Learning to Rank

Dr. Josif Grabocka
ISMLL, University of Hildesheim
Business Analytics

Information Retrieval - Motivation

Bing indexes ca. 16 billion websites:

Source: worldwidewebsize.com (18.01.2017)

Information Retrieval - Motivation (II)

Google indexes ca. 46 billion websites:

Source: worldwidewebsize.com (18.01.2017)

Information Retrieval - Motivation (III)

Amazon offers:

- Totally 353,710,754 products, among which:
- Cell Phones \& Accessories: 82,039,731 products
- Home \& Kitchen: 64,274,875 products
- Clothing, Shoes \& Jewelry: 33,422,437 products (including categories for Men, Women, Girls, Boys and Baby)
- Electronics: 31,604,887 products
- Sports \& Outdoors: 23,997,293 products

Source: 360pi.com (18.01.2017)

Information Retrieval - Motivation (IV)

YouTube has:

- 1,3 billion users
- 4,9 billion videos viewed daily
- 300 hours of new content uploaded every minute
- 3.2 billion hours of videos watched each month
- 10,113 videos with more than 1 billion views

Source: statisticbrain.com (18.01.2017)

Indexing and Retrieval

- Information is worthless without retrieval.
- Two stage process:
(i) Indexing: preprocessing and storing information, crawling and indexing
(ii) Retreival: issuing a query, accessing the index, and finding documents relevant to the querv

Retrieval Terms

- Document: A piece of information, such as a web page, article, book, video, song
- Usually text information.
- But, what about feature-rich data (audio, image, video)?
- Query: Text containing the user's information need
- Relevance:
- Indicates how relevant is a particular document for the query
- Relevance is defined within the scope of a query, it is a binary relation between documents and queries
- A document can result on multiple queries with different relevances
- How is relevance determined?

Illustrative Example

Query: "Brexit":

Relevance	Document	Features
1	Wikipedia, United Kingdom"s withdrawal ...	x_{1}
1	BBC, Brexit: All you need to know ...	x_{2}
1	Independent, Theresa May challenged ...	x_{3}
0	Fidessa, Brexit hangover ...	x_{4}
0	Vanguard, Brexit: What does Vanguard think ...	x_{5}

Problem Definition

- For each query $q=1, \ldots, Q$,
- Given a list of n query-matching documents' features $x_{i} \in \mathbb{R}^{M}, i=1, \ldots, n$,
- Given the relevances of the documents within the query $I_{1}, I_{2}, \ldots, I_{n}$
- Learn a function $f: \mathbb{R}^{M} \rightarrow \mathbb{R}$ that predicts relevance scores $s_{i}=f\left(x_{i}\right), i=1, \ldots, n$
- Such that:
- The ranking of estimated relevances s matches the ranking of the true relevances /
- According to a ranking loss $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ that measures the correctness of the estimated relevances for query q

Problem Definition (II)

- f is a parametric function with parameters θ, e.g. a linear function:
- $f\left(x_{i}\right)=\sum_{m=1}^{M} x_{i, m} \theta_{m}$
- Or a neural network, a decision tree, an ensemble of trees, etc ...
- The ultimate objective to be optimized is:

$$
\begin{aligned}
\underset{\theta}{\operatorname{argmin}} & \sum_{q} \mathcal{L}\left(I^{(q)}, s^{(q)}\right) \\
& s_{i}^{(q)}=f\left(x_{i} ; \theta\right), \quad i=1, \ldots, n
\end{aligned}
$$

Approaches for Ranking Loss

- Point-wise:
- Treat the relevance prediction as a regression
- Pair-wise:
- Decompose ranking accuracy through pair-wise ranking
- List-wise:
- Measure ranking over the full set

Why is the pairwise approach not optimal in information retrieval?

Normalized discounted cumulative gain (NDCG)

The discounted cummulative gain (DCG):

- Sort the documents according to the estimated relevances $s \in \mathbb{R}^{n}$
- Compute:

$$
\text { DCG@K }=\sum_{i=1}^{K} \frac{2^{l_{i}}-1}{\log _{2}(i+1)}
$$

The normalized cumulative gain (NDCG):

- Sort the documents according to the ground-truth relevances $I \in \mathbb{R}^{n}$ to get the ideal DCG@K, denoted IDCG@K
- Compute:

$$
N D C G @ K=\frac{D C G @ K}{I D C G @ K}
$$

NDCG Example (I)

- Let our query have 5 documents x_{1}, \ldots, x_{5} with relevances $I=[3,2,1,0,0]$
- We learned a function f that predicts relevances $s=[3,0,2,1,0]$
- Compute terms:

rank	x_{i}	l_{i}	$\log _{2}(i+1)$	$\frac{2^{i_{i}}-1}{\log _{2}(i+1)}$
1	x_{1}	3	0.30	23.25
2	x_{3}	1	0.47	2.09
3	x_{4}	0	0.60	0
4	x_{2}	2	0.69	4.29
5	x_{5}	0	0.77	0

- DCG@5 = 29.64

NDCG Example (II)

-	rank	x_{i}	l_{i}	$\log _{2}(i+1)$	$\frac{2^{/_{i}}-1}{\log _{2}(i+1)}$
1	x_{1}	3	0.30	23.25	
	Optimal is sorted by I:	2	x_{2}	2	0.47
	3	x_{3}	1	0.28	
	4	x_{4}	0	0.60	1.66
5	x_{5}	0	0.77	0	

- IDCG@5 = 31.02
- $N D C G @ 5=\frac{D C G @ K}{I D C G @ K}=\frac{29.64}{31.20}=0.94$

NDCG Example (III)

- Another algorithm outputs $s=[3,2,0,1,0]$

rank	x_{i}	l_{i}	$\log _{2}(i+1)$	$\frac{2^{1_{i}-1}}{\log _{2}(i+1)}$
1	x_{1}	3	0.30	23.25
2	x_{2}	2	0.47	6.28
3	x_{4}	0	0.60	0
4	x_{3}	1	0.69	1.43
5	x_{5}	0	0.77	0

- DCG@5 = 30.97
- IDCG@5 = 31.02
- $N D C G @ 5=\frac{D C G @ K}{I D C G @ K}=\frac{30.97}{31.20}=0.99$

Pairwise Rank Approach

Given a ranking order among all documents of query q :

$$
i<_{q} j \text { iff } I_{i}>I_{j}
$$

We estimate the probability that a pair is correctly ranked as:

$$
\hat{P}_{i, j}=\hat{P}\left(i<_{q} j\right)=\frac{1}{1+\exp ^{-\left(s_{i}-s_{j}\right)}}
$$

Pairwise Rank Loss

The loss of correctly ranking a pair i, j is

$$
\mathcal{L}_{i, j}=-P_{i, j} \log \left(\hat{P}_{i, j}\right)-\left(1-P_{i, j}\right) \log \left(1-\hat{P}_{i, j}\right)
$$

where the ground-truth probability follows the given relevances:

$$
P_{i, j}= \begin{cases}1 & l_{i}>l_{j} \\ 0.5 & l_{i}=l_{j} \\ 0 & l_{i}<l_{j}\end{cases}
$$

Pairwise Rank Loss (II)

Introduce $S_{i, j}$ for $P_{i, j}=\frac{1}{2}\left(1+S_{i, j}\right)$:

$$
S_{i, j}= \begin{cases}1 & I_{i}>I_{j} \\ 0 & I_{i}=I_{j} \\ -1 & I_{i}<I_{j}\end{cases}
$$

yielding the loss:

$$
\mathcal{L}_{i, j}=\frac{1}{s}\left(1-S_{i, j}\right)\left(s_{i}-s_{j}\right)+\log \left(1+e^{-\left(s_{i}-s_{j}\right)}\right)
$$

Pairwise Rank Loss (III)

Given the loss:

$$
\mathcal{L}_{i, j}=\frac{1}{2}\left(1-S_{i, j}\right)\left(s_{i}-s_{j}\right)+\log \left(1+e^{-\left(s_{i}-s_{j}\right)}\right)
$$

The gradients are:

$$
\frac{\partial \mathcal{L}_{i, j}}{\partial s_{i}}=\left(\frac{1}{2}\left(1-S_{i, j}\right)-\frac{1}{1+e^{\left(s_{i}-s_{j}\right)}}\right)=-\frac{\partial \mathcal{L}_{i, j}}{\partial s_{j}}
$$

How to update model parameters?

Given the gradients:

$$
\frac{\partial \mathcal{L}_{i, j}}{\partial s_{i}}=\left(\frac{1}{2}\left(1-S_{i, j}\right)-\frac{1}{1+e^{\left(s_{i}-s_{j}\right)}}\right)=-\frac{\partial \mathcal{L}_{i, j}}{\partial s_{j}}
$$

Utilize the chain-rule of derivations as:

$$
\theta_{m} \leftarrow \theta_{m}-\eta\left(\frac{\partial \mathcal{L}_{i, j}}{\partial s_{i}} \frac{\partial s_{i}}{\partial \theta_{m}}+\frac{\partial \mathcal{L}_{i, j}}{\partial s_{j}} \frac{\partial s_{j}}{\partial \theta_{m}}\right)
$$

Learning Algorithm

1: procedure LearnPairwiseRanking
input: $\mathcal{I}^{(q)}:=\left\{(i, j) \mid l_{i}^{(q)}<l_{j}^{(q)}\right\}, \eta, \sigma$
2:
3: repeat
4: for $q=1, \ldots, Q$ do
5: \quad for $(i, j) \in \mathcal{I}^{(q)}$ do
\triangleright In a random order
6:

7:

8:
9:
10 :
11:
12 :
13:
14: return θ

Improved Learning Runtime

$$
\frac{\partial \mathcal{L}_{i, j}}{\partial \theta_{m}}=\frac{\partial \mathcal{L}_{i, j}}{\partial s_{i}} \frac{\partial s_{i}}{\partial \theta_{m}}+\frac{\partial \mathcal{L}_{i, j}}{\partial s_{j}} \frac{\partial s_{j}}{\partial \theta_{m}}
$$

Remember our loss:

$$
\mathcal{L}_{i, j}=\frac{1}{2}\left(1-S_{i, j}\right)\left(s_{i}-s_{j}\right)+\log \left(1+e^{-\left(s_{i}-s_{j}\right)}\right)
$$

The gradients are:

$$
\frac{\partial \mathcal{L}_{i, j}}{\partial s_{i}}=\left(\frac{1}{2}\left(1-S_{i, j}\right)-\frac{1}{1+e^{\left(s_{i}-s_{j}\right)}}\right)=-\frac{\partial \mathcal{L}_{i, j}}{\partial s_{j}}
$$

Improved Learning Runtime (II)

$$
\begin{aligned}
\frac{\partial \mathcal{L}_{i, j}}{\partial \theta_{m}} & =\frac{\partial \mathcal{L}_{i, j}}{\partial s_{i}} \frac{\partial s_{i}}{\partial \theta_{m}}+\frac{\partial \mathcal{L}_{i, j}}{\partial s_{j}} \frac{\partial s_{j}}{\partial \theta_{m}} \\
\frac{\partial \mathcal{L}_{i, j}}{\partial \theta_{m}} & =\lambda_{i, j}\left(\frac{\partial s_{i}}{\partial \theta_{m}}-\frac{\partial s_{j}}{\partial \theta_{m}}\right)
\end{aligned}
$$

where

$$
\begin{equation*}
\lambda_{i, j}=\left(\frac{1}{2}\left(1-S_{i, j}\right)-\frac{1}{1+e^{\left(s_{i}-s_{j}\right)}}\right) \tag{1}
\end{equation*}
$$

Improved Learning Runtime (III)

Notation: Denote $\mathcal{I}:=\left\{(i, j) \mid l_{i}<l_{j}\right\}$, dropping index q for simplicity.
The total amount of updates on θ_{m} :

$$
\delta \theta_{m}=-\eta \sum_{(i, j) \in \mathcal{I}}\left(\lambda_{i, j} \frac{\partial s_{i}}{\partial \theta_{m}}-\lambda_{i, j} \frac{\partial s_{j}}{\partial \theta_{m}}\right)
$$

Define:

$$
\begin{equation*}
\lambda_{i}=\sum_{j:(i, j) \in \mathcal{I}} \lambda_{i, j}-\sum_{j:(j, i) \in \mathcal{I}} \lambda_{j, i} \tag{2}
\end{equation*}
$$

Leading to:

$$
\delta \theta_{m}=-\eta \sum_{i} \lambda_{i} \frac{\partial s_{i}}{\partial \theta_{m}}
$$

Improved Learning Algorithm

1: procedure LearnPairwiseRankingImproved
input: $\mathcal{I}^{(q)}:=\left\{(i, j) \mid l_{i}^{(q)}<l_{j}^{(q)}\right\}, \eta, \sigma$
2:
3: repeat
4: for $q=1, \ldots, Q$ do
5:
6 : $s_{i}:=f\left(x_{i}, \theta\right), i=1, \ldots, n$
\triangleright Compute s_{i}
$\lambda_{i, j}:=\left(\frac{1}{2}\left(1-S_{i, j}\right)-\frac{1}{1+e^{\left(s_{i}-s_{j}\right)}}\right),(i, j) \in \mathcal{I} \triangleright$ Compute $\lambda_{i, j}$ $\lambda_{i}:=\sum_{j:(i, j) \in \mathcal{I}} \lambda_{i, j}-\sum_{j:(j, i) \in \mathcal{I}} \lambda_{j, i}, \quad i=1, \ldots, n \triangleright$ Compute λ_{i} for $m=1, \ldots, M$ do

9:

$$
\theta_{m} \leftarrow \theta_{m}-\eta \sum_{i=1}^{n} \lambda_{i} \frac{\partial f\left(x_{i}, \theta\right)}{\partial \theta_{m}}
$$

end for end for
until convergence
13: return θ

Pairwise Loss is non-optimal for NDCG

Source: Burges 2010, MSR-TR

LambdaRank Heuristic

Update the parameters by taking into account the amount of NDCG change that would result by swapping the ranking positions of the pair:

$$
\lambda_{i, j} \approx \frac{-1}{1+e^{\left(s_{i}-s_{j}\right)}}\left|\Delta N D C G_{i, j}\right|
$$

In a way that maximizes the gain:

$$
\begin{aligned}
\theta_{m} & \leftarrow \theta_{m}+\eta \sum_{i=1}^{n} \lambda_{i} \frac{\partial s_{i}}{\partial \theta_{m}} \\
\lambda_{i} & :=\sum_{j:(i, j) \in \mathcal{I}} \lambda_{i, j}-\sum_{j:(j, i) \in \mathcal{I}} \lambda_{j, i}
\end{aligned}
$$

- Take into account the importance of the pair for NDCG
- A large $|\triangle N D C G|$ shows that the pair is important

How to compute the change in NDCG?

Given the old DCG@K:

$$
\text { DCG@ } K^{(\mathrm{old})}=\sum_{i=1}^{K} \frac{2^{l_{i}}-1}{\log _{2}(i+1)}
$$

What happens if documents in positions q and r change place?

$$
\begin{aligned}
D C G @ K^{(\text {new })} & =D C G @ K^{(\text {old })}-\frac{2^{l_{q}}-1}{\log _{2}(q+1)}-\frac{2^{l_{r}}-1}{\log _{2}(r+1)} \\
& +\frac{2^{l_{q}}-1}{\log _{2}(\mathbf{r}+1)}+\frac{2^{l_{r}}-1}{\log _{2}(\mathbf{q}+1)}
\end{aligned}
$$

IDCG@K remains the same, therefore $\left|\triangle N D C G_{q, r}\right|$ is an $\mathcal{O}(1)$ operation.

LambdaRank Optimization

1: procedure LearnLambdaRank
input: $\mathcal{I}^{(q)}:=\left\{(i, j) \mid l_{i}^{(q)}<l_{j}^{(q)}\right\}, \eta, \sigma$
2:
3: repeat
4: for $q=1, \ldots, Q$ do
5:
6:
7:
8:
$s_{i}:=f\left(x_{i}, \theta\right), i=1, \ldots, n$
\triangleright Compute s_{i}
NDCG@K $\leftarrow \frac{D C G @ K}{I D C G @ K}$
\triangleright Compute NDCG@K
$\lambda_{i, j}:=\frac{-1}{1+e^{\left(s_{i}-s_{j}\right)}}\left|\triangle N D C G_{i, j}\right|,(i, j) \in \mathcal{I} \quad \triangleright$ Compute $\lambda_{i, j}$
$\lambda_{i}:=\sum_{j:(i, j) \in \mathcal{I}} \lambda_{i, j}-\sum_{j:(j, i) \in \mathcal{I}} \lambda_{j, i}, \quad i=1, \ldots, n \quad \triangleright$ Compute λ_{i}
for $m=1, \ldots, M$ do
10:

$$
\theta_{m} \leftarrow \theta_{m}+\eta \sum_{i=1}^{n} \lambda_{i} \frac{\partial f\left(x_{i}, \theta\right)}{\partial \theta_{m}}
$$

end for end for
13: until convergence

What is $f\left(x_{i}, \theta\right)$?

- It can be a Neural Network, known as RankNet
- It can be a Gradient Boosted Decision Tree, known as LambdaMART, (now implemented in XGBoost)
- In the next lecture, we will see how to learn Gradient Boosted Decision Trees (GBDT) for Ranking.
- Before that, read the last GBDT slides on Predictive Analytics.

