Business Analytics

Business Analytics

3. Dimensionality Reduction

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
University of Hildesheim, Germany

[m]

=

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

/ 43



Business Analytics

Outline

1. Principal Components Analysis

2. Probabilistic PCA & Factor Analysis
3. Non-linear Dimensionality Reduction
4. Independent Component Analysis

5. Supervised Dimensionality Reduction

6. Conclusion

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

43



Business Analytics

1. Principal Components Analysis
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1. Principal Components Analysis

[m]

=

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Business Analytics 1. Principal Components Analysis

The Dimensionality Reduction Problem

Given
» aset X called data space, e.g., X :=R",
» aset X C X called data,
» a function
D: |J ®R)Y*-R{§
XCX,KeN

called distortion where D(P) measures how bad a low dimensional
representation P : X — RX for a data set X C X is, and

» a number K € N of latent dimensions,

find a low dimensional representation P : X — RX with K dimensions with
minimal distortion D(P).
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Business Analytics 1. Principal Components Analysis

B
Distortions for Dimensionality Reduction (1/2) i

Let dy be a distance on X and dz be a distance on the latent space RX,
usually just the Euclidean distance

K
dz(v,w) = |lv —wll2 = (O (vi — wi)?)2

i=1

Multidimensional scaling aims to find latent representations P that
reproduce the distance measure dy as good as possible:

DP) = 577X1=T) 32 (dnlxx) (P, P
xZy

n

T Zde xiox) = llzi— 2P, 2= Px)

i=1 j=1
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Business Analytics 1. Principal Components Analysis

Distortions for Dimensionality Reduction (2/2)

Feature reconstruction methods aim to find latent representations P

and reconstruction maps r : RK — X from a given class of maps that
reconstruct features as good as possible:

DP.r) = g 3 dulx.(P()

xeX

— %de(x,-, r(z)), zi:= P(x;)
i=1
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Business Analytics 1. Principal Components Analysis

B
Singular Value Decomposition (SVD) i

Theorem (Existence of SVD)
For every A € R"™™ there exist matrices
UeR™k Ve R™K Y = diag(oy,...,0k) € R, k:=min{n, m}

UlZUZZZUr>Ur+1::Uk:07 r::rank(A)

U,V orthonormal, i.e., UTU=1,VTV =1
with

A=UzVT

o; are called singular values of A.

Note: [ := diag(1,...,1) € R¥*k denotes the unit matrix.
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Business Analytics 1. Principal Components Analysis

Singular Value Decomposition (SVD; 2/2)

It holds:

a) a,-2 are eigenvalues and V; eigenvectors of AT A:
(ATAV, =02V, i=1,... .k V=(WV,..., V)
b) a,-2 are eigenvalues and U; eigenvectors of AAT:

(AATYU; =02U;, i=1,... . kU= (Uy...,U)
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Business Analytics 1. Principal Components Analysis

B
Singular Value Decomposition (SVD; 2/2) i

It holds:

a) a,-2 are eigenvalues and V; eigenvectors of AT A:
(ATAV, =02V, i=1,... .k V=(WV,..., V)
b) a,-2 are eigenvalues and U; eigenvectors of AAT:
(AATYU; =02U;, i=1,... . kU= (Uy...,U)
proof:
a) (ATAV, = VvZTUT UZVTV; = V% =02V,
b) (AATU; = ULTVT VETUTU; = UX?e; = 02U
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Business Analytics 1. Principal Components Analysis

Truncated SVD

decomposition

Let A€ R™™ and ULV = A its SVD. Then for kK" < min{n, m} the
A — Ulz/v/T
with

Ul = (U,17 ceey U,k,)7 V/ = (\/717

oy \/7/(/), Z’ = diag(al,
is called truncated SVD with rank k'.

cey Ok
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Business Analytics

1. Principal Components Analysis

Matrix Trace
The function

tr: U R™"™ 5 R
neN

n
A tr(A) = Z aj i
i=1
is called matrix trace.
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Business Analytics 1. Principal Components Analysis

Matrix Trace

The function tr: U R/ S R
neN

n

A tr(A) = Z aj j

i=1

is called matrix trace. It holds:

a) invariance under permutations of factors:
tr(AB) = tr(BA)

b) invariance under basis change:

tr(B71AB) = tr(A)
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Business Analytics 1. Principal Components Analysis

Matrix Trace
The function tr - U R™M S R

neN

A tr(A) = Z aj j
is called matrix trace. It holds:

a) invariance under permutations of factors:
tr(AB) = tr(BA)

b) invariance under basis change:
tr(B71AB) = tr(A)

proof:

a) tr(AB) ZZA,JBJ, _ZZB,JAJ, = tr(BA)

b) tr(B~ 1AB):tr(BB lA):tr(A)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany



Business Analytics

1. Principal Components Analysis

Frobenius Norm

n,m

The function || . ||f: U R™M — RE

A Al = (3 2
is called Frobenius norm.

J
i=1 j=1
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Business Analytics 1. Principal Components Analysis

Frobenius Norm
The function || . ||¢ : U R™M — RE

n,meN n.m 5 |1
A Al =] ar))

i=1 j=1
is called Frobenius norm. It holds:

a) trace representation:

1AllF = (tr(AT A))2

b) invariance under orthonormal transformations:

tr(UAVT) = tr(A), U,V orthonormal
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Business Analytics 1. Principal Components Analysis

Frobenius Norm
The function || . ||f: U RMXM _y ]R+

n,meN 1
A}_)HAHF - Zzau

i=1 j=1

N \

is called Frobenius norm. It holds:
a) trace representation:
1AllF = (tr(AT A))>
b) invariance under orthonormal transformations:

tr(UAVT) = tr(A), U,V orthonormal

a) tr(ATA) = ZZ Aji = lIAl13

b) ||UAV||% = tr(VATUTUAVT) =tr(VATAVT)
=tr(ATAVTV) = tr(AT A) = ||Al2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Business Analytics 1. Principal Components Analysis

Frobenius Norm (2/2)

min{m,n}
lAllF=>_ of
i=1

c) representation as sum of squared singular values:
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Business Analytics 1. Principal Components Analysis

Frobenius Norm (2/2)

c) representation as sum of squared singular values:

min{m,n}
1AllF=Y o
i=1
proof:
c)let A= ULV the SVD of A

min{m,n}

Il = VRVl = Il = () = 3 of
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Business Analytics

1. Principal Components Analysis
Low Rank Approximation
Let A€ R™™. For k < min{n, m}, any pair of matrices

UeR™k v eRrm<k
is called a low rank approximation of A with rank k.
The matrix

uv’
is called the reconstruction of A by U, V and the quantity

IA— UV T|F
the L2 reconstruction error.
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Business Analytics 1. Principal Components Analysis

NN
Optimal Low Rank Approximation is Truncated SVD “

Theorem (Low Rank Approximation; Eckart-Young theorem)

Let A€ R™™. For k' < min{n, m}, the optimal low rank approximation
of rank k' (i.e., with smallest reconstruction error)

(U, v*) = arg min A= UVT|?
UER"XN,VER"’X’(/

is the truncated SVD.

Note: As U, V do not have to be orthonormal, one can take U := U'Y’, V := V' for the
2YR.A e

hmidt-Thiéme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

43



Business Analytics 1. Principal Components Analysis

Principal Components Analysis (PCA)

Let X := {x1,...,%,} CR™ be a data set and K € N the number of
latent dimensions (K < m).

PCA finds

» K principal components vy, ..., vk € R™ and
> latent weights z; € R¥ for each data point i € {1,...,n},
such that the linear combination of the principal components

K
k=1

reconstructs the original features x; as good as possible:
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Business Analytics 1. Principal Components Analysis

.. . N
Principal Components Analysis (PCA) i
Let X := {x1,...,%,} CR™ be a data set and K € N the number of
latent dimensions (K < m).

PCA finds

» K principal components vy,

,vk € R™ and
» latent weights z; €

RK for each data point i € {1,...,n},

such that the linear combination of the principal components reconstructs
the original features x; as good as possible:

arg min Z ||xi — Zz, vl
Vi VK i

Z]5--+5Zn

IZ lIxi = Vazil[?, Vo= (i, ve) T
i—1
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Business Analytics 1. Principal Components Analysis

.. . N
Principal Components Analysis (PCA) i
Let X := {x1,...,%,} CR™ be a data set and K € N the number of
latent dimensions (K < m).

PCA finds

» K principal components vy, ..., vk € R™ and
> latent weights z; € R¥ for each data point i € {1,...,n},

such that the linear combination of the principal components reconstructs
the original features x; as good as possible:

n K
min Z ||xi — Zz;7kvk||2
vk

i=1 k=1

.....

n
=Y k= vzl Vi=(,.w)"
i—1

=X -2zVT||%2, X:=(x1,....xa)",2Z:=(z1,.
thus PCA is just the SVD of the data matrix X.
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1. Principal Components Analysis

Business Analytics
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Business Analytics 1. Principal Components Analysis

Principal Components Analysis (Example 1)
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Principal Components Analysis (Example 2)

M) Mt Ien Moo
AV IS RINNID
MG AN
MMM 2 e )
Mo Mma)
MO — M)A
aalaly SVt T Nl 10
analanl i lualiel vy Latialial
AT D laaTdold g tapl iy
MMM
I DOV
MENEID ) NN
DMV

[HTFFO5, p. 537]



Business Analytics 1. Principal Components Analysis

NN
Principal Components Analysis (Example 2) “

o | 32333
§ 33333
- 33333
; 33333
g 33333

First Principal Component

[HTFFO5, p. 538]
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Business Analytics

2. Probabilistic PCA & Factor Analysis
Qutline

2. Probabilistic PCA & Factor Analysis
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Business Analytics 2. Probabilistic PCA & Factor Analysis

Probabilistic Model

Probabilistic PCA provides a probabilistic interpretation of PCA.

It models for each data point
» a multivariate normal distributed latent factor z,

» that influences the observed variables linearly:

p(z) == N(z;0,1)
p(x | z;pu, 02, W) == N(x; i + Wz, 5°1)
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Business Analytics

2. Probabilistic PCA & Factor Analysis

Probabilistic PCA Loglikelihood
X, Z;p, 0% W)

= Inp(x| z; pp, 0%, W)+ Inp(2)
i=1
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Business Analytics 2. Probabilistic PCA & Factor Analysis

B
Probabilistic PCA Loglikelihood “

X, Z;p, 0% W)

= Inp(x| z; pp, 0%, W)+ Inp(2)
i=1

= ZInN(x;u+ Wz,5%1) + InN(z;0,1)
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Business Analytics 2. Probabilistic PCA & Factor Analysis

Probabilistic PCA Loglikelihood

X, Z;p, 0% W)

= Inp(x| z; pp, 0%, W)+ Inp(2)
i=1

= ZInN(x;u+ Wz,5%1) + InN(z;0,1)

sz,-

1 1 1
mZ—Elogaz— f‘z(xi—u— Wz) T (xi — p — Waz;) — 52

1
remember: N(x;p,¥) = —2——e” BlmpE T )
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Business Analytics 2. Probabilistic PCA & Factor Analysis

B
Probabilistic PCA Loglikelihood “

X, Z;p, 0% W)

= Inp(x| z; pp, 0%, W)+ Inp(2)
i=1

= ZInN(x;u+ Wz,5%1) + InN(z;0,1)

1 1
x Z —Zlogo® — fﬂ(x" — = Wz)T(x;i — p— Wz;) — EZ,-TZ,'

1
x — Z logo? + ;(NTN + T WT Wz — 2xT 1 — 2xT Wz + 2" W)

i + z,-Tz,-
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Business Analytics 2. Probabilistic PCA & Factor Analysis

PCA vs Probabilistic PCA A

1 1
x Z —Zlogo? — F(x,- — = Wz) T (xi — p — Wz;) — Ez,-Tz,-

» as PCA: Decompose with minimal L2 loss

K
Xj ~ E z,-?kvk
k=1

with vy == W.

» different from PCA: L2 regularized row features z.
» cannot be solved by SVD. Use EM as learning algorithm!
» additionally also regularization of column features W possible
(through a prior on W).
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Business Analytics 2. Probabilistic PCA & Factor Analysis

NS
EM / Block Coordinate Descent: Outline i

UX,Z; p, 0%, W)

x — Zloga + 5 (1 T+ zTWT Wz — 2xT i — 2xTWz,+2uTWz,)

+ 2z z
1. expectation step: Vi
gf,- 20 ~—zi= . (0)
2. minimization step:
5 Lo = 1)
;;; =0 - o? = (2)
ai\j/ 20 W= (3)
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Business Analytics 2. Probabilistic PCA & Factor Analysis

B
EM / Block Coordinate Descent i

E(X,Z;'[L,O'z, W)

T

1
x — Z logo? + ;(/,LT/,L + T WT Wz — 2xT i — 2xT Wz + 2" W)
i + z; z;

ol 1
E = —§(2ZiTWTW — 2XI'TW + 2,LLTW) — 2ZI'T ; O
(WTW + 021 zi = WT(x; — )
zi=(WTW +a21)TWT (x; — ) (0)
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Business Analytics 2. Probabilistic PCA & Factor Analysis

B
EM / Block Coordinate Descent i

UX, Z; p, 0%, W)

X — Zlog(f + 5 (1 Tu+zTWT Wz — 2xT i — 2x7 Wz + 2T Waz;)

+ Z,TZ,'

ov 1

:;I;ZX,'— WZ,' (1)

Note: As E(z;) =0, p often is fixed to p := %Z,‘X:’-

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
20 / 43



Business Analytics 2. Probabilistic PCA & Factor Analysis

B
EM / Block Coordinate Descent i

UX,Z; p, 0%, W)

x — Zloga + 5 (1 Tu+zT WT Wz — 2xT o — 2xT Wz + 27 Wz,)
+z Zj

o 1

1
2= "2 + (2 Z,uTu + T WT Wz — 2xT i — 25T Wz + 207 Wez; -
i

1
ot = ZuTu + z,-TWTWz,- — 2x,-T,u — 2x,-T Wz; 4+ 2u" Wz
i
1
= ;Z(Xi —p = Wz)T(xi — p— Wz;) (2)
i
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Business Analytics 2. Probabilistic PCA & Factor Analysis

B
EM / Block Coordinate Descent i

UX,Z; p, 0%, W)

X — Zlogo’ —|— u /,L+ZTWTWZ,—2X "m— 2XTWz,—|—2,u Wz;)
—|—z,Tz,-

——%Z2Wz,-z,- —2x:z] + 2uz] =0
W(Z ziz) = Z(Xi — )z’
W= - (7)) ! ©)
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Business Analytics 2. Probabilistic PCA & Factor Analysis

EM / Block Coordinate Descent: Summary

alternate until convergence:

1. expectation step: Vi
zi=(WTW + 021 TWT(x; — )
2. minimization step:

1
W= - x; — Wz;
i
2 1 T
o= (xi —p— Wzi)' (xi — p — Wz;)

(1)
(2)
(3)
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Business Analytics 2. Probabilistic PCA & Factor Analysis

NN
EM / Block Coordinate Descent: Example i

21 (a) ¢

-2 0 2

- [Bis06, p.581]

= Dae
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Business Analytics 2. Probabilistic PCA & Factor Analysis

NN
EM / Block Coordinate Descent: Example i

2t (b)
|
Ve

-2 0 2

[m]

- [Bis06, p.581]
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Business Analytics 2. Probabilistic PCA & Factor Analysis

NN
EM / Block Coordinate Descent: Example i

2t (o) /
/

Or “?/

-2 0 2

- [Bis06, p._581 _

nae
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Business Analytics 2. Probabilistic PCA & Factor Analysis

NN
EM / Block Coordinate Descent: Example i

2t (d) .\ 0\
0f 3;.:\

-2 0 2

- [Bis06, p._581 _

nae
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Business Analytics 2. Probabilistic PCA & Factor Analysis

NN
EM / Block Coordinate Descent: Example i

2t (o) o/

g
e

-2 0 2

- [Bis06, p.581]
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Business Analytics 2. Probabilistic PCA & Factor Analysis

NN
EM / Block Coordinate Descent: Example i

2t () o/
</

ol ..\./\.
%

-2 0 2

- [Bis06, p.581]
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Business Analytics

2. Probabilistic PCA & Factor Analysis

Regularization of Column Features W

<> W)

[m]
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Business Analytics 2. Probabilistic PCA & Factor Analysis

Regularization of Column Features W

1

2 T

~l=...+ E —K'log 7; ——2T2vvj wj
J
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Business Analytics 2. Probabilistic PCA & Factor Analysis

Regularization of Column Features W

p(W) = HN(WJ;O,TJ?/), W= (wi,...,wp)
j=1
ol 1
- Wdiag(—,. .., —
aW dlag(T12, 77_,2")
1 1
W = zf:(xi - M)Z,'T(zi: ZiZ,-T -+ 02 dlag('y?’ ceey %))_1 (3/)
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Business Analytics 2. Probabilistic PCA & Factor Analysis

Regularization of Column Features W

p(W) :HN(VVJ'OaTJI)’ W_(Wla an)
j=1
=) —KlogT! — Swlw,
j=1
or 1 1 |
— =K==+ ——w/w; =0
I 7
=W Wi

This variant of probabilistic PCA is called Bayesian PCA.

(4)
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Business Analytics 2. Probabilistic PCA & Factor Analysis

Bayesian PCA: Example

- [Bis06, p.5584;L: ~ e
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Business Analytics 2. Probabilistic PCA & Factor Analysis

Bayesian PCA: Example

- [Bis06, p.5584;L: ~ e
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Business Analytics

2. Probabilistic PCA & Factor Analysis

Factor Analysis

p(z) == N(z;0,1)
p(x |z pu, X, W) :=N(x;u+ Wz, X),

> diagonal

[m]
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Business Analytics 2. Probabilistic PCA & Factor Analysis

Factor Analysis

) :=N(z0,1)
)=

p(z
p(x |z p, X, W N(x; p+ Wz,¥), X diagonal

UX, Z;p, 2, W)

2

1 1 _ 1
x Z —5 log |X| — E(Xi — = Wz)TE N (x — = Wz) — 2z z
1
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Business Analytics 2. Probabilistic PCA & Factor Analysis

Factor Analysis

p(z) := N(z;0,1)
p(x | zip, X, W) = N(x;p+ Wz,X), X diagonal

EM:
zi=(WTZ W+ NTWTE (% — p) (0)

M:in,-—Wz,' (1)
Xjj= %Z((Xi — pi — Wzp);)? (2)

W = Z(Xi - M)Z;T(Z ziz] )™ (3)

Note: See appendix for derivation of EM formulas.
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3. Non-linear Dimensionality Reduction
Qutline

3. Non-linear Dimensionality Reduction
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Business Analytics 3. Non-linear Dimensionality Reduction

Linear Dimensionality Reduction

Dimensionality reduction accomplishes two tasks:
1. compute lower dimensional representations for given data points x;
» for PCA:

u=X"WTx, U:= (b1, ..y u,,)T

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Business Analytics 3. Non-linear Dimensionality Reduction

Linear Dimensionality Reduction

Dimensionality reduction accomplishes two tasks:
1. compute lower dimensional representations for given data points x;
» for PCA:

u=X"WTx, U:= (b1, ..y u,,)T

2. compute lower dimensional representations for new data points x
(often called “fold in")

» for PCA:

u:=argmin||x — VZul? =X VTx
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Business Analytics 3. Non-linear Dimensionality Reduction

Linear Dimensionality Reduction

Dimensionality reduction accomplishes two tasks:
1. compute lower dimensional representations for given data points x;
» for PCA:

u=X"WTx, U:= (b1, ..y u,,)T

2. compute lower dimensional representations for new data points x
(often called “fold in")

» for PCA:

u:=argmin||x — VZul? =X VTx

PCA is called a linear dimensionality reduction technique because the
latent representations u depend linearly on the observed representations x.
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Business Analytics 3. Non-linear Dimensionality Reduction

NN
Kernel Trick v

Represent (conceptionally) non-linearity by linearity in a higher
dimensional embedding

¢ :R™ — R™

but compute in lower dimensionality for methods that depend on x only
through a scalar product

%70 = ¢p(x)Tp(0) = k(x,0), x,0 € R™

if k can be computed without explicitly computing ¢.
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27 / 43



Business Analytics 3. Non-linear Dimensionality Reduction

Kernel Trick / Example

Example:
1
¢ R — R00L 31.62x
N << 1000 ) 3 X’,> _ 706.75 x?2
i B :
i=0,...,1000 :
' 31.62 x99
51000

1000
K70 =o(x)To(0) = > < 1000 > X0 = (14 x0)19% —. k(x, )
i=0

Naive computation:

» 2002 binomial coefficients, 3003 multiplications, 1000 additions.
Kernel computation:

» 1 multiplication, 1 addition, 1 exponentiation.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Business Analytics 3. Non-linear Dimensionality Reduction

Kernel PCA

¢ R™ SR m>m

P(x1)
?(x2)

>
.| I'

B (xn)
X ~UzVvT

We can compute the columns of U as eigenvectors of XX T € R"*"
without having to compute V € Rk (which is large!):

XXTU; = o?U;

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Business Analytics 3. Non-linear Dimensionality Reduction

B
Kernel PCA / Removing the Mean i

Issue 1: The X; := ¢(x;) may not have zero mean and thus distort PCA.

n
o 1Z~
Xi =X — — X
n<
i=1

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Business Analytics 3. Non-linear Dimensionality Reduction

B
Kernel PCA / Removing the Mean i

Issue 1: The X; := ¢(x;) may not have zero mean and thus distort PCA.

1 n
~/ —— - =,
X ‘=X; - g X;

i=1

. 1
=XT(I- =1
(I=-1)

- 1 -
XU#%,HJDT:U—;MXT

,,,, » vector of ones,

= (6(i = unity matrix.
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Business Analytics 3. Non-linear Dimensionality Reduction

B
Kernel PCA / Removing the Mean i

Issue 1: The X; := ¢(x;) may not have zero mean and thus distort PCA.

n
o 1Z~
Xi =X — — X
n-
i=1

< 1
=XT(I-=1
(- 1)
o 1 . -
X =(,.... 3 = - ;]J)XT
K =X'XT = (I - 111)>"<T X (I — 1]J)
n n
1
=HKH, H:=(l—- E]J) centering matrix

Thus, the kernel matrix K’ with means removed can be computed from
the kernel matrix K without having to access coordinates.
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Business Analytics 3. Non-linear Dimensionality Reduction

Bz
Kernel PCA / Fold In i

Issue 2: How to compute projections u of new points x (as V is not
computed)?

u:=argmin||x — VZu|? =L 1VTx
u
With

=XTyuz1t

<t

u=3Wix =515 Xx = T2U7 (k(xi, X)) i=1....n

u can be computed with access to kernel values only (and to U, X).
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Business Analytics 3. Non-linear Dimensionality Reduction
P2
Kernel PCA / Summary i
Given:
» data set X := {xg,...,x,} CR",
» kernel function k : R™ x R™ — R.

task 1: Learn latent representations U of data set X:

K ::(k(xiaXj))iZl,...,n,j:I,...,n (0)
K'—HKH, H:=(I— 1) (1)

n
(U, X) :=eigen decomposition K'U = UL (2)

task 2: Learn latent representation u of new point x:

ui=X2UT(k(xi,X))i=1...n (3)
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Business Analytics

3. Non-linear Dimensionality Reduction

Kernel PCA: Example 1

Eigenvalue=22.558
1.5

1

Eigenvalue=3.372
5

Eigenvalue=20.936
15

Eigenvalue=4.648
1.5

Eigenvalue=3.988
1.5

©

1.5
)
T 0

0.5 0.5
O O O
-0.5 5

0 1 -

-0.5

-1

Eigenvalue=2.760
5

0 1 -

[m]

- [Mur12, p. 493]

= <

I
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Business Analytics 3. Non-linear Dimensionality Reduction

B
Kernel PCA: Example 2 “

pca
065 . . . . . .
* x
oaf % x i
% XX x xy X,
T %
X x X x
0.2 % % ™ q
x Xt XX
w08
| ey I
*x
% x
-0.21 B
’ *
-0.4 * * “ -
x% ”*‘* X x
b 1] x
—06f x g
08 . . . . . .
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
. - [Mur12, p. 495 _
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Business Analytics 3. Non-linear Dimensionality Reduction

NN
Kernel PCA: Example 2 “

0.6

-0.4[ 3 1
¥
g
L
0

08 L L L
-0.8 -0.6 -0.4 -0.2

. - [Mur12, p. 495 _
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4. Independent Component Analysis
Qutline

4. Independent Component Analysis

[m]

=
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Business Analytics 4. Independent Component Analysis

ICA Model

» like PCA:
» x depends linearly on z with normal error.
» p(z) decomposes in a product of p(z).
» different from PCA:
» p(z;) are not Gaussians, but other distributions, e.g.,
» logistic distribution:

p(zi) = Q+e=)2

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Business Analytics 4. Independent Component Analysis

ICA: Example

truth observed signals

- 100 200 300 400 500

2

SN it b

0 100 200 300 400 500 0 100 200 300 400 500
IOL 5

oftnbtiespm b W WWWWMWMWW
-10 -5

0 100 200 300 400 500 0 100 200 300 400 500

[Murl2, p. 408]

=] (=)
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Business Analytics 4. Independent Component Analysis

NN
ICA: Example “

truth observed signals

2
T Jotmnpcrmenpssrmogd
2 -
0 100 200 300 400 500 0 100 200 300 400 500
5 5
0 WWHH(’%’WWWWM 4 MMNW\AWAW\/\IWAWMM
-5
0

-5
100 200 300 400 500 [] 100 200 300 400 500
2
R e
2 _
[ 100 200 300 400 500 [ 100 200 300 400 500
‘OL 5
oftebubion T W %WWWWWMWWMMW
-10 -5
[ 100 200 300 400 500 [ 100 200 300 400 500
PCA estimate
DWWWWWWMWW
- [ 100 200 300 400 500
5
DWWMWMWMW
-5
0 100 200 300 400 500
2
°WWWWWMMWW‘”WM
-2
[ 100 200 300 400 500
1
onMMWWWWMW
-1
o 100 200 300 400 500

. = [Murl2, p. 408] _
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Business Analytics 4. Independent Component Analysis

ICA: Example
truth observed signals

2
T Jotmnpcrmenpssrmogd
2 -
0 100 200 300 400 500 0 100 200 300 400 500
5 5
0 WWHH(’%’WWWWM 4 MMNW\AWAW\/\IWAWMM
-5

-5
0 100 200 300 400 500 0 100 200 300 400 500
2
WV dramienisspionsad
2 -
0 100 200 300 400 500 0 100 200 300 400 500
10 L 5
A W WWWWWMWW
-10 -5
0 100 200 300 400 500 0 100 200 300 400 500
ICA estimate
5
PO A ]
-5
0 100 200 300 400 500
10
o WMWM
-10
0 100 200 300 400 500
2
0 HWWMM[\MIVWW\AW\MM\WWW
-2
0 100 200 300 400 500
2
-2
] 100 200 300 400 500

. = [Murl2, p. 408] _
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Business Analytics 4. Independent Component Analysis

B
Learning ICA “

To learn ICA, different algorithms are used:
» gradient descent
» usually slow

» EM
» approximate Newton (FastICA)
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5. Supervised Dimensionality Reduction
Qutline

5. Supervised Dimensionality Reduction
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Business Analytics 5. Supervised Dimensionality Reduction

Dimensionality Reduction as Pre-Processing

Given a prediction task and
a data set D" := {(x1, 1), -, (Xn,¥n)} CR™ x V.

1. compute latent features z; € R¥ for the objects of a data set by
means of dimensionality reduction of the predictors x;.

» eg., using PCAon {xy,...,x,} CR™

2. learn a prediction model
y.RK 5y
on the latent features based on

p/train . _ {(z1,51)s -5 (Znyyn)}

3. treat the number K of latent dimensions as hyperparameter.
» e.g., find using grid search.
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Business Analytics 5. Supervised Dimensionality Reduction

Dimensionality Reduction as Pre-Processing

Advantages:

» simple procedure
» generic procedure

» works with any dimensionality reduction method and prediction method
as component methods.

» usually fast
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Business Analytics 5. Supervised Dimensionality Reduction

Dimensionality Reduction as Pre-Processing “

Advantages:
» simple procedure

» generic procedure

» works with any dimensionality reduction method and prediction method
as component methods.

» usually fast

Disadvantages:

» dimensionality reduction is unsupervised, i.e., not informed about
the target that should be predicted later on.

» leads to the very same latent features regardless of the prediction task.
> likely not the best task-specific features are extracted.
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Business Analytics 5. Supervised Dimensionality Reduction

NN
Supervised PCA “

p(z) :
p(x | z; pix, 03, Wi) -
p(y | zipy o0, Wy ) :

N(z;0,1)
N(x; pix + Wiz, 021)
N(y;py + Wyz,021)

» like two PCAs, coupled by shared latent features z:

» one for the predictors x.
» one for the targets y.

» latent features act as information bottleneck.

» also known as Latent Factor Regression or Bayesian Factor
Regression.

[m] = = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

40 / 43



Business Analytics 5. Supervised Dimensionality Reduction

NN
Supervised PCA: Discriminative Likelihood “

A simple likelihood would put the same weight on
» reconstructing the predictors and

» reconstructing the targets.

A weight o € Rar for the reconstruction error of the predictors should be
introduced (discriminative likelihood):

Lo(©:x,y,2) = [ [ pyi | 2i:©)p(xi | zi; ©)*p(2i; ©)
i=1

« can be treated as hyperparameter and found by grid search.
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Business Analytics 5. Supervised Dimensionality Reduction

NN
Supervised PCA: EM “

» The M-steps for jix, 02, Wy and py,aﬁ, W, are exactly as before.

» the coupled E-step is:

1T LT e T Loyt
zi = <02Wy Wy+a;§WX Wx> (J2Wy (vi _My)+a?Wx (xi —

y y X
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6. Conclusion

Outline

6. Conclusion
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Business Analytics

6. Conclusion

Conclusion (1/3)

» Dimensionality reduction aims to find a lower dimensional
representation of data that preserves the information as much as
possible. — " Preserving information” means

> to preserve pairwise distances between objects
(multidimensional scaling).

» to be able to reconstruct the original object features
(feature reconstruction).

» The truncated Singular Value Decomposition (SVD) provides the
best low rank factorization of a matrix in two factor matrices.

» SVD is usually computed by an algebraic factorization method
(such as QR decomposition).

[m]

=
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Business Analytics 6. Conclusion

NS
Conclusion (2/3) i

» Principal components analysis (PCA) finds latent object and
variable features that provide the best linear reconstruction (in L2
error).

» PCA is a truncated SVD of the data matrix.

» Probabilistic PCA (PPCA) provides a probabilistic interpretation of
PCA.
» PPCA adds a L2 regularization of the object features.
» PPCA is learned by the EM algorithm.
» Adding L2 regularization for the linear reconstruction/variable features
on top leads to Bayesian PCA.
» Generalizing to variable-specific variances leads to Factor Analysis.
» For both, Bayesian PCA and Factor Analysis, EM can be adapted easily.
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Business Analytics 6. Conclusion

s
Conclusion (3/3) i

» To capture a nonlinear relationship between latent features and
observed features, PCA can be kernelized (Kernel PCA).

» Learning a Kernel PCA is done by an eigen decomposition of the kernel
matrix.

» Kernel PCA often is found to lead to “unnatural visualizations”.

» But Kernel PCA sometimes provides better classification performance
for simple classifiers on latent features (such as 1-Nearest Neighbor).

» To learn models with non-normally distributed latent factors,
independent component analysis (ICA) can be used.
» ICA generalizes PCA to non-Gaussian distributions for the latent
factors.
» ICA can be learned by EM or approximate Newton (FastICA).
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Business Analytics

Readings

v

Principal Components Analysis (PCA)
» [HTFFO5], ch. 14.5.1, [Bis06], ch. 12.1, [Murl2], ch. 12.2.

Probabilistic PCA
» [Bis06], ch. 12.2, [Mur12], ch. 12.2.4.

v

v

Factor Analysis
» [HTFFO5], ch. 14.7.1, [Bis06], ch. 12.2.4.

Kernel PCA
» [HTFFO5], ch. 14.5.4, [Bis06], ch. 12.3, [Murl2], ch. 14.4.4.

\{
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Business Analytics

Further Readings

» (Non-negative) Matrix Factorization
> [HTFFO5], ch. 14.6

» Independent Component Analysis, Exploratory Projection Pursuit
» [HTFFO05], ch. 14.7 [Bis06], ch. 12.4 [Mur12], ch. 12.6.

» Nonlinear Dimensionality Reduction
» [HTFFO5], ch. 14.9, [Bis06], ch. 12.4
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Business Analytics

Factor Analysis: Loglikelihood
UX, Z;p,x, W)

n
= Inp(x | zp, T, W)+Inp(z)
i=1

[m]
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Business Analytics

Factor Analysis: Loglikelihood

UX,Z;pu, 2, W)

n
= Inp(x | zp, T, W)+Inp(z)
i=1

= InN(x;p+ Wz, X) + In N (20, 1)

1

[m] = = =
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Business Analytics

Factor Analysis: Loglikelihood

UX,Z;pu, 2, W)

n
= Inp(x | zp, T, W)+Inp(z)
i=1

= InN(x;p+ Wz, X) + In N (20, 1)

1 1 _ L
x D =5 log [T = 50— p = Wa) T 5 — = Wap) = 52z

2

1
remember: N(x; i, ¥) = —2——e” HCRD LGl
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Business Analytics

Factor Analysis: Loglikelihood

UX,Z;pu, 2, W)

n
= Inp(x | zp, T, W)+Inp(z)
i=1

= InN(x;p+ Wz, X) + In N (20, 1)
x Z 1 log |X| — 1(x — = Wz) T Y% — o — W) — 1z-Tz-
: 5 5 i i i i 5 i
x — Z log |X| 4+ (x " x4+ pu L+ 2T WL Wz — 2xT 1
' —2xT XYWz 4+ 2T W) 4z z
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Business Analytics

NS
Factor Analysis: EM / Block Coordinate Descent i

UX, Z;p,x, W)
x — Z log |X| 4+ (x " Ixi 4+ pu L+ 2T WTE Wz — 2xT 1
’ — T MW + 20 TS W) + 2T 2

gl =2z WTsIw —2x" w4 2,7y tw) — 227 -
zj

(WTE W4 Nz = WTE Y (x — p)
zi=(WTE W+ NTWTEY(x — p)
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Business Analytics

NS
Factor Analysis: EM / Block Coordinate Descent i

UX, Z;p, 2, W)
x — Z log ||+ ("= I+ pu S+ 2T W Wz — 2x 571y
/ —2xT X Wz 4+ 20 TS W) 4z z

ol

5= SouTE ooty 2 wiE =0
H i

1
== . — Wz Iy
I n%X z (1)

Note: As E(z;) =0, p often is fixed to pu:= 1 3", x;.

n
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NS
Factor Analysis: EM / Block Coordinate Descent i

UX, Z;p, 2, W)
x — Z log ||+ ("= I+ pu S+ 2T W Wz — 2x 571y
/ —2xT X Wz 4+ 2T W) 4 2 z;

ol 1
-

1 .
= — + —— (X,'—u,'—WZ,')giO
9% Yo (Zg)? Z /

Xjj = Y (6 = pi = Way);)? (2)

i
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Business Analytics

NS
Factor Analysis: EM / Block Coordinate Descent i

UX,Z;p,x, W)
x — Z log |[Z| 4+ ("= + "X u+ 2T WTE Wz — 2x" 21y
i — 2] XYWz 4+ 2T S W) + ZT z

= _ Z 25 TWzizT — 25 txz] 42X tuz 710
Z ZiZ, = Z Xi — :U’)ZIT
W= Z )ZiT(Z ziz! )™ 3")
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