2 = (\sum_{i=1}^K (v_i - w_i)^2)^{\frac{1}{2}}$$

Multidimensional scaling aims to find latent representations P that reproduce the distance measure $d_{\mathcal{X}}$ as good as possible:

$$D(P) := \frac{2}{|X|(|X|-1)} \sum_{\substack{x,x' \in X \\ x \neq y}} (d_{\mathcal{X}}(x,x') - d_{\mathcal{Z}}(P(x),P(x')))^{2}$$

$$= \frac{2}{n(n-1)} \sum_{i=1}^{n} \sum_{j=1}^{i-1} (d_{\mathcal{X}}(x_{i},x_{j}) - ||z_{i} - z_{j}||)^{2}, \quad z_{i} := P(x_{i})$$

Distortions for Dimensionality Reduction (2/2)

Feature reconstruction methods aim to find latent representations P and reconstruction maps $r : \mathbb{R}^K \to \mathcal{X}$ from a given class of maps that **reconstruct features** as good as possible:

$$D(P,r) := \frac{1}{|X|} \sum_{x \in X} d_{\mathcal{X}}(x, r(P(x)))$$
$$= \frac{1}{n} \sum_{i=1}^{n} d_{\mathcal{X}}(x_{i}, r(z_{i})), \quad z_{i} := P(x_{i})$$

Singular Value Decomposition (SVD)

Theorem (Existence of SVD)

For every $A \in \mathbb{R}^{n \times m}$ there exist matrices

$$U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{m \times k}, \Sigma := diag(\sigma_1, \dots, \sigma_k) \in \mathbb{R}^{k \times k}, \qquad k := \min\{n, m\}$$

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r > \sigma_{r+1} = \dots = \sigma_k = 0, \qquad r := \operatorname{rank}(A)$$

$$U, V \text{ orthonormal, i.e., } U^T U = I, V^T V = I$$

with

$$A = U\Sigma V^T$$

 σ_i are called singular values of A.

Note: $I:=\operatorname{diag}(1,\ldots,1)\in\mathbb{R}^{k imes k}$ denotes the unit matrix.

Singular Value Decomposition (SVD; 2/2)

It holds:

a) σ_i^2 are eigenvalues and V_i eigenvectors of A^TA :

$$(A^{T}A)V_{i} = \sigma_{i}^{2}V_{i}, \quad i = 1, ..., k, V = (V_{1}, ..., V_{k})$$

b) σ_i^2 are eigenvalues and U_i eigenvectors of AA^T :

$$(AA^{T})U_{i} = \sigma_{i}^{2}U_{i}, \quad i = 1, ..., k, U = (U_{1}, ..., U_{k})$$

Singular Value Decomposition (SVD; 2/2)

It holds:

a) σ_i^2 are eigenvalues and V_i eigenvectors of A^TA :

$$(A^T A)V_i = \sigma_i^2 V_i, \quad i = 1, ..., k, V = (V_1, ..., V_k)$$

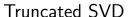
b) σ_i^2 are eigenvalues and U_i eigenvectors of AA^T :

$$(AA^{T})U_{i} = \sigma_{i}^{2}U_{i}, \quad i = 1, ..., k, U = (U_{1}, ..., U_{k})$$

proof:

a)
$$(A^T A)V_i = V\Sigma^T U^T U\Sigma V^T V_i = V\Sigma^2 e_i = \sigma_i^2 V_i$$

b) $(AA^T)U_i = U\Sigma^T V^T V\Sigma^T U^T U_i = U\Sigma^2 e_i = \sigma_i^2 U_i$



Let $A \in \mathbb{R}^{n \times m}$ and $U\Sigma V^T = A$ its SVD. Then for $k' \leq \min\{n, m\}$ the decomposition

$$A = U'\Sigma'V'^T$$

with

$$\textit{U}' := (\textit{U}_{,1}, \ldots, \textit{U}_{,k'}), \textit{V}' := (\textit{V}_{,1}, \ldots, \textit{V}_{,k'}), \Sigma' := \mathsf{diag}(\sigma_1, \ldots, \sigma_{k'})$$

is called truncated SVD with rank k'.

Stildeshelf

Matrix Trace

The function

$$\operatorname{\mathsf{tr}}: \bigcup_{n\in\mathbb{N}} \mathbb{R}^{n imes n} o \mathbb{R}$$

$$A \mapsto \operatorname{tr}(A) := \sum_{i=1}^{n} a_{i,i}$$

is called matrix trace.

Still deshelf

Matrix Trace

The function

$$\operatorname{\mathsf{tr}}: \bigcup_{n\in\mathbb{N}} \mathbb{R}^{n imes n} o \mathbb{R}$$

$$A \mapsto \operatorname{tr}(A) := \sum_{i=1}^{n} a_{i,i}$$

is called matrix trace. It holds:

a) invariance under permutations of factors:

$$tr(AB) = tr(BA)$$

b) invariance under basis change:

$$\operatorname{tr}(B^{-1}AB) = \operatorname{tr}(A)$$

Jnivers/tage

Matrix Trace

The function

$$\operatorname{\mathsf{tr}}: igcup_{n\in\mathbb{N}} \mathbb{R}^{n imes n} o \mathbb{R}$$

$$A \mapsto \operatorname{tr}(A) := \sum_{i=1}^{n} a_{i,i}$$

is called matrix trace. It holds:

a) invariance under permutations of factors:

$$tr(AB) = tr(BA)$$

b) invariance under basis change:

$$\operatorname{tr}(B^{-1}AB) = \operatorname{tr}(A)$$

proof:

a)
$$tr(AB) = \sum_{i} \sum_{j} A_{i,j} B_{j,i} = \sum_{i} \sum_{j} B_{i,j} A_{j,i} = tr(BA)$$

b)
$$tr(B^{-1}AB) = tr(BB^{-1}A) = tr(A)$$

Shivers/idia

Frobenius Norm

The function $||\cdot||_F:\bigcup_{n,m\in\mathbb{N}}\mathbb{R}^{n\times m}\to\mathbb{R}^+_0$ $A\mapsto ||A||_F:=(\sum^n\sum^ma^2_{i,j})^{\frac{1}{2}}$

is called **Frobenius norm**.

Frobenius Norm

The function
$$||\cdot||_F:\bigcup_{n,m\in\mathbb{N}}\mathbb{R}^{n\times m}\to\mathbb{R}^+_0$$

$$A\mapsto ||A||_F:=(\sum_{i=1}^n\sum_{j=1}^ma_{i,j}^2)^{\frac{1}{2}}$$

is called Frobenius norm. It holds:

a) trace representation:

$$||A||_F = (\operatorname{tr}(A^T A))^{\frac{1}{2}}$$

b) invariance under orthonormal transformations:

$$tr(UAV^T) = tr(A), \quad U, V \text{ orthonormal}$$

Shivers/tage

Frobenius Norm

The function
$$||\cdot||_F: \bigcup_{n,m\in\mathbb{N}} \mathbb{R}^{n\times m} \to \mathbb{R}_0^+$$

$$A\mapsto ||A||_F:= (\sum_{i=1}^n \sum_{i=1}^m a_{i,j}^2)^{\frac{1}{2}}$$

is called **Frobenius norm**. It holds:

a) trace representation:

$$||A||_F = (\operatorname{tr}(A^T A))^{\frac{1}{2}}$$

b) invariance under orthonormal transformations:

$$tr(UAV^T) = tr(A), \quad U, V \text{ orthonormal}$$

proof:

a)
$$tr(A^TA) = \sum_{i} \sum_{j} A_{j,i} A_{j,i} = ||A||_2^2$$

b)
$$||UAV||_F^2 = tr(VA^TU^TUAV^T) = tr(VA^TAV^T)$$

Frobenius Norm (2/2)

c) representation as sum of squared singular values:

$$||A||_F = \sum_{i=1}^{\min\{m,n\}} \sigma_i^2$$

Frobenius Norm (2/2)

c) representation as sum of squared singular values:

$$||A||_F = \sum_{i=1}^{\min\{m,n\}} \sigma_i^2$$

proof:

c) let
$$A = U\Sigma V^T$$
 the SVD of A

$$||A||_F = ||U\Sigma V^T||_F = ||\Sigma||_F = \operatorname{tr}(\Sigma^T \Sigma) = \sum_{i=1}^{\min\{m,n\}} \sigma_i^2$$

Scivers/reig

Low Rank Approximation

Let $A \in \mathbb{R}^{n \times m}$. For $k \leq \min\{n, m\}$, any pair of matrices

$$U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{m \times k}$$

is called a **low rank approximation of** A **with rank** k. The matrix

$$UV^T$$

is called the **reconstruction of** A by U, V and the quantity

$$||A - UV^T||_F$$

the L2 reconstruction error.

Optimal Low Rank Approximation is Truncated SVD

Theorem (Low Rank Approximation; Eckart-Young theorem)

Let $A \in \mathbb{R}^{n \times m}$. For $k' \leq \min\{n, m\}$, the optimal low rank approximation of rank k' (i.e., with smallest reconstruction error)

$$(U^*, V^*) := \underset{U \in \mathbb{R}^{n \times k'}, V \in \mathbb{R}^{m \times k'}}{\operatorname{arg min}} ||A - UV^T||^2$$

is the truncated SVD.

Note: As U, V do not have to be orthonormal, one can take $U := U' \sum_{i=1}^{N} V_i := V'$ for the V := V' := V

Principal Components Analysis (PCA)

Let $X := \{x_1, \dots, x_n\} \subseteq \mathbb{R}^m$ be a data set and $K \in \mathbb{N}$ the number of latent dimensions $(K \le m)$.

PCA finds

- ▶ K principal components $v_1, ..., v_K \in \mathbb{R}^m$ and
- ▶ latent weights $z_i \in \mathbb{R}^K$ for each data point $i \in \{1, ..., n\}$, such that the linear combination of the principal components

$$\sum_{k=1}^K z_{i,k} v_k$$

reconstructs the original features x_i as good as possible:

Principal Components Analysis (PCA)

Let $X := \{x_1, \dots, x_n\} \subseteq \mathbb{R}^m$ be a data set and $K \in \mathbb{N}$ the number of latent dimensions $(K \le m)$.

PCA finds

- ▶ K principal components $v_1, ..., v_K \in \mathbb{R}^m$ and
- ▶ latent weights $z_i \in \mathbb{R}^K$ for each data point $i \in \{1, ..., n\}$,

such that the linear combination of the principal components reconstructs the original features x_i as good as possible:

$$\underset{\substack{v_1, \dots, v_K \\ z_1, \dots, z_n}}{\arg \min} \sum_{i=1}^n ||x_i - \sum_{k=1}^K z_{i,k} v_k||^2 \\
= \sum_{i=1}^n ||x_i - V z_i||^2, \quad V := (v_1, \dots, v_K)^T$$

Principal Components Analysis (PCA)

Let $X := \{x_1, \dots, x_n\} \subseteq \mathbb{R}^m$ be a data set and $K \in \mathbb{N}$ the number of latent dimensions $(K \le m)$.

PCA finds

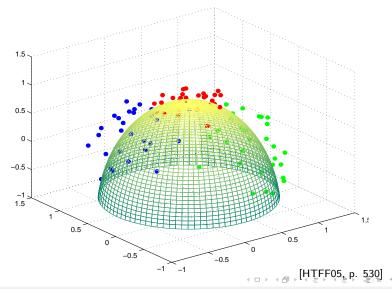
- ▶ K principal components $v_1, ..., v_K \in \mathbb{R}^m$ and
- ▶ latent weights $z_i \in \mathbb{R}^K$ for each data point $i \in \{1, \dots, n\}$,

such that the linear combination of the principal components reconstructs the original features x_i as good as possible:

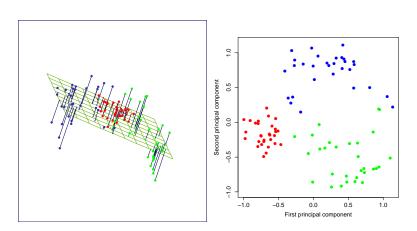
$$\underset{\substack{v_1, \dots, v_K \\ z_1, \dots, z_n}}{\arg \min} \sum_{i=1}^n ||x_i - \sum_{k=1}^K z_{i,k} v_k||^2 \\
= \sum_{i=1}^n ||x_i - V z_i||^2, \quad V := (v_1, \dots, v_K)^T \\
= ||X - Z V^T||_F^2, \quad X := (x_1, \dots, x_n)^T, Z := (z_1, \dots, z_n)^T$$

thus PCA is just the SVD of the data matrix $X_{\text{CD}} + \text{CD} + \text{CD$

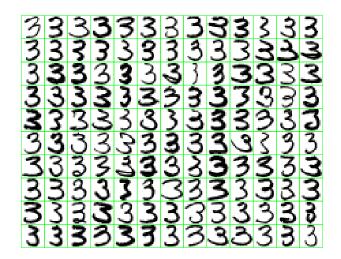
Principal Components Analysis (Example 1)



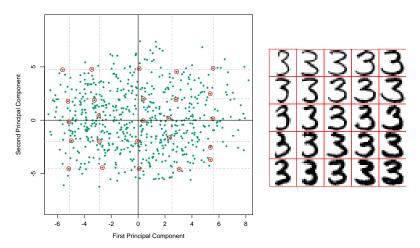
Principal Components Analysis (Example 1)



Principal Components Analysis (Example 2)



Principal Components Analysis (Example 2)



Outline

- 1. Principal Components Analysis
- 2. Probabilistic PCA & Factor Analysis
- 4. Independent Component Analysis

Probabilistic Model

Probabilistic PCA provides a probabilistic interpretation of PCA.

It models for each data point

- ightharpoonup a multivariate normal distributed latent factor z,
- ▶ that influences the observed variables linearly:

$$p(z) := \mathcal{N}(z; 0, I)$$

$$p(x \mid z; \mu, \sigma^2, W) := \mathcal{N}(x; \mu + Wz, \sigma^2 I)$$

$$\ell(X, Z; \mu, \sigma^2, W)$$

$$= \sum_{i=1}^n \ln p(x \mid z; \mu, \sigma^2, W) + \ln p(z)$$

$$\ell(X, Z; \mu, \sigma^2, W)$$

$$= \sum_{i=1}^{n} \ln p(x \mid z; \mu, \sigma^2, W) + \ln p(z)$$

$$= \sum_{i} \ln \mathcal{N}(x; \mu + Wz, \sigma^2 I) + \ln \mathcal{N}(z; 0, I)$$

$$\begin{split} &\ell(X, Z; \mu, \sigma^{2}, W) \\ &= \sum_{i=1}^{n} \ln p(x \mid z; \mu, \sigma^{2}, W) + \ln p(z) \\ &= \sum_{i} \ln \mathcal{N}(x; \mu + Wz, \sigma^{2}I) + \ln \mathcal{N}(z; 0, I) \\ &\propto \sum_{i} -\frac{1}{2} \log \sigma^{2} - \frac{1}{2\sigma^{2}} (x_{i} - \mu - Wz_{i})^{T} (x_{i} - \mu - Wz_{i}) - \frac{1}{2} z_{i}^{T} z_{i} \end{split}$$

$$\ell(X, Z; \mu, \sigma^{2}, W)$$

$$= \sum_{i=1}^{n} \ln p(x \mid z; \mu, \sigma^{2}, W) + \ln p(z)$$

$$= \sum_{i} \ln \mathcal{N}(x; \mu + Wz, \sigma^{2}I) + \ln \mathcal{N}(z; 0, I)$$

$$\propto \sum_{i} -\frac{1}{2} \log \sigma^{2} - \frac{1}{2\sigma^{2}} (x_{i} - \mu - Wz_{i})^{T} (x_{i} - \mu - Wz_{i}) - \frac{1}{2} z_{i}^{T} z_{i}$$

$$\propto -\sum_{i} \log \sigma^{2} + \frac{1}{\sigma^{2}} (\mu^{T} \mu + z_{i}^{T} W^{T} Wz_{i} - 2x_{i}^{T} \mu - 2x_{i}^{T} Wz_{i} + 2\mu^{T} Wz_{i}) + z_{i}^{T} z_{i}$$

Shivers/idia

PCA vs Probabilistic PCA

$$\ell(X, Z; \mu, \sigma^{2}, W) \\ \propto \sum_{i} -\frac{1}{2} \log \sigma^{2} - \frac{1}{2\sigma^{2}} (x_{i} - \mu - Wz_{i})^{T} (x_{i} - \mu - Wz_{i}) - \frac{1}{2} z_{i}^{T} z_{i}$$

▶ as PCA: Decompose with minimal L2 loss

$$x_i \approx \sum_{k=1}^K z_{i,k} v_k$$

with $v_k := W_{\cdot,k}$

- ▶ different from PCA: L2 regularized row features z.
 - ► cannot be solved by SVD. Use EM as learning algorithm!
- ► additionally also regularization of column features *W* possible (through a prior on *W*).

Shiversites.

EM / Block Coordinate Descent: Outline

$$\ell(X,Z;\mu,\sigma^2,W)$$

$$\propto -\sum_{i} \log \sigma^{2} + \frac{1}{\sigma^{2}} (\mu^{T} \mu + z_{i}^{T} W^{T} W z_{i} - 2x_{i}^{T} \mu - 2x_{i}^{T} W z_{i} + 2\mu^{T} W z_{i}) + z_{i}^{T} z_{i}$$

1. expectation step: $\forall i$

$$\frac{\partial \ell}{\partial z_i} \stackrel{!}{=} 0 \qquad \qquad \leadsto z_i = \dots \tag{0}$$

2. minimization step:

$$\frac{\partial \ell}{\partial \mu} \stackrel{!}{=} 0 \qquad \qquad \Rightarrow \mu = \dots \tag{1}$$

$$\frac{\partial \ell}{\partial \sigma^2} \stackrel{!}{=} 0 \qquad \Rightarrow \sigma^2 = \dots \tag{2}$$

 $\frac{\partial \ell}{\partial W} \stackrel{!}{=} 0 \qquad \qquad \rightsquigarrow W = \dots \tag{3}$

Shivers/

EM / Block Coordinate Descent

$$\ell(X, Z; \mu, \sigma^{2}, W) \propto -\sum_{i} \log \sigma^{2} + \frac{1}{\sigma^{2}} (\mu^{T} \mu + z_{i}^{T} W^{T} W z_{i} - 2x_{i}^{T} \mu - 2x_{i}^{T} W z_{i} + 2\mu^{T} W z_{i}) + z_{i}^{T} z_{i}^{T}$$

$$\frac{\partial \ell}{\partial z_i} = -\frac{1}{\sigma^2} (2z_i^T W^T W - 2x_i^T W + 2\mu^T W) - 2z_i^T \stackrel{!}{=} 0$$

$$(W^T W + \sigma^2 I) z_i = W^T (x_i - \mu)$$

$$z_i = (W^T W + \sigma^2 I)^{-1} W^T (x_i - \mu)$$

$$(0)$$

EM / Block Coordinate Descent

$$\ell(X, Z; \mu, \sigma^{2}, W) \propto -\sum_{i} \log \sigma^{2} + \frac{1}{\sigma^{2}} (\mu^{T} \mu + z_{i}^{T} W^{T} W z_{i} - 2x_{i}^{T} \mu - 2x_{i}^{T} W z_{i} + 2\mu^{T} W z_{i}) + z_{i}^{T} z_{i}$$

$$\frac{\partial \ell}{\partial \mu} = -\frac{1}{\sigma^2} \sum_{i} 2\mu^T - 2x_i^T + 2z_i^T W^T \stackrel{!}{=} 0$$

$$\mu = \frac{1}{n} \sum_{i} x_i - Wz_i$$
(1)

Note: As $\mathbb{E}(z_i) = 0$, μ often is fixed to $\mu := \frac{1}{n} \sum_i x_i$.

EM / Block Coordinate Descent

$$\ell(X,Z;\mu,\sigma^2,W)$$

$$\propto -\sum_{i} \log \sigma^{2} + \frac{1}{\sigma^{2}} (\mu^{T} \mu + z_{i}^{T} W^{T} W z_{i} - 2x_{i}^{T} \mu - 2x_{i}^{T} W z_{i} + 2\mu^{T} W z_{i}) + z_{i}^{T} z_{i}$$

$$\frac{\partial \ell}{\partial \sigma^{2}} = -n \frac{1}{\sigma^{2}} + \frac{1}{(\sigma^{2})^{2}} \sum_{i} \mu^{T} \mu + z_{i}^{T} W^{T} W z_{i} - 2x_{i}^{T} \mu - 2x_{i}^{T} W z_{i} + 2\mu^{T} W z_{i}$$

$$\sigma^{2} = \frac{1}{n} \sum_{i} \mu^{T} \mu + z_{i}^{T} W^{T} W z_{i} - 2x_{i}^{T} \mu - 2x_{i}^{T} W z_{i} + 2\mu^{T} W z_{i}$$

$$= \frac{1}{n} \sum_{i} (x_{i} - \mu - W z_{i})^{T} (x_{i} - \mu - W z_{i}) \qquad (2)$$

EM / Block Coordinate Descent

$$\ell(X, Z; \mu, \sigma^2, W)$$

$$\propto -\sum_{i}\log\sigma^{2} + \frac{1}{\sigma^{2}}(\mu^{T}\mu + z_{i}^{T}W^{T}Wz_{i} - 2x_{i}^{T}\mu - 2x_{i}^{T}Wz_{i} + 2\mu^{T}Wz_{i}) + z_{i}^{T}z_{i}$$

$$\frac{\partial \ell}{\partial W} = -\frac{1}{\sigma^2} \sum_{i} 2W z_i z_i^T - 2x_i z_i^T + 2\mu z_i^T \stackrel{!}{=} 0$$

$$W(\sum_{i} z_i z_i^T) = \sum_{i} (x_i - \mu) z_i^T$$

$$W = \sum_{i} (x_i - \mu) z_i^T (\sum_{i} z_i z_i^T)^{-1}$$
(3)

4 D > 4 D > 4 E > 4 E > E E 9 9 C

EM / Block Coordinate Descent: Summary

alternate until convergence:

1. expectation step: $\forall i$

$$z_i = (W^T W + \sigma^2 I)^{-1} W^T (x_i - \mu)$$
 (0)

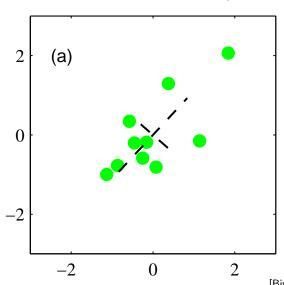
2. minimization step:

$$\mu = \frac{1}{n} \sum_{i} x_i - W z_i \tag{1}$$

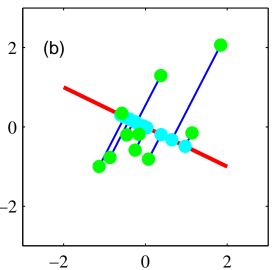
$$\sigma^{2} = \frac{1}{n} \sum_{i} (x_{i} - \mu - Wz_{i})^{T} (x_{i} - \mu - Wz_{i})$$
 (2)

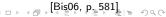
$$W = \sum_{i} (x_i - \mu) z_i^T (\sum_{i} z_i z_i^T)^{-1}$$
 (3)

Business Analytics 2. Probabilistic PCA & Factor Analysis



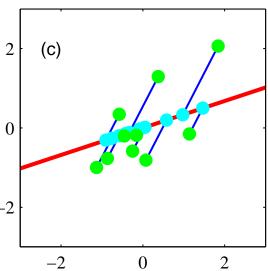
Business Analytics 2. Probabilistic PCA & Factor Analysis



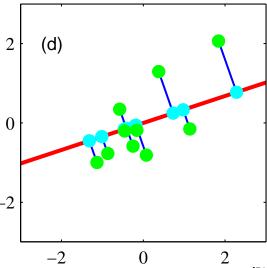


Jrivers/for

EM / Block Coordinate Descent: Example

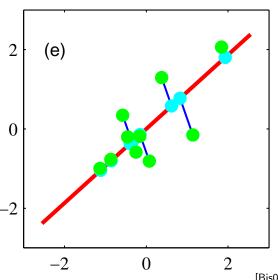


| Bis06, p. 581]

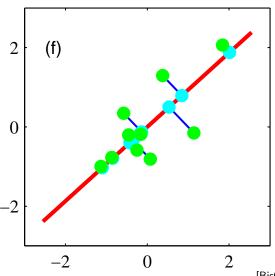


[Bis06, p. 581]

Business Analytics 2. Probabilistic PCA & Factor Analysis



Business Analytics 2. Probabilistic PCA & Factor Analysis



Stivers/Felia

Regularization of Column Features W

$$p(W) := \prod_{i=1}^{m} \mathcal{N}(w_j; 0, \tau_j^2 I), \quad W = (w_1, \dots, w_m)$$

Stivers/File.

Regularization of Column Features W

$$p(W) := \prod_{j=1}^{m} \mathcal{N}(w_j; 0, \tau_j^2 I), \quad W = (w_1, \dots, w_m)$$

$$\rightsquigarrow \ell = \dots + \sum_{j=1}^{m} -K \log \tau_j^2 - \frac{1}{2\tau_j^2} w_j^T w_j$$

Regularization of Column Features W

Regularization of Column Features W

$$p(W) := \prod_{j=1}^{m} \mathcal{N}(w_j; 0, \tau_j^2 I), \quad W = (w_1, \dots, w_m)$$

$$\Rightarrow \ell = \dots + \sum_{j=1}^{m} -K \log \tau_j^2 - \frac{1}{2\tau_j^2} w_j^T w_j$$

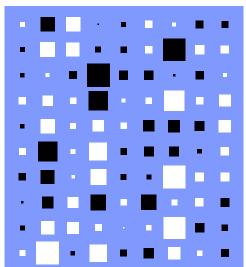
$$\frac{\partial \ell}{\partial \tau_j} = -K \frac{1}{\tau_j^2} + \frac{1}{(\tau_j^2)^2} w_j^T w_j \stackrel{!}{=} 0$$

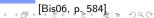
$$\tau_j = \frac{1}{K} w_j^T w_j$$

$$(4)$$

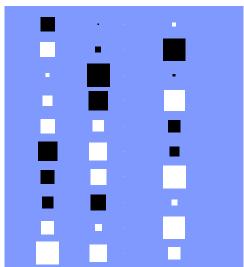
This variant of probabilistic PCA is called **Bayesian PCA**.

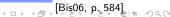
Bayesian PCA: Example





Bayesian PCA: Example





$$p(z) := \mathcal{N}(z; 0, I)$$
 $p(x \mid z; \mu, \Sigma, W) := \mathcal{N}(x; \mu + Wz, \Sigma), \quad \Sigma \text{ diagonal}$

$$\begin{split} \rho(z) := \mathcal{N}(z;0,I) \\ \rho(x\mid z;\mu,\Sigma,W) := \mathcal{N}(x;\mu+Wz,\Sigma), \quad \Sigma \text{ diagonal} \end{split}$$

$$\ell(X, Z; \mu, \Sigma, W) \propto \sum_{i} -\frac{1}{2} \log |\Sigma| - \frac{1}{2} (x_i - \mu - Wz_i)^T \Sigma^{-1} (x_i - \mu - Wz_i) - \frac{1}{2} z_i^T z_i$$

$$p(z):=\mathcal{N}(z;0,I)$$

$$p(x\mid z;\mu,\Sigma,W):=\mathcal{N}(x;\mu+Wz,\Sigma),\quad \Sigma \text{ diagonal}$$

EM:

$$z_i = (W^T \Sigma^{-1} W + I)^{-1} W^T \Sigma^{-1} (x_i - \mu)$$
 (0')

$$\mu = \frac{1}{n} \sum_{i} x_i - W z_i \tag{1}$$

$$\Sigma_{j,j} = \frac{1}{n} \sum_{i} ((x_i - \mu_i - Wz_i)_j)^2$$
 (2')

$$W = \sum_{i} (x_i - \mu) z_i^T (\sum_{i} z_i z_i^T)^{-1}$$
 (3)

Note: See appendix for derivation of EM formulas.

Outline

- 1. Principal Components Analysis
- 3. Non-linear Dimensionality Reduction
- 4. Independent Component Analysis

Linear Dimensionality Reduction

Dimensionality reduction accomplishes two tasks:

compute lower dimensional representations for given data points x_i
 for PCA:

$$u_i = \Sigma^{-1} V^T x_i, \quad U := (u_1, \dots, u_n)^T$$

Stivers/to

Linear Dimensionality Reduction

Dimensionality reduction accomplishes two tasks:

compute lower dimensional representations for given data points x_i
 ▶ for PCA:

$$u_i = \Sigma^{-1} V^T x_i, \quad U := (u_1, \dots, u_n)^T$$

- compute lower dimensional representations for new data points x (often called "fold in")
 - ► for PCA:

$$u := \underset{u}{\operatorname{arg min}} ||x - V\Sigma u||^2 = \Sigma^{-1}V^Tx$$

Linear Dimensionality Reduction

Dimensionality reduction accomplishes two tasks:

1. compute lower dimensional representations for given data points x_i ▶ for PCA:

$$u_i = \Sigma^{-1} V^T x_i, \quad U := (u_1, \dots, u_n)^T$$

- 2. compute lower dimensional representations for new data points x (often called "fold in")
 - ▶ for PCA:

$$u := \arg\min_{u} ||x - V\Sigma u||^2 = \Sigma^{-1}V^Tx$$

PCA is called a linear dimensionality reduction technique because the latent representations u depend linearly on the observed representations x.

dimensional embedding

Represent (conceptionally) non-linearity by linearity in a higher

$$\phi: \mathbb{R}^m \to \mathbb{R}^{\tilde{m}}$$

but compute in lower dimensionality for methods that depend on \boldsymbol{x} only through a scalar product

$$\tilde{\mathbf{x}}^T \tilde{\theta} = \phi(\mathbf{x})^T \phi(\theta) = \mathbf{k}(\mathbf{x}, \theta), \quad \mathbf{x}, \theta \in \mathbb{R}^m$$

if k can be computed without explicitly computing ϕ .

Kernel Trick / Example

Example:

$$\phi: \mathbb{R} \to \mathbb{R}^{1001}, \\ x \mapsto \left(\left(\begin{array}{c} 1000 \\ i \end{array} \right)^{\frac{1}{2}} x^{i} \right)_{i=0,\dots,1000} = \left(\begin{array}{c} 1 \\ 31.62 x \\ 706.75 x^{2} \\ \vdots \\ 31.62 x^{999} \\ x^{1000} \end{array} \right)$$

$$\tilde{x}^T \tilde{\theta} = \phi(x)^T \phi(\theta) = \sum_{i=0}^{1000} \binom{1000}{i} x^i \theta^i = (1 + x\theta)^{1000} =: k(x, \theta)$$

Naive computation:

▶ 2002 binomial coefficients, 3003 multiplications, 1000 additions.

Kernel computation:

▶ 1 multiplication, 1 addition, 1 exponentiation.

$$\phi: \mathbb{R}^m o \mathbb{R}^{ ilde{m}}, \quad ilde{m} \gg m$$
 $ilde{X}:= egin{pmatrix} \phi(x_1) \ \phi(x_2) \ dots \ \phi(x_n) \end{pmatrix}$
 $ilde{X}pprox U\Sigma ilde{V}^T$

We can compute the columns of U as eigenvectors of $\tilde{X}\tilde{X}^T \in \mathbb{R}^{n \times n}$ without having to compute $\tilde{V} \in \mathbb{R}^{\tilde{m} \times k}$ (which is large!):

$$\tilde{X}\tilde{X}^T U_i = \sigma_i^2 U_i$$

Still ersites

Kernel PCA / Removing the Mean

Issue 1: The $\tilde{x}_i := \phi(x_i)$ may not have zero mean and thus distort PCA.

$$\tilde{x}_i' := \tilde{x}_i - \frac{1}{n} \sum_{i=1}^n \tilde{x}_i$$

Kernel PCA / Removing the Mean

Issue 1: The $\tilde{x}_i := \phi(x_i)$ may not have zero mean and thus distort PCA.

$$\tilde{x}_{i}' := \tilde{x}_{i} - \frac{1}{n} \sum_{i=1}^{n} \tilde{x}_{i}
= \tilde{X}^{T} (I - \frac{1}{n} \mathbb{1})
\tilde{X}' := (\tilde{x}_{1}', \dots, \tilde{x}_{n}')^{T} = (I - \frac{1}{n} \mathbb{1}) \tilde{X}^{T}$$

Note: $1 := (1)_{i=1,\ldots,n,j=1,\ldots,n}$ vector of ones,

Note: $\mathbf{u} := (1)_{i=1,...,n} (1)_{i=1,...,n}$ vector of ones, $\mathbf{u} := (\delta(i)_{i=1,...,n} (1)_{i=1,...,n}) = 1$ unity matrix. $\mathbf{u} := (\delta(i)_{i=1,...,n} (1)_{i=1,...,n} (1)$

Kernel PCA / Removing the Mean

Issue 1: The $\tilde{x}_i := \phi(x_i)$ may not have zero mean and thus distort PCA.

$$\begin{split} \tilde{x}_i' &:= \tilde{x}_i - \frac{1}{n} \sum_{i=1}^n \tilde{x}_i \\ &= \tilde{X}^T (I - \frac{1}{n} \mathbb{1}) \\ \tilde{X}' &:= (\tilde{x}_1', \dots, \tilde{x}_n')^T = (I - \frac{1}{n} \mathbb{1}) \tilde{X}^T \\ K' &:= \tilde{X}' \tilde{X}'^T = (I - \frac{1}{n} \mathbb{1}) \tilde{X}^T \tilde{X} (I - \frac{1}{n} \mathbb{1}) \\ &= HKH, \quad H := (I - \frac{1}{n} \mathbb{1}) \text{ centering matrix} \end{split}$$

Thus, the kernel matrix K' with means removed can be computed from the kernel matrix K without having to access coordinates.

Suiversite.

Kernel PCA / Fold In

Issue 2: How to compute projections u of new points x (as \tilde{V} is not computed)?

$$u := \underset{u}{\operatorname{arg \, min}} ||x - \tilde{V}\Sigma u||^2 = \Sigma^{-1}\tilde{V}^T x$$

With

$$\tilde{V} = \tilde{X}^T U \Sigma^{-1}$$

$$u = \Sigma^{-1} \tilde{V}^T x = \Sigma^{-1} \Sigma^{-1} U^T \tilde{X} x = \Sigma^{-2} U^T (k(x_i, x))_{i=1,\dots,n}$$

u can be computed with access to kernel values only (and to U, Σ).

Shivers/tay

Kernel PCA / Summary

Given:

- \blacktriangleright data set $X := \{x_1, \dots, x_n\} \subseteq \mathbb{R}^m$,
- ▶ kernel function $k : \mathbb{R}^m \times \mathbb{R}^m \to R$.

task 1: Learn latent representations U of data set X:

$$K := (k(x_i, x_j))_{i=1,\dots,n,j=1,\dots,n}$$
 (0)

$$K' := HKH, \quad H := (I - \frac{1}{n}11)$$
 (1)

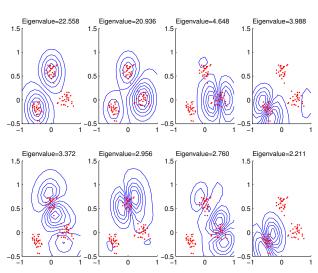
$$(U, \Sigma)$$
 :=eigen decomposition $K'U = U\Sigma$ (2)

task 2: Learn latent representation u of new point x:

$$u := \Sigma^{-2} U^{T}(k(x_{i}, x))_{i=1,...,n}$$
(3)

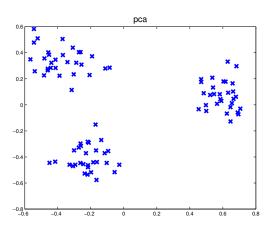
Sciversites

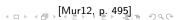
Kernel PCA: Example 1



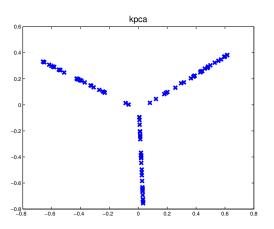
[Mur12, p. 493]

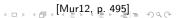
Kernel PCA: Example 2





Kernel PCA: Example 2





Outline

- 1. Principal Components Analysis
- 2. Probabilistic PCA & Factor Analysis
- 3. Non-linear Dimensionality Reductio
- 4. Independent Component Analysis
- 5. Supervised Dimensionality Reduction
- 6. Conclusion

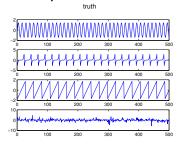
$$p(z) := \prod_{i=1}^{K} p(z_i)$$

$$p(x \mid z; \mu, \sigma^2, W) := \mathcal{N}(x; \mu + Wz, \sigma^2 I)$$

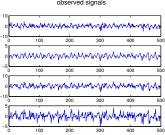
- ► like PCA:
 - ► x depends linearly on z with normal error.
 - ightharpoonup p(z) decomposes in a product of $p(z_i)$.
- ▶ different from PCA:
 - ▶ $p(z_i)$ are not Gaussians, but other distributions, e.g.,
 - ► logistic distribution:

$$p(z_i) := rac{\mathrm{e}^{-z_i}}{(1+\mathrm{e}^{-z_i})^2}$$

ICA: Example



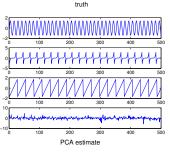
observed signals

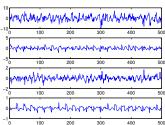


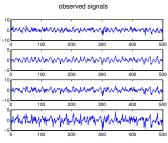
Business Analytics

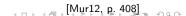
Jriversite.

ICA: Example





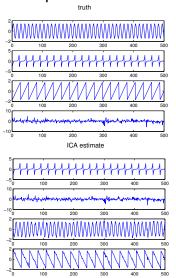


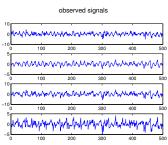


Business Analytics

Jrivers/top

ICA: Example





[Mur12, p. 408]

Learning ICA

To learn ICA, different algorithms are used:

- ► gradient descent
 - usually slow
- ► EM
- ► approximate Newton (FastICA)

Outline

- 1. Principal Components Analysis

- 4. Independent Component Analysis
- 5. Supervised Dimensionality Reduction

Dimensionality Reduction as Pre-Processing

Given a prediction task and

a data set
$$\mathcal{D}^{\mathsf{train}} := \{(x_1, y_1), \dots, (x_n, y_n)\} \subseteq \mathbb{R}^m \times \mathcal{Y}.$$

- 1. compute latent features $z_i \in \mathbb{R}^K$ for the objects of a data set by means of dimensionality reduction of the predictors x_i .
 - ▶ e.g., using PCA on $\{x_1, ..., x_n\} \subseteq \mathbb{R}^m$
- 2. learn a prediction model

$$\hat{y}: \mathbb{R}^K \to \mathcal{Y}$$

on the latent features based on

$$\mathcal{D}'^{\mathsf{train}} := \{(z_1, y_1), \dots, (z_n, y_n)\}\$$

- 3. treat the number K of latent dimensions as hyperparameter.
 - e.g., find using grid search.

Dimensionality Reduction as Pre-Processing

Advantages:

- ► simple procedure
- ► generic procedure
 - works with any dimensionality reduction method and prediction method as component methods.
- usually fast

Dimensionality Reduction as Pre-Processing

Advantages:

- ▶ simple procedure
- generic procedure
 - works with any dimensionality reduction method and prediction method as component methods.
- usually fast

Disadvantages:

- dimensionality reduction is unsupervised, i.e., not informed about the target that should be predicted later on.
 - ▶ leads to the very same latent features regardless of the prediction task.
 - ▶ likely not the best task-specific features are extracted.

Supervised PCA

$$\begin{split} & p(z) := \mathcal{N}(z; 0, 1) \\ & p(x \mid z; \mu_x, \sigma_x^2, W_x) := \mathcal{N}(x; \mu_x + W_x z, \sigma_x^2 I) \\ & p(y \mid z; \mu_y, \sigma_y^2, W_y) := \mathcal{N}(y; \mu_y + W_y z, \sigma_y^2 I) \end{split}$$

- ▶ like two PCAs, coupled by shared latent features *z*:
 - one for the predictors x.
 - ▶ one for the targets *y*.
- ▶ latent features act as information bottleneck.
- also known as Latent Factor Regression or Bayesian Factor Regression.

Supervised PCA: Discriminative Likelihood

A simple likelihood would put the same weight on

- reconstructing the predictors and
- reconstructing the targets.

A weight $\alpha \in \mathbb{R}_0^+$ for the reconstruction error of the predictors should be introduced (discriminative likelihood):

$$L_{\alpha}(\Theta; x, y, z) := \prod_{i=1}^{n} p(y_i \mid z_i; \Theta) p(x_i \mid z_i; \Theta)^{\alpha} p(z_i; \Theta)$$

 α can be treated as hyperparameter and found by grid search.

Supervised PCA: EM

- ► The M-steps for μ_x , σ_x^2 , W_x and μ_y , σ_y^2 , W_y are exactly as before.
- ▶ the coupled E-step is:

$$z_{i} = \left(\frac{1}{\sigma_{y}^{2}} W_{y}^{T} W_{y} + \alpha \frac{1}{\sigma_{x}^{2}} W_{x}^{T} W_{x}\right)^{-1} \left(\frac{1}{\sigma_{y}^{2}} W_{y}^{T} (y_{i} - \mu_{y}) + \alpha \frac{1}{\sigma_{x}^{2}} W_{x}^{T} (x_{i} - \mu_{y})\right)$$

Outline

- 1. Principal Components Analysis

- 4. Independent Component Analysis
- 6. Conclusion

Still State

Conclusion (1/3)

- Dimensionality reduction aims to find a lower dimensional representation of data that preserves the information as much as possible. — "Preserving information" means
 - ► to preserve pairwise distances between objects (multidimensional scaling).
 - ► to be able to reconstruct the original object features (feature reconstruction).
- ► The truncated Singular Value Decomposition (SVD) provides the best low rank factorization of a matrix in two factor matrices.
 - SVD is usually computed by an algebraic factorization method (such as QR decomposition).

Still State

Conclusion (2/3)

- ► Principal components analysis (PCA) finds latent object and variable features that provide the **best linear reconstruction** (in L2 error).
 - ▶ PCA is a truncated SVD of the data matrix.
- Probabilistic PCA (PPCA) provides a probabilistic interpretation of PCA.
 - ► PPCA adds a **L2 regularization** of the object features.
 - ► PPCA is learned by the **EM algorithm**.
 - ► Adding L2 regularization for the linear reconstruction/variable features on top leads to Bayesian PCA.
 - ► Generalizing to variable-specific variances leads to Factor Analysis.
 - ▶ For both, Bayesian PCA and Factor Analysis, EM can be adapted easily.

Conclusion (3/3)

- ► To capture a **nonlinear relationship** between latent features and observed features, PCA can be kernelized (**Kernel PCA**).
 - Learning a Kernel PCA is done by an eigen decomposition of the kernel matrix.
 - ► Kernel PCA often is found to lead to "unnatural visualizations".
 - ▶ But Kernel PCA sometimes provides better classification performance for simple classifiers on latent features (such as 1-Nearest Neighbor).
- ► To learn models with non-normally distributed latent factors, independent component analysis (ICA) can be used.
 - ICA generalizes PCA to non-Gaussian distributions for the latent factors.
 - ► ICA can be learned by EM or approximate Newton (FastICA).

Readings

- Principal Components Analysis (PCA)
 - ► [HTFF05], ch. 14.5.1, [Bis06], ch. 12.1, [Mur12], ch. 12.2.
- ▶ Probabilistic PCA
 - ► [Bis06], ch. 12.2, [Mur12], ch. 12.2.4.
- Factor Analysis
 - ► [HTFF05], ch. 14.7.1, [Bis06], ch. 12.2.4.
- Kernel PCA
 - ► [HTFF05], ch. 14.5.4, [Bis06], ch. 12.3, [Mur12], ch. 14.4.4.

Further Readings

- ► (Non-negative) Matrix Factorization
 - ► [HTFF05], ch. 14.6
- ► Independent Component Analysis, Exploratory Projection Pursuit
 - ► [HTFF05], ch. 14.7 [Bis06], ch. 12.4 [Mur12], ch. 12.6.
- ► Nonlinear Dimensionality Reduction
 - ► [HTFF05], ch. 14.9, [Bis06], ch. 12.4

Still de a haift

$$\ell(X, Z; \mu, \Sigma, W)$$

$$= \sum_{i=1}^{n} \ln p(x \mid z; \mu, \Sigma, W) + \ln p(z)$$

Shivers/Felig

$$\ell(X, Z; \mu, \Sigma, W)$$

$$= \sum_{i=1}^{n} \ln p(x \mid z; \mu, \Sigma, W) + \ln p(z)$$

$$= \sum_{i} \ln \mathcal{N}(x; \mu + Wz, \Sigma) + \ln \mathcal{N}(z; 0, I)$$

$$\ell(X, Z; \mu, \Sigma, W)$$

$$= \sum_{i=1}^{n} \ln p(x \mid z; \mu, \Sigma, W) + \ln p(z)$$

$$= \sum_{i} \ln \mathcal{N}(x; \mu + Wz, \Sigma) + \ln \mathcal{N}(z; 0, I)$$

$$\propto \sum_{i} -\frac{1}{2} \log |\Sigma| - \frac{1}{2} (x_i - \mu - Wz_i)^T \Sigma^{-1} (x_i - \mu - Wz_i) - \frac{1}{2} z_i^T z_i$$

remember:
$$\mathcal{N}(x;\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^m}|\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)\Sigma^{-1}(x-\mu)}$$
.
Lars Schmidt-Thieme, Information $\sqrt[4]{\text{Schmiss and Machine Learning Lab (ISMLL), University of Hildesheim, Germany}}$

Stivers/tell

$$\ell(X, Z; \mu, \Sigma, W) = \sum_{i=1}^{n} \ln p(x \mid z; \mu, \Sigma, W) + \ln p(z)$$

$$= \sum_{i} \ln \mathcal{N}(x; \mu + Wz, \Sigma) + \ln \mathcal{N}(z; 0, I)$$

$$\propto \sum_{i} -\frac{1}{2} \log |\Sigma| - \frac{1}{2} (x_{i} - \mu - Wz_{i})^{T} \Sigma^{-1} (x_{i} - \mu - Wz_{i}) - \frac{1}{2} z_{i}^{T} z_{i}$$

$$\propto -\sum_{i} \log |\Sigma| + (x_{i}^{T} \Sigma^{-1} x_{i} + \mu^{T} \Sigma^{-1} \mu + z_{i}^{T} W^{T} \Sigma^{-1} Wz_{i} - 2x_{i}^{T} \Sigma^{-1} \mu - 2x_{i}^{T} \Sigma^{-1} Wz_{i} + 2\mu^{T} \Sigma^{-1} Wz_{i}) + z_{i}^{T} z_{i}$$

$$\ell(X, Z; \mu, \Sigma, W) \\ \propto -\sum_{i} \log |\Sigma| + (x_{i}^{T} \Sigma^{-1} x_{i} + \mu^{T} \Sigma^{-1} \mu + z_{i}^{T} W^{T} \Sigma^{-1} W z_{i} - 2x_{i}^{T} \Sigma^{-1} \mu \\ -2x_{i}^{T} \Sigma^{-1} W z_{i} + 2\mu^{T} \Sigma^{-1} W z_{i}) + z_{i}^{T} z_{i}$$

$$\frac{\partial \ell}{\partial z_i} = -(2z_i^T W^T \Sigma^{-1} W - 2x_i^T W \Sigma^{-1} + 2\mu^T \Sigma^{-1} W) - 2z_i^T + 2\mu^T \Sigma^{-1} W - 2z_i^T W + I) z_i = W^T \Sigma^{-1} (x_i - \mu)$$

$$z_i = (W^T \Sigma^{-1} W + I)^{-1} W^T \Sigma^{-1} (x_i - \mu)$$

$$\ell(X, Z; \mu, \Sigma, W) \\ \propto -\sum_{i} \log |\Sigma| + (x_{i}^{T} \Sigma^{-1} x_{i} + \mu^{T} \Sigma^{-1} \mu + z_{i}^{T} W^{T} \Sigma^{-1} W z_{i} - 2x_{i}^{T} \Sigma^{-1} \mu \\ -2x_{i}^{T} \Sigma^{-1} W z_{i} + 2\mu^{T} \Sigma^{-1} W z_{i}) + z_{i}^{T} z_{i}$$

$$\frac{\partial \ell}{\partial \mu} = -\sum_{i} 2\mu^{T} \Sigma^{-1} - 2x_{i}^{T} \Sigma^{-1} + 2z_{i}^{T} W^{T} \Sigma^{-1} \stackrel{!}{=} 0$$

$$\mu = \frac{1}{n} \sum_{i} x_{i} - Wz_{i}$$

$$(1')$$

Note: As $\mathbb{E}(z_i) = 0$, μ often is fixed to $\mu := \frac{1}{n} \sum_i x_i$.

4 D > 4 個 > 4 差 > 4 差 > を の の

$$\ell(X, Z; \mu, \Sigma, W) \\ \propto -\sum_{i} \log |\Sigma| + (x_{i}^{T} \Sigma^{-1} x_{i} + \mu^{T} \Sigma^{-1} \mu + z_{i}^{T} W^{T} \Sigma^{-1} W z_{i} - 2x_{i}^{T} \Sigma^{-1} \mu \\ -2x_{i}^{T} \Sigma^{-1} W z_{i} + 2\mu^{T} \Sigma^{-1} W z_{i}) + z_{i}^{T} z_{i}$$

$$\frac{\partial \ell}{\partial \Sigma_{j,j}} = -n \frac{1}{\Sigma_{j,j}} + \frac{1}{(\Sigma_{j,j})^2} \sum_{i} (x_i - \mu_i - Wz_i)_j^2 \stackrel{!}{=} 0$$

$$\Sigma_{j,j} = \frac{1}{n} \sum_{i} ((x_i - \mu_i - Wz_i)_j)^2$$
(2')

$$\ell(X, Z; \mu, \Sigma, W) \\ \propto -\sum_{i} \log |\Sigma| + (x_{i}^{T} \Sigma^{-1} x_{i} + \mu^{T} \Sigma^{-1} \mu + z_{i}^{T} W^{T} \Sigma^{-1} W z_{i} - 2x_{i}^{T} \Sigma^{-1} \mu \\ -2x_{i}^{T} \Sigma^{-1} W z_{i} + 2\mu^{T} \Sigma^{-1} W z_{i}) + z_{i}^{T} z_{i}$$

$$\frac{\partial \ell}{\partial W} = -\sum_{i} 2\Sigma^{-1} W z_{i} z_{i}^{T} - 2\Sigma^{-1} x_{i} z_{i}^{T} + 2\Sigma^{-1} \mu z_{i}^{T} \stackrel{!}{=} 0$$

$$W(\sum_{i} z_{i} z_{i}^{T}) = \sum_{i} (x_{i} - \mu) z_{i}^{T}$$

$$W = \sum_{i} (x_{i} - \mu) z_{i}^{T} (\sum_{i} z_{i} z_{i}^{T})^{-1}$$

$$(3'')$$

Jaiwers/ta

References

Christopher M. Bishop.

Pattern recognition and machine learning, volume 1. springer New York, 2006.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin.

The elements of statistical learning: data mining, inference and prediction. *The Mathematical Intelligencer*, 27(2):83–85, 2005.

Kevin P. Murphy.

Machine learning: a probabilistic perspective.

The MIT Press, 2012.