

Dr. Josif Grabocka

ISMLL, University of Hildesheim

Business Analytics

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics ・ロット 御マ キョット 中国 うくの

Information Retrieval - Motivation

Bing indexes ca. 16 billion websites:

Source: worldwidewebsize.com (18.01.2017)

Э

イロト イロト イヨト イヨト

Information Retrieval - Motivation (II)

Google indexes ca. 46 billion websites:

Source: worldwidewebsize.com (18.01.2017)

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics Sac

3

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Information Retrieval - Motivation (III)

Amazon offers:

- ► Totally 353,710,754 products, among which:
- ► Cell Phones & Accessories: 82,039,731 products
- ► Home & Kitchen: 64,274,875 products
- Clothing, Shoes & Jewelry: 33,422,437 products (including categories for Men, Women, Girls, Boys and Baby)
- ► Electronics: 31,604,887 products
- ► Sports & Outdoors: 23,997,293 products

Source: 360pi.com (18.01.2017)

Universiter Stildeshelf

Information Retrieval - Motivation (IV)

YouTube has:

- ► 1,3 billion users
- ► 4,9 billion videos viewed daily
- ► 300 hours of new content uploaded every minute
- ► 3.2 billion hours of videos watched each month
- ▶ 10,113 videos with more than 1 billion views

Source: statisticbrain.com (18.01.2017)

Indexing and Retrieval

- ► Information is worthless without retrieval.
- ► Two stage process:
 - (i) Indexing: preprocessing and storing information, crawling and indexing
 - (ii) Retreival: issuing a **query**, accessing the index, and finding **documents** relevant to the querv

-

Retrieval Terms

- Document: A piece of information, such as a web page, article, book, video, song
 - Usually text information.
 - But, what about feature-rich data (audio, image, video)?
- ► Query: Text containing the user's information need
- Relevance:
 - ► Indicates how relevant is a particular document for the query
 - ► Relevance is defined within the scope of a query, it is a binary relation between documents and queries
 - ► A document can result on multiple queries with different relevances
 - How is relevance determined?

Illustrative Example

Query: "Brexit":

Relevance	Document	Features
1	Wikipedia, United Kingdom"s withdrawal	<i>x</i> ₁
1	BBC, Brexit: All you need to know	<i>x</i> ₂
1	Independent, Theresa May challenged	<i>x</i> 3
0	Fidessa, Brexit hangover	<i>X</i> 4
0	Vanguard, Brexit: What does Vanguard think	<i>x</i> 5

Problem Definition

- For each query $q = 1, \ldots, Q$,
- Given a list of *n* query-matching documents' features $x_i \in \mathbb{R}^M, i = 1, ..., n$,
- Given the relevances of the documents within the query l_1, l_2, \ldots, l_n
- ► Learn a function $f : \mathbb{R}^M \to \mathbb{R}$ that predicts relevance scores $s_i = f(x_i), i = 1, ..., n$
- ► Such that:
 - The ranking of estimated relevances s matches the ranking of the true relevances l
 - According to a ranking loss L : Rⁿ × Rⁿ → R that measures the correctness of the estimated relevances for query q

Problem Definition (II)

• f is a parametric function with parameters θ , e.g. a linear function:

•
$$f(x_i) = \sum_{m=1}^M x_{i,m} \theta_m$$

- ► Or a neural network, a decision tree, an ensemble of trees, etc ...
- ► The ultimate objective to be optimized is:

$$\begin{array}{ll} \underset{\theta}{\operatorname{argmin}} & \sum_{q} \mathcal{L}(l^{(q)}, s^{(q)}) \\ & s_{i}^{(q)} = f(x_{i}; \theta), \ i = 1, \dots, n \end{array}$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics 200

イロト イポト イヨト イヨト 三日

Approaches for Ranking Loss

- Point-wise:
 - ► Treat the relevance prediction as a regression
- Pair-wise:
 - Decompose ranking accuracy through pair-wise ranking
- List-wise:
 - Measure ranking over the full set

Why is the pairwise approach not optimal in information retrieval?

Normalized discounted cumulative gain (NDCG)

The discounted cummulative gain (**DCG**):

- ▶ Sort the documents according to the estimated relevances $s \in \mathbb{R}^n$
- Compute:

$$\mathsf{DCG}@\mathsf{K} = \sum_{i=1}^{\mathsf{K}} \frac{2^{l_i} - 1}{\log_2(i+1)}$$

The normalized cumulative gain (NDCG):

- Sort the documents according to the ground-truth relevances *I* ∈ ℝⁿ to get the ideal *DCG*@*K*, denoted *IDCG*@*K*
- ► Compute:

$$NDCG@K = \frac{DCG@K}{IDCG@K}$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

 \equiv

イロト 不得 トイヨト イヨト

NDCG Example (I)

- Let our query have 5 documents x_1, \ldots, x_5 with relevances l = [3, 2, 1, 0, 0]
- We learned a function f that predicts relevances s = [3, 0, 2, 1, 0]

	rank	xi	li	$\log_2(i+1)$	$rac{2^{l_i}-1}{\log_2(i+1)}$
	1	<i>x</i> ₁	3	0.30	23.25
Compute terms:	2	<i>x</i> 3	1	0.47	2.09
	3	<i>x</i> 4	0	0.60	0
	4	<i>x</i> ₂	2	0.69	4.29
	5	<i>x</i> 5	0	0.77	0

▶ *DCG*@5 = 29.64

NDCG Example (II)

	rank	xi	l _i	$\log_2(i+1)$	$rac{2^{l_i}-1}{\log_2(i+1)}$
	1	<i>x</i> ₁	3	0.30	23.25
Optimal is sorted by l:	2	<i>x</i> ₂	2	0.47	6.28
	3	<i>x</i> 3	1	0.60	1.66
	4	<i>X</i> 4	0	0.69	0
	5	<i>x</i> 5	0	0.77	0

- ▶ *IDCG*@5 = 31.02
- ► $NDCG@5 = \frac{DCG@K}{IDCG@K} = \frac{29.64}{31.20} = 0.94$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

NDCG Example (III)

• Another algorithm outputs s = [3, 2, 0, 1, 0]

	rank	xi	li	$\log_2(i+1)$	$rac{2^{l_i}-1}{\log_2(i+1)}$
► Sorted by <i>s</i> :	1	<i>x</i> ₁	3	0.30	23.25
	2	<i>x</i> ₂	2	0.47	6.28
	3	<i>x</i> 4	0	0.60	0
	4	<i>x</i> 3	1	0.69	1.43
	5	<i>x</i> 5	0	0.77	0

▶ *DCG*@5 = 30.97

► *IDCG*@5 = 31.02

►
$$NDCG@5 = \frac{DCG@K}{IDCG@K} = \frac{30.97}{31.20} = 0.99$$

Pairwise Rank Approach

Given a ranking order among all documents of query q:

$$i <_q j$$
 iff $l_i > l_j$

We estimate the probability that a pair is correctly ranked as:

$$\hat{P}_{i,j} = \hat{P}(i <_q j) = \frac{1}{1 + \exp^{-(s_i - s_j)}}$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

Pairwise Rank Loss

The loss of correctly ranking a pair i, j is

$$\mathcal{L}_{i,j} = -P_{i,j} \log(\hat{P}_{i,j}) - (1 - P_{i,j}) \log(1 - \hat{P}_{i,j})$$

where the ground-truth probability follows the given relevances:

$$P_{i,j} = \begin{cases} 1 & l_i > l_j \\ 0.5 & l_i = l_j \\ 0 & l_i < l_j \end{cases}$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics ▲ロト ▲御 ト ▲臣 ト ▲臣 ト 三臣 - のへで

Pairwise Rank Loss (II)

Introduce $S_{i,j}$ for $P_{i,j} = \frac{1}{2}(1 + S_{i,j})$:

$$S_{i,j} = \begin{cases} 1 & l_i > l_j \\ 0 & l_i = l_j \\ -1 & l_i < l_j \end{cases}$$

yielding the loss:

$$\mathcal{L}_{i,j} = rac{1}{s}(1-S_{i,j})(s_i-s_j) + \log(1+e^{-(s_i-s_j)})$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

Pairwise Rank Loss (III)

Given the loss:

$$\mathcal{L}_{i,j} = rac{1}{2}(1 - S_{i,j})(s_i - s_j) + \log(1 + e^{-(s_i - s_j)})$$

The gradients are:

$$\frac{\partial \mathcal{L}_{i,j}}{\partial s_i} = \left(\frac{1}{2}(1 - S_{i,j}) - \frac{1}{1 + e^{(s_i - s_j)}}\right) = -\frac{\partial \mathcal{L}_{i,j}}{\partial s_j}$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics 19 / 30

How to update model parameters?

Given the gradients:

$$\frac{\partial \mathcal{L}_{i,j}}{\partial s_i} = \left(\frac{1}{2}(1 - S_{i,j}) - \frac{1}{1 + e^{(s_i - s_j)}}\right) = -\frac{\partial \mathcal{L}_{i,j}}{\partial s_j}$$

Utilize the chain-rule of derivations as:

$$\theta_m \leftarrow \theta_m - \eta \left(\frac{\partial \mathcal{L}_{i,j}}{\partial s_i} \frac{\partial s_i}{\partial \theta_m} + \frac{\partial \mathcal{L}_{i,j}}{\partial s_j} \frac{\partial s_j}{\partial \theta_m} \right)$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics ・ロト 《聞 》 《臣 》 《臣 》 《日 》

20 / 30

Learning Algorithm

1: procedure LEARNPAIRWISERANKING **input:** $\mathcal{I}^{(q)} := \left\{ (i,j) \mid l_i^{(q)} < l_j^{(q)} \right\}, \eta, \sigma$ $\theta_m \sim N(0, \sigma \mathbf{I}), m = 1, \ldots, M$ 2:

3: repeat

- for $q = 1, \ldots, Q$ do 4: for $(i, j) \in \mathcal{I}^{(q)}$ do 5:
- for $m = 1, \ldots, M$ do 6:

7:
$$\frac{\partial s_i}{\partial \theta_m} \leftarrow \frac{\partial f(x_i, \theta)}{\partial \theta_m}$$

o.
$$\frac{\partial s_j}{\partial f(x_j, \theta)}$$

8:
$$\frac{\partial f_{m}}{\partial \theta_{m}} \leftarrow \frac{\partial f_{m}}{\partial \theta_{m}}$$
9:
$$\theta_{m} \leftarrow \theta_{m} - \eta \left(\frac{\partial \mathcal{L}_{i,j}}{\partial \theta_{m}} \frac{\partial \mathbf{s}_{i}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}} \frac{\partial \mathbf{s}_{i}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}} + \frac{\partial \mathcal{L}_{i,j}}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}} + \frac{\partial \mathcal{L}_{i,j}}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}} + \frac{\partial \mathcal{L}_{i,j}}}{\partial \theta_{m}}} + \frac{\partial \mathcal{L}_{i,j}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}} + \frac{\partial \mathcal{L}_{i,j}}}{\partial \theta_{m}}} + \frac{\partial \mathcal{L}_{i,j}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}}{\partial \theta_{m}} + \frac{\partial \mathcal{L}_{i,j}} + \frac{\partial \mathcal{L}_{i,j}}}{\partial \theta_{m}}} + \frac{\partial \mathcal{L}_{i,j}}{\partial \theta_{m$$

$$\theta_m \leftarrow \theta_m - \eta \left(\frac{\partial \mathcal{L}_{i,j}}{\partial s_i} \frac{\partial s_i}{\partial \theta_m} + \frac{\partial \mathcal{L}_{i,j}}{\partial s_j} \frac{\partial s_j}{\partial \theta_m} \right)$$

- 10: end for
- 11: end for
- end for 12:
- 13: **until** convergence

return θ 14:

Dr. Josif Grabocka, ISMLL, University of Hildesheim **Business Analytics**

イロト イポト イヨト イヨト Э Sac

In a random order

Universiter Fildesheim

Improved Learning Runtime

$$\frac{\partial \mathcal{L}_{i,j}}{\partial \theta_m} = \frac{\partial \mathcal{L}_{i,j}}{\partial s_i} \frac{\partial s_i}{\partial \theta_m} + \frac{\partial \mathcal{L}_{i,j}}{\partial s_j} \frac{\partial s_j}{\partial \theta_m}$$

Remember our loss:

$$\mathcal{L}_{i,j} = \frac{1}{2}(1 - S_{i,j})(s_i - s_j) + \log(1 + e^{-(s_i - s_j)})$$

The gradients are:

$$\frac{\partial \mathcal{L}_{i,j}}{\partial s_i} = \left(\frac{1}{2}(1 - S_{i,j}) - \frac{1}{1 + e^{(s_i - s_j)}}\right) = -\frac{\partial \mathcal{L}_{i,j}}{\partial s_j}$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics ・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ う く ()・

22 / 30

Improved Learning Runtime (II)

$$\begin{array}{lll} \frac{\partial \mathcal{L}_{i,j}}{\partial \theta_m} & = & \frac{\partial \mathcal{L}_{i,j}}{\partial s_i} \frac{\partial s_i}{\partial \theta_m} + \frac{\partial \mathcal{L}_{i,j}}{\partial s_j} \frac{\partial s_j}{\partial \theta_m} \\ \frac{\partial \mathcal{L}_{i,j}}{\partial \theta_m} & = & \lambda_{i,j} \left(\frac{\partial s_i}{\partial \theta_m} - \frac{\partial s_j}{\partial \theta_m} \right) \end{array}$$

where

$$\lambda_{i,j} = \left(\frac{1}{2}(1 - S_{i,j}) - \frac{1}{1 + e^{(s_i - s_j)}}\right)$$
(1)

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

ふして 前 ふぼとえばやえる

23 / 30

Improved Learning Runtime (III)

Notation: Denote $\mathcal{I} := \{(i, j) \mid l_i < l_j\}$, dropping index q for simplicity.

The total amount of updates on θ_m :

$$\delta\theta_m = -\eta \sum_{(i,j)\in\mathcal{I}} \left(\lambda_{i,j} \frac{\partial s_i}{\partial \theta_m} - \lambda_{i,j} \frac{\partial s_j}{\partial \theta_m} \right)$$

Define:

$$\lambda_{i} = \sum_{j:(i,j)\in\mathcal{I}} \lambda_{i,j} - \sum_{j:(j,i)\in\mathcal{I}} \lambda_{j,i}$$
(2)

Leading to:

$$\delta\theta_m = -\eta \sum_i \lambda_i \frac{\partial s_i}{\partial \theta_m} = -\eta \sum_i \lambda_i \frac{\partial s_i}{\partial \theta_m}$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

Improved Learning Algorithm

1: procedure LEARNPAIRWISERANKINGIMPROVED input: $\mathcal{I}^{(q)} := \left\{ (i,j) \mid l_i^{(q)} < l_j^{(q)} \right\}, \eta, \sigma$

2:
$$\theta_m \sim N(0, \sigma^{\dagger}), m = 1, \ldots, M^{\dagger}$$

3: repeat

4: for
$$q = 1, \ldots, Q$$
 do

5:
$$s_i := f(x_i, \theta), i = 1, ..., n$$
 \triangleright Compute s_i

6:
$$\lambda_{i,j} := \left(\frac{1}{2}(1 - S_{i,j}) - \frac{1}{1 + e^{(s_i - s_j)}}\right), \ (i,j) \in \mathcal{I} \ \triangleright \text{ Compute } \lambda_{i,j}$$

7:
$$\lambda_i := \sum_{j:(i,j)\in\mathcal{I}} \lambda_{i,j} - \sum_{j:(j,i)\in\mathcal{I}} \lambda_{j,i}, \quad i = 1, \dots, n \quad \triangleright \text{ Compute } \lambda_i$$

8: **for**
$$m = 1, ..., M$$
 do

$$\theta_m \leftarrow \theta_m - \eta \sum_{i=1}^n \lambda_i \frac{\partial f(x_i, \theta)}{\partial \theta_m}$$

10: end for

- 11: **end for**
- 12: **until** convergence

13: return θ

9:

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

Э

イロト イロト イヨト イヨト

Pairwise Loss is non-optimal for NDCG

Source: Burges 2010, MSR-TR (B) (B) (B) (B) (C)

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

LambdaRank Heuristic

Update the parameters by taking into account the amount of NDCG change that would result by swapping the ranking positions of the pair:

$$\lambda_{i,j} pprox rac{-1}{1+e^{(s_i-s_j)}} |\Delta \textit{NDCG}_{i,j}|$$

In a way that maximizes the gain:

$$\theta_m \leftarrow \theta_m + \eta \sum_{i=1}^n \lambda_i \frac{\partial s_i}{\partial \theta_m}$$
$$\lambda_i := \sum_{j:(i,j)\in\mathcal{I}} \lambda_{i,j} - \sum_{j:(j,i)\in\mathcal{I}} \lambda_{j,i}$$

- ► Take into account the importance of the pair for NDCG
- A large $|\Delta NDCG|$ shows that the pair is important

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

How to compute the change in NDCG?

Given the old *DCG*@*K*:

$$DCG@K^{(old)} = \sum_{i=1}^{K} \frac{2^{l_i} - 1}{\log_2(i+1)}$$

What happens if documents in positions q and r change place?

$$DCG@K^{(new)} = DCG@K^{(old)} - \frac{2^{l_q} - 1}{\log_2(q+1)} - \frac{2^{l_r} - 1}{\log_2(r+1)} + \frac{2^{l_q} - 1}{\log_2(r+1)} + \frac{2^{l_r} - 1}{\log_2(q+1)}$$

IDCG@K remains the same, therefore $|\Delta NDCG_{q,r}|$ is an $\mathcal{O}(1)$ operation.

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics 1

LambdaRank Optimization

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

What is $f(x_i, \theta)$?

- ► It can be a Neural Network, known as RankNet
- It can be a Gradient Boosted Decision Tree, known as LambdaMART, (now implemented in XGBoost)
- ► In the next lecture, we will see how to learn Gradient Boosted Decision Trees (GBDT) for Ranking.
 - ► Before that, read the last GBDT slides on Predictive Analytics.