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Predictive Analytics: Ensemble of Gradient-Boosted Decision Trees

Predictive Analytics - Example
I For N existing bank customers and M = 23 features, i.e. given

X ∈ RN×23 and ground truth Y ∈ {0, 1}N

Y: Default credit card payment (Yes = 1, No = 0)

X:,1 Amount of the given credit (NT dollar)
X:,2 Gender (1 = male; 2 = female).
X:,3 Education (1=graduate; 2=univ.; 3 = high school; 4 = others).
X:,4 Marital status (1 = married; 2 = single; 3 = others).
X:,5 Age (year)

X:,6 − X:,11 Past Delays (-1=duly, . . . , 9=delay of nine months)
X:,12 − X:,17 Amount of bill statements
X:,18 − X:,23 Amount of previous payments

Table 1: Yeh, I. C., & Lien, C. H. (2009).

I Goal: Estimate the default of a new (N + 1)-th customer, i.e. given
XN+1,: ∈ R23, estimate YN+1 =?
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Problem Definition

I Data dimensions: N instances having M features

I Features: x ∈ RN×M and Target: y ∈ RN

I A prediction model : having parameters θ ∈ RK is f : RM × RK → R

ŷn := f (xn, θ)

I Loss function: L(yn, ŷn) : R× R→ R

I Regularization: Ω(θ) : RK → R
I Objective function:

argmin
θ

N∑
n=1

L(yn, ŷn) + Ω(θ)
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Prediction Models and Loss Functions

I Prediction model:
I Linear model, i.e. ŷn =

∑M
m=1 θmXn,m

I Non-linear models, e.g.: Neural Networks, Kernel-space representation,
Decision Trees

I Loss Function:
I Regression (target is real-values yn ∈ R), e.g. least-squares:

L(yn, ŷn) := (yn − ŷn)2

I Binary Classification yn ∈ {0, 1}, e.g. logistic loss:

L(yn, ŷn) := −yn log(ŷn)− (1− yn) log(1− ŷn)
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Multi-class loss - Softmax
I Re-express targets yn ∈ {1, . . . ,C} as one-vs-all, i.e.

yn,c :=

{
1 yn = C

0 yn 6= C

I Learn model parameters per class θ ∈ RC×K

I Estimations expressed as probabilities among classes

ŷn,c =
ef (xn,θc )

C∑
q=1

ef (xn,θq)

I Logloss:

L(yn,:, ŷn,:) := −
C∑

c=1

yn,c log(ŷn,c)

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Business Analytics 5 / 27



Predictive Analytics: Ensemble of Gradient-Boosted Decision Trees

Classification and Regression Trees (CART)

A prediction model ŷn := f (xn, θ) can be also a tree:

Systolic pressure: (xn,1 > 91)

risk (ŷn = 1)

yes

Age: (xn,2 > 62.5)

risk (ŷn = 1)

yes

Sinus tachycardia?: (xn,3 = 1)

risk (ŷn = 1)

yes

low-risk (ŷn = 0)

no

no

no

Figure 1: San Diego Medical Center
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Prediction Model of a Decision Tree

I A tree having T leaves outputs the weights w ∈ RT .

I Let q : RM → {1, . . . ,T} denote the leaf index q(xn) where instance
xn belongs to, then

I The prediction model of a tree is:

f (xn) = wq(xn)
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Decision Tree as a Step-wise Function
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Tree Over-fitting
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Over-fitting

Tree over-fits if too many steps (nodes) and high jumps (large leaf weights)
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Tree Regularization

I Note: Too many steps ≈ Too many leaves (T)

I Note: Too large step jumps ≈ Too large leaves’ output values (w)

I Penalize the number of leaves and leaves’ weights, e.g.:

Ω(f ) = γT +
λ

2

T∑
j=1

w2
j
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Boosting

I Can weak learners (single trees) be combined to create more
expressive models?

I Jean de La Fontaine: ”All power is weak unless united” (1668)

I Unite single trees into an ensemble of k trees

I The estimation is aggregated over the individual trees’ predictions:

ŷ
(1)
n := f (1)(xn), ŷ

(2)
n := ŷ

(1)
n + f (2)(xn), . . .

ŷ
(k)
n := ŷ

(k−1)
n + f (k)(xn) =

k∑
l=1

f (l)(xn)
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Boosted Ensemble Loss

I Add one tree at a time to the ensemble (greedy strategy)

I The loss created as a result of adding the contribution of the k-th
tree is:

argmin
f (k)

[
N∑

n=1

L(k)(Y , ŷ (k−1)n + f (k)(xn))

]
+ Ω(f (k))

:= argmin
f (k)

[
N∑

n=1

L(k)n

]
+ Ω(f (k))

I How to find the optimal k-th tree f (k)?
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Tailor Approximation
Remember Tailor Expansion (2nd degree):

F (x + ∆x) ≈ F (x) +
dF (x)

dx
∆x +

1

2

d2F (x)

dx2
∆x2

In our case F := L(k) and ∆x = f (k)

L(k)n ≈ L(k−1)n +
∂L(k)n

∂ŷ
(k−1)
n

f (k)(xn) +
1

2

∂2L(k)n

∂
(
ŷ
(k−1)
n

)2 (f (k)(xn)
)2

L(k)n ≈ L(k−1)n + Gnf
(k)(xn) +

1

2
Hn

(
f (k)(xn)

)2
where Gn :=

∂L(k)n

∂ŷ
(k−1)
n

, Hn :=
∂2L(k)n

∂
(
ŷ
(k−1)
n

)2
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Rewrite Objective

Since L(k−1)n is constant w.r.t. f (k), then rewrite objective as:

argmin
f (k)

N∑
n=1

[
Gnf

(k)(xn) + Hn

(
f (k)(xn)

)2]
+ Ω(f (k))

with regularization:

Ω(f (k)) = γT +
λ

2

T∑
j=1

w2
j
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Rewrite objective in terms of leaves

I Remember f (k)(x) := wq(x) (previous slide).

I Let indices of all instances belonging into the j-th leaf be
Ij := {n | q(xn) = j}.

Then, the objective in terms of leaves’ weights is:

argmin
w1,...,wT

N∑
n=1

[
Gnwq(xn) +

1

2
Hnw

2
q(xn)

]
+ γT +

λ

2

T∑
j=1

w2
j

argmin
w1,...,wT

T∑
j=1

∑
n∈Ij

Gn

wj +
1

2

λ+
∑
n∈Ij

Hn

w2
j

+ γT
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Optimal Tree Leaves

I Given the objective:

argmin
w1,...,wT

∑T
j=1

[(∑
n∈Ij Gn

)
wj + 1

2

(
λ+

∑
n∈Ij Hn

)
w2
j

]
+ γT

I Knowing that:

−A
B

= argmin
x

Ax +
1

2
Bx2

I The optimal leaf weights w are:

wj = −

∑
n∈Ij

Gn

λ+
∑
n∈Ij

Hn
, j = 1, . . . ,T
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Ultimate Objective Function

I Given the objective:

argmin
w1,...,wT

∑T
j=1

[(∑
n∈Ij Gn

)
wj + 1

2

(
λ+

∑
n∈Ij Hn

)
w2
j

]
+ γT

I Knowing that:

−A2

2B
= min

x
Ax +

1

2
Bx2

I The final objective function is:

O(G ,H) := −1
2

T∑
j=1

∑
n∈Ij

Gn

2

λ+∑
n∈Ij

Hn

 + γT
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How to grow trees?

I The objective per leaf j is:

Oj := −1
2

∑
n∈Ij

Gn

2

λ+∑
n∈Ij

Hn

 + γ

I When splitting leaf j after a decision split we yield two sub-leaves
j (Left) and j (Right)

I The gain in minimizing the global objective after splitting leaf j :

Gainj := Oj −
(
Oj(Left) +Oj(Right)

)
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Gain of splitting a leaf

I Given: Oj := −1
2

∑
n∈Ij

Gn

2

λ+∑
n∈Ij

Hn

 + γ, Gainj := Oj −
(
Oj(Left) +Oj(Right)

)
I Derive:

Gainj :=
1

2



 ∑
n∈I (Left)j

Gn

2

λ+
∑

n∈I (Left)j

Hn


Objective of left child

+

 ∑
n∈I (Right)j

Gn

2

λ+
∑

n∈I (Right)j

Hn


Objective of right child

−

(∑
n∈Ij

Gn

)2

(
λ+

∑
n∈Ij

Hn

)

Objective of parent


− γ

Regularize

additional

leaf
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Split rule search
I For each node, exhaustively visit all splitting rules:

I For each feature m = 1, . . . ,M of the data X ∈ RN×M

I Sort the instances n = 1, . . . ,N of the m-th feature x:,m ∈ N
I Denote the unique sort values Vm ∈ RN′

, where N ′ ≤ N
I Generate all split rules:[

x:,m;
Vm,n′ + Vm,n′+1

2

]
, for n′ = 1, . . . ,N ′ − 1

I Select the split rule that maximizes the gain

argmin[
x:,m;

Vm,n′+Vm,n′+1
2

]
∀m∈{1,....,M}

∀n′ ∈{1,...,|Vm,:|−1}

Oj −
(
Oj (Left) +Oj (Right)

)

where I
(Left)
j =

{
n | xn,m <

Vm,n′ + Vm,n′+1

2

}
I
(Right)
j =

{
n | xn,m >

Vm,n′ + Vm,n′+1

2

}
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Exercise

1 2 3

1

2

3

X1

X
2

Example Data
n x1 x2 y

1 1 2 0
2 2 1 0
3 3 2 0
4 1 3 1
5 2 2 1
6 3 3 1

I Learn an ensemble of 2 trees to estimate:
I Limit maximum depth of trees to two.
I Use logistic loss
I Set γ = 1, λ = 1.
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Exercise - Step 1: Gradients and Hessians

I Before building each tree compute the gradients and Hessians:

Ln = −yn log(σ(ŷn))− (1− yn) log(1− σ(ŷn))

Gn =
∂Ln
∂ŷn

= σ(ŷn)− yn

Hn =
∂2Ln
∂(ŷn)2

=
∂Gn

∂ŷn
= σ(ŷn)(1− σ(ŷn))

I Remember the prediction model of a boosted ensemble:

ŷ
(k)
n = ŷ

(k−1)
n + f (k)(xn)

I For the first tree, assume ŷ
(0)
n = 0, yielding

ŷ
(1)
n = f (1)(xn)
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Exercise - Step 1: Gradients and Hessians (II)

I Knowing

σ(ŷn) =
(
1 + e−ŷn

)−1
, Gn = σ(ŷn)− yn, Hn = σ(ŷn)(1− σ(ŷn))

I Compute once before growing each tree:

n X1 X2 y ŷ (0) σ(ŷ (0)) G H

1 1 2 0 0 0.5 0.5 0.25
2 2 1 0 0 0.5 0.5 0.25
3 3 2 0 0 0.5 0.5 0.25
4 1 3 1 0 0.5 -0.5 0.25
5 2 2 1 0 0.5 -0.5 0.25
6 3 3 1 0 0.5 -0.5 0.25
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Exercise - Step 2: Enumerate split rules

I For first feature m = 1
I Unique sorted values V1 = {1, 2, 3}
I Rules [x:,1; 1.5] and [x:,1; 2.5]

I For second feature m = 2:
I Unique sorted values V2 = {1, 2, 3}
I Rules [x:,2; 1.5] and [x:,2; 2.5]

I In the beginning there is only the root j = 1, where:
I All instances belong to the root: I1 = {1, 2, 3, 4, 5, 6}

I Which rule [x:,1; 1.5] , [x:,1; 2.5] , [x:,2; 1.5] , [x:,2; 2.5] maximizes the
gain of splitting the root?
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Exercise - Step 3: Best split rule = Maximal Gain
n X1 X2 y ŷ (0) σ(ŷ (0)) G H

1 1 2 0 0 0.5 0.5 0.25
2 2 1 0 0 0.5 0.5 0.25
3 3 2 0 0 0.5 0.5 0.25
4 1 3 1 0 0.5 -0.5 0.25
5 2 2 1 0 0.5 -0.5 0.25
6 3 3 1 0 0.5 -0.5 0.25

I Rule [x:,1; 1.5]:

I I
(Left)
1 = {1, 4} and I

(Right)
1 = {2, 3, 5, 6}, thus Gain1 = −1

I Rule [x:,1; 2.5]:

I I
(Left)
1 = {1, 2, 4, 5} and I

(Right)
1 = {3, 6}, thus Gain1 = −1

I Rule [x:,2; 1.5]:

I I
(Left)
1 = {2} and I

(Right)
1 = {1, 3, 4, 5, 6}, thus Gain1 = −0.84

I Rule [x:,2; 2.5]:

I I
(Left)
1 = {1, 2, 3, 5} and I

(Right)
1 = {4, 6}, thus Gain1 = −0.41 (best)
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Our first tree with depth 1!
I The best rule we found [x:,2; 2.5]:

I Splits node (j = 1) into I
(Left)
1 = {1, 2, 3, 5} and I

(Right)
1 = {4, 6}

I Left child (j = 2) with weight w2 = − G1+G2+G3+G5

H1+H2+H3+H5+λ
= −0.5

I Right child (j = 3) with weight w3 = − G4+G6

H4+H6+λ
= 0.66

32

1

2

3

X1

X
2

Example Data

1

(1) x2 > 2.5

(2) −0.5

no

(3) 0.67

yes

I Interpretation of the outcome y
(1)
n = f (1)(xn) = wq(xn):

I σ(ŷ
(1)
n ) = σ(−0.5) = 0.37, ∀n ∈ {1, 2, 3, 5}, q(xn) = 2

I σ(ŷ
(1)
n ) = σ(0.67) = 0.66, ∀n ∈ {4, 6}, q(xn) = 3
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Grow the tree further

I Follow the same procedure to compute the best rules for further
splitting node (j = 2) and (j = 3)

I Proceed until the maximum allowed depth is reached.

I For subsequent trees in the ensemble follow the same procedure, but
note that:

I For the first tree ŷ
(0)
n = 0

I For the second tree ŷ
(1)
n = f (1)(xn)

I For the third tree ŷ
(2)
n = f (1)(xn) + f (2)(xn), etc ...

I Finish the exercise at home!
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