Recommender Systems

Dr. Josif Grabocka
ISMLL, University of Hildesheim
Business Analytics

Recommender Systems

You Tube

\square
You're using an experimental YouTube homepage. Feedback?
Back to classic homepage

Why Recommender Systems?

- Powerful method for enabling users to filter large amounts of information
- Personalized recommendations can boost the revenue of an e-commerce system:
- Amazon recommender systems
- Netflix challgenge: 1 million dollars for improving their system on 10%
- Different applications:
- E-commerce
- Education
- ...

Why Personalization? - The Long Tail

Source: http://www.ma.hw.ac.uk/esgi08/Unilever.html

Prediction Version - Rating Prediction

Given the previously rated items, how the user will evaluate other items?

Ranking Version - Item Prediction

Which will be the next items to be consumed by a user?

Formalization

- U - Set of Users
- I - Set of Items
- Ratings data $D \subseteq U \times I \times \mathbb{R}$

Rating data D are typically represented as a sparse matrix $\mathbf{R} \in \mathbb{R}^{|U| \times|I|}$

Example

	Titanic (t)	Matrix (m)	The Godfather (g)	Once (o)
Alice (a)	4		2	5
Bob (b)		4	3	
John (j)	4		3	

- Users $U:=\{$ Alice, Bob, John $\}$
- Items $I:=\{$ Titanic, Matrix, The Godfather, Once $\}$
- Ratings data $D:=\{($ Alice, Titanic, 4), (Bob, Matrix, 4), ... $\}$

Recommender Systems - Some definitions

Some useful definitions:

- $\mathcal{N}(u)$ is the set of all items rated by user u
- \mathcal{N} (Alice) $:=\{$ Titanic, The Godfather, Once $\}$
- $\mathcal{N}(i)$ is the set of all users that rated item i
- \mathcal{N} (Once) $:=$ \{Alice, John $\}$

Recommender Systems - Task

Given a set of users U, items I and training data $D^{\text {train }} \subseteq U \times I \times \mathbb{R}$, find a function

$$
\hat{r}: U \times I \rightarrow \mathbb{R}
$$

such that the loss

$$
\operatorname{error}\left(\hat{r}, D^{\text {train }}\right):=\sum_{\left(u, i, r_{u, i}\right) \in D^{\text {train }}} \ell\left(r_{u, i}, \hat{r}_{u, i}\right)
$$

is minimal

Historical Approaches

Most recommender system approaches can be classified into:

- Content-Based Filtering: recommends items similar to the items liked by a user using textual similarity in metadata
- Collaborative Filtering: recommends items liked by users with similar behavior

We will focus on collaborative filtering!

Nearest Neighbor Approaches

Nearest neighbor approaches build on the concept of similarity between users and/or items.

The neighborhood N_{u} of a user u is the set of k most similar users to u

Analogously, the neighborhood N_{i} of an item i is the set of k most similar items to i

There are two main neighborhood based approaches

- User Based:
- The rating of an item by a user is computed based on how similar users have rated the same item
- Item Based:
- The rating of an item by a user is computed based on how similar items have been rated by the same the user

User Based Recommender

A user $u \in U$ is represented as a vector $\mathbf{u} \in \mathbb{R}^{|/|}$containing user ratings.

	Titanic (t)	Matrix (m)	The Godfather (g)	Once (o)
Alice (a)	4		2	5
Bob (b)		4	3	
John (j)	4		3	

Examples:

- $\mathbf{a}:=[4,0,2,5]$
- $\mathbf{b}:=[0,4,3,0]$
- $\mathbf{j}:=[0,4,0,3]$

User Based Recommender - Prediction Function

$$
\hat{r}_{u, i}:=\bar{r}_{u}+\frac{\sum_{v \in N_{u}} \operatorname{sim}(u, v)\left(r_{v, i}-\bar{r}_{v}\right)}{\sum_{v \in N_{u}}|\operatorname{sim}(u, v)|}
$$

Where:

- \bar{r}_{u} is the average rating of user u
- sim is a similarity function used to compute the neighborhood N_{u}

Item Based Recommender

An item $i \in I$ is represented as a vector $\mathbf{i} \in \mathbb{R}^{|U|}$ containing information on how items are rated by users.

	Titanic (t)	Matrix (m)	The Godfather (g)	Once (o)
Alice (a)	4		2	5
Bob (b)	4	3		
John (j)	4		3	

Examples:

- $\mathbf{t}:=[4,0,0]$
- $\mathbf{m}:=[0,4,4]$
- $\mathbf{g}:=[2,3,0]$
- $\mathbf{o}:=[5,0,3]$

Item Based Recommender - Prediction Function

$$
\hat{r}_{u, i}:=\bar{r}_{i}+\frac{\sum_{j \in N_{i}} \operatorname{sim}(i, j)\left(r_{u, j}-\bar{r}_{j}\right)}{\sum_{j \in N_{i}}|\operatorname{sim}(i, j)|}
$$

Where:

- \bar{r}_{i} is the average rating of item i
- sim is a similarity function used to compute the neighborhood N_{i}

Similarity Measures

On both user and item based recomenders the similarity measure plays an important role:

- It is used to compute the neighborhood of users and items (neighbors are most similar ones)
- It is used during the prediction of the ratings

Which similarity measure to use?

Similarity Measures

Commonly used similarity measures:
Cosine:

$$
\operatorname{sim}(u, v)=\cos (\mathbf{u}, \mathbf{v})=\frac{\mathbf{u}^{\top} \mathbf{v}}{\|\mathbf{u}\| \cdot\|\mathbf{v}\|}
$$

Pearson correlation:

$$
\operatorname{sim}(u, v)=\frac{\sum_{i \in \mathcal{N}(u) \cap \mathcal{N}(v)}\left(r_{u, i}-\bar{r}_{u}\right)\left(r_{v, i}-\bar{r}_{v}\right)}{\sqrt{\sum_{i \in \mathcal{N}(u) \cap \mathcal{N}(v)}\left(r_{u, i}-\bar{r}_{u}\right)^{2}} \sqrt{\sum_{i \in \mathcal{N}(u) \cap \mathcal{N}(v)}\left(r_{v, i}-\bar{r}_{v}\right)^{2}}}
$$

Factorization Models

Neighborhood based approaches have been shown to be effective but ...

- Computing and maintaining the neighborhoods is expensive
- In the last years, a number of models have been shown to outperform them
- One of the results of the Netflix Challenge was the power of factorization models when applied to recommender systems

Factorization Models

R

Partially observed matrices

The ratings matrix \mathbf{R} is usually partially observed:

- No user is able to rate all items
- Most of the items are not rated by all users

Can we estimate the factorization of a matrix from some observations to predict its unobserved part?

Factorization models

- Each item $i \in I$ is associated with a latent feature vector $\mathbf{Q}_{i} \in \mathbb{R}^{K}$
- Each user $u \in U$ is associated with a latent feature vector $\mathbf{P}_{u} \in \mathbb{R}^{K}$
- Each entry in the original matrix can be estimated by

$$
\hat{r}_{u, i}=\mathbf{P}_{u}^{\top} \mathbf{Q}_{i}=\sum_{k=1}^{K} P_{u, k} Q_{i, k}
$$

R

P

\boldsymbol{Q}^{T}

Example

	Titanic (t)	Matrix (m)	The Godfather (g)	Once (o)
Alice (a)	4		2	5
Bob (b)		4	3	
John (j)	4		3	

	T M G O				Alice	X	T	M	G	0
Alice	4		2	5						
Bob		4	3		$\approx_{\text {Bob }}$					
John		4		3	John					

Latent Factors

Source: Yehuda Koren, Robert Bell, Chris Volinsky: Matrix Factorization Techniques for Recommender Systems, Computer, v. 42 n.8, p.30-37, August 2009

Learning a factorization model - Objective Function

Task:

$$
\arg \min _{\mathbf{p}, \mathbf{q}} \sum_{\left(u, i, r_{u, i}\right) \in D^{\text {train }}}\left(r_{u i}-\hat{r}_{u, i}\right)^{2}+\lambda\left(\|\mathbf{P}\|^{2}+\|\mathbf{Q}\|^{2}\right)
$$

Where:

- $\hat{r}_{u, i}:=\mathbf{P}_{u}^{\top} \mathbf{Q}_{i}$
- $D^{\text {train }}$ is the training data
- λ is a regularization constant

Optimization method

$$
\mathcal{L}:=\sum_{\left(u, i, r_{u}, i\right) \in D^{\text {train }}}\left(r_{u i}-\hat{r}_{u, i}\right)^{2}+\lambda\left(\|\mathbf{P}\|^{2}+\|\mathbf{Q}\|^{2}\right)
$$

Stochastic Gradient Descent:

Conditions:

- Loss function should be decomposable into a sum of components
- The loss function should be differentiable

Procedure:

- Randomly draw one component of the sum
- Update the parameters in the opposite direction of the gradient

SGD: gradients

$$
\begin{align*}
\mathcal{L} & :=\sum_{\left(u, i, r_{u, i}\right) \in D^{\operatorname{train}}}\left(r_{u i}-\hat{r}_{u, i}\right)^{2}+\lambda\left(\|\mathbf{P}\|^{2}+\|\mathbf{Q}\|^{2}\right) \tag{1}\\
\mathcal{L} & :=\sum_{\left(u, i, r_{u}, i\right) \in D^{\text {train }}} \mathcal{L}_{u, i}
\end{align*}
$$

Gradients:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}_{u, i}}{\partial \mathbf{P}_{u, k}}=-2\left(r_{u, i}-\hat{r}_{u, i}\right) \mathbf{Q}_{i, k}+2 \lambda \mathbf{P}_{u, k} \\
& \frac{\partial \mathcal{L}_{u, i}}{\partial \mathbf{Q}_{i, k}}=-2\left(r_{u, i}-\hat{r}_{u, i}\right) \mathbf{P}_{u, k}+2 \lambda \mathbf{Q}_{i, k}
\end{aligned}
$$

Stochastic Gradient Descent Algorithm (Naive)

1: procedure LEARNLATENTFACTORS
input: $D^{\text {Train }}, \lambda, \alpha$
2: $\quad\left(\mathbf{p}_{u}\right)_{u \in U} \sim N(0, \sigma \mathbf{I})$
3: $\quad\left(\mathbf{q}_{i}\right)_{i \in I} \sim N(0, \sigma \mathbf{I})$
4: repeat
5: \quad for $\left(u, i, r_{u, i}\right) \in D^{\text {Train }}$ do
\triangleright In a random order
6:
7:
8:
9:
10
11
12: return \mathbf{P}, \mathbf{Q}
13: end procedure

Stochastic Gradient Descent Algorithm

1: procedure LearnLatentFactors input: $D^{\text {Train }}, \lambda, \alpha$
2: $\quad\left(\mathbf{p}_{u}\right)_{u \in U} \sim N(0, \sigma \mathbf{I})$
3: $\quad\left(\mathbf{q}_{i}\right)_{i \in \mathbf{I}} \sim N(0, \sigma \mathbf{I})$
4: repeat
5: \quad for $\left(u, i, r_{u, i}\right) \in D^{\text {Train }}$ do $\xi_{u, i}=r_{u, i}-\hat{r}_{u, i}$

$$
\text { for } k=1, \ldots, K \text { do }
$$

6:
7:
8:

$$
\mathbf{P}_{u, k} \leftarrow \mathbf{P}_{u, k}+\alpha\left(\xi_{u, i} \mathbf{Q}_{i, k}-\lambda \mathbf{P}_{u, k}\right)
$$

9:

$$
\mathbf{Q}_{i, k} \leftarrow \mathbf{Q}_{i, k}+\alpha\left(\xi_{u, i} \mathbf{P}_{u, k}-\lambda \mathbf{Q}_{i, k}\right)
$$

10
11
12: until convergence
13: return \mathbf{P}, \mathbf{Q}
14: end procedure

Factorization Models on practice

Dataset: MovieLens (ML1M)

- Users: 6040
- Movies: 3703
- Ratings:
- From 1 (worst) to 5 (best)
- 1.000.000 observed ratings (approx. 4.5% of possible ratings)

Evaluation

Evaluation protocol

- 10-fold cross validation
- Leave-one-out

Measure: RMSE (Root Mean Squared Error)

$$
R M S E=\sqrt{\frac{\sum_{\left(u, i, r_{u i}\right) \in D^{\text {Test }}}\left(r_{u i}-\hat{r}_{u, i}\right)^{2}}{\left|D^{\text {Test }}\right|}}
$$

SGD for factorization Models - Performance over epochs

Factorization Models - Impact of the number of latent features

Movielens1M

Factorization Models - Effect of regularization

Biased Matrix Factorization

- Specific users tend to have specific rating behavior
- Some users may tend to give higher (or lower) ratings
- The same can be said about items
- This can be easily modeled through bias terms for users b_{u} and for items b_{i} in the prediction function:

$$
\hat{r}_{u, i}=b_{u}+b_{i}+\mathbf{P}_{u}^{\top} \mathbf{Q}_{i}
$$

- Additionally a global bias can be added:

$$
\hat{r}_{u, i}=g+b_{u}+b_{i}+\mathbf{P}_{u}^{\top} \mathbf{Q}_{i}
$$

Effect of the Biases

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30-37, 2009.

Integrating Implicit feedback

- In many situations we have information about items that the user has consumed but did not evaluate
- Videos watched
- Products bought
- Webpages visited
- The set of items $\mathcal{N}(u)$ consumed by a user u (rated or not) provides useful information about the tastes of the user

SVD++

SVD++ (Koren 2008) incorporates information about implicit feedback into user factors
User factors are represented as:

$$
\mathbf{P}_{u}+\frac{1}{|\mathcal{N}(u)|} \sum_{j \in \mathcal{N}(u)} \mathbf{V}_{j}
$$

The prediction function is then written as:

$$
\hat{r}_{u i}:=b_{u}+b_{i}+\mathbf{Q}_{i}^{T}\left(\mathbf{P}_{u}+\frac{1}{|\mathcal{N}(u)|} \sum_{j \in \mathcal{N}(u)} \mathbf{V}_{j}\right)
$$

Where:

- $\mathbf{V}_{j} \in \mathbb{R}^{k}$ are item latent vectors used to construct user profile.
- $\mathcal{N}(u)$ is the set of items consumed by the user u.

SVD++ Performance

Dataset: Netflix
Measure: RMSE

Model	50 factors	100 factors	200 factors
MF	0.9046	0.9025	0.9009
SVD ++	0.8952	0.8924	0.8911

Source: Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model, KDD 2008

Ranking-Version Item Prediction

Which will be the next items to be consumed by a user?

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Formalization

- U - Set of Users
- I - Set of Items
- Positive implicit feedback data $D \subseteq U \times I \times\{1\}$

We have available only information about $\mathcal{N}(u)$ which items the user has interacted with

Considerations

- We do not know whether a user has liked an item or not (how he rated it)
- The only information we have is which items the user has bought, watched, clicked, ...
- The task is to predict which will be the next items the user will interact with next
- We can assume that items already evaluated $(i \in \mathcal{N}(u))$ are preferred over the not evaluated ones $(i \notin \mathcal{N}(u))$

Item Prediction Task

Assuming that items already evaluated are preferred over the not evaluated ones

$$
i>_{u} j \text { iff } i \in \mathcal{N}(u) \text { and } j \notin \mathcal{N}(u)
$$

Given a dataset $D_{S} \subseteq U \times I \times I$:

$$
D_{S}:=\{(u, i, j) \mid i \in \mathcal{N}(u) \wedge j \notin \mathcal{N}(u)\}
$$

For each user, find a total order $>_{u}$ over items $j \notin \mathcal{N}(u)$ that reflects user preferences

Item Prediction Approach

- Learn a model $\hat{r}: U \times I \rightarrow \mathbb{R}$
- Sort items according to scores predicted by the model such that:

$$
i>_{u} j \text { iff } \hat{r}_{u, i}>\hat{r}_{u, j}
$$

In a probabilistic setting, be Θ the model parameters, then

$$
p\left(i>_{u} j \mid \Theta\right):=\sigma\left(\hat{y}_{u, i, j}\right)
$$

Where:

- $\sigma(x):=\frac{1}{1+e^{-x}}$
- $\hat{y}_{u, i, j}:=\hat{r}_{u, i}-\hat{r}_{u, j}$

Bayesian Personalized Ranking (BPR)

The Maximum Likelihood Estimator:

$$
\arg \max _{\Theta} p\left(\Theta \mid>_{u}\right) \propto \arg \max _{\Theta} p\left(>_{u} \mid \Theta\right) p(\Theta)
$$

Prior:

$$
p(\Theta):=N\left(0, \Sigma_{\Theta}\right)
$$

The Bayesian Personalized Ranking Optimization Criterión (BPR-Opt)

$$
\begin{aligned}
\text { BPR-Opt }:= & \ln \prod_{u \in U} p\left(\Theta \mid>_{u}\right) \\
& =\ln \prod_{u \in U} p\left(>_{u} \mid \Theta\right) p(\Theta) \\
& =\ln \prod_{(u, i, j) \in D_{S}} \sigma\left(\hat{y}_{u, i, j}\right) p(\Theta) \\
& =\sum_{(u, i, j) \in D_{S}} \ln \sigma\left(\hat{y}_{u, i, j}\right)+\ln p(\Theta) \\
& =\sum_{(u, i, j) \in D_{S}} \ln \sigma\left(\hat{y}_{u, i, j}\right)-\lambda\|\Theta\|^{2}
\end{aligned}
$$

Optimizing a factorization model for BPR:

Model:

$$
\hat{r}_{u, i}=\mathbf{P}_{u}^{\top} \mathbf{Q}_{i}=\sum_{k=1}^{K} P_{u, k} Q_{i, k}
$$

Loss Function:

$$
\mathcal{L}:=\sum_{(u, i, j) \in D_{S}} \ln \sigma\left(\hat{y}_{u, i, j}\right)-\lambda\|\Theta\|^{2}
$$

Gradients:

$$
\begin{gathered}
\frac{\partial \text { BPR-Opt }}{\partial \theta}=\frac{e^{-\hat{y}_{u, i, j}}}{1+e^{-\hat{y}_{u, i, j}}} \cdot \frac{\partial}{\partial \theta} \hat{y}_{u, i, j}-2 \lambda \theta \\
\frac{\partial}{\partial \theta} \hat{y}_{u, i, j}= \begin{cases}\left(Q_{i, k}-Q_{j, k}\right) & \text { if } \theta=P_{u, k} \\
P_{u, k} & \text { if } \theta=Q_{i, k} \\
-P_{u, k} & \text { if } \theta=Q_{j, k}\end{cases}
\end{gathered}
$$

Stochastic Gradient Descent Algorithm

1: procedure LearnBPR
input: $D_{S}^{\text {Train }}, \lambda, \eta, \Sigma$
2: $\quad\left(\mathbf{P}_{u}\right)_{u \in U} \sim N(0, \Sigma)$
3: $\quad\left(\mathbf{Q}_{i}\right)_{i \in I} \sim N(0, \Sigma)$
4: repeat
5: \quad for $(u, i, j) \in D_{S}^{\text {Train }}$ do
\triangleright In a random order

6:
7:
8:
9:
10:
11:
12:
13:
14: until convergence
15: return \mathbf{P}, \mathbf{Q}
16: end procedure

Exercise

- Given $R=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
- Let $K=1$ and initialized $P^{T}=\left[\begin{array}{ll}1 & 1\end{array}\right]$ and $Q=\left[\begin{array}{ll}-1 & 1\end{array}\right]$.
- Let $\eta=1, \lambda=0$.
- Compute P, Q after one BPR iteration.

