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Learning to Rank

) . . N2
Information Retrieval - Motivation v

Bing indexes ca. 16 billion websites:
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Learning to Rank

Information Retrieval - Motivation (I1)

Google indexes ca. 46 billion websites:
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Learning to Rank

Information Retrieval - Motivation (I11)

Amazon offers:

» Totally 353,710,754 products, among which:

v

Cell Phones & Accessories: 82,039,731 products
Home & Kitchen: 64,274,875 products

Clothing, Shoes & Jewelry: 33,422,437 products (including categories
for Men, Women, Girls, Boys and Baby)

Electronics: 31,604,887 products
Sports & Outdoors: 23,997,293 products
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Source: 360pi.com (18.01.2017)
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Learning to Rank

Information Retrieval - Motivation (1V)

YouTube has:

v

1,3 billion users

v

4.9 billion videos viewed daily

\4

300 hours of new content uploaded every minute

3.2 billion hours of videos watched each month

v

10,113 videos with more than 1 billion views

v

Source: statisticbrain.com (18.01.2017)
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Learning to Rank

Indexing and Retrieval

» Information is worthless without retrieval.

» Two stage process:
(i) Indexing: preprocessing and storing information, crawling and
indexing
(ii) Retreival: issuing a query, accessing the index, and finding
documents relevant to the query
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Learning to Rank

Retrieval Terms

» Document: A piece of information, such as a web page, article, book,
video, song

» Usually text information.
» But, what about feature-rich data (audio, image, video)?

» Query: Text containing the user's information need

» Relevance:
» Indicates how relevant is a particular document for the query
» Relevance is defined within the scope of a query, it is a binary relation

between documents and queries
» A document can result on multiple queries with different relevances

» How is relevance determined?
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Learning to Rank

lllustrative Example

Query: "Brexit":

Relevance ‘ Document Features
1 Wikipedia, United Kingdom”s withdrawal ... X1
1 BBC, Brexit: All you need to know ... X
1 Independent, Theresa May challenged ... X3
0 Fidessa, Brexit hangover ... X4
0 Vanguard, Brexit: What does Vanguard think ... X5
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Learning to Rank

Problem Definition

» For each query g=1,...,Q,

» Given a list of n query-matching documents’ features
xi€RM i=1,...,n,
» Given the relevances of the documents within the query h, h,..., /I,
» Learn a function f : RM — R that predicts relevance scores
Si = f(x,-),izl,...,n
» Such that:

» The ranking of estimated relevances s matches the ranking of the true
relevances /

» According to a ranking loss £ : R" x R” — R that measures the
correctness of the estimated relevances for query g
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Learning to Rank

P2
Problem Definition (1) v

» f is a parametric function with parameters 6, e.g. a linear function:

M
> f(X,') = Z Xi,mem
m=1

» Or a neural network, a decision tree, an ensemble of trees, etc ...

» The ultimate objective to be optimized is:

argmin LD, s(a)
er zq: ( )

sgq):f(x,-;Q), i=1,...,n

1
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Learning to Rank

Approaches for Ranking Loss

» Point-wise:

» Treat the relevance prediction as a regression
» Pair-wise:

» Decompose ranking accuracy through pair-wise ranking
» List-wise:

» Measure ranking over the full set

Why is the pairwise approach not optimal in information retrieval?
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Learning to Rank

Normalized discounted cumulative gain (NDCG)

The discounted cummulative gain (DCG):
» Sort the documents according to the estimated relevances s € R”
» Compute:

K

2l -1
DCGOK = _—
Z logo(i + 1)

The normalized cumulative gain (NDCG):
» Sort the documents according to the ground-truth relevances / € R”
to get the ideal DCG@K, denoted IDCGOK
» Compute:

DCGOK
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Learning to Rank

NDCG Example (1)

v

I=1[3,2,1,0,0]

v

v

Compute terms:

DCG@5 = 29.64

v
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Let our query have 5 documents xi, ..

., X5 with relevances

We learned a function f that predicts relevances s = [3,0,2, 1, 0]

rank ‘ X ‘ l; ‘ log, (i +1) Iog22/i(77—il)
T [ 3] 030 23.25
2 |x|1| 047 2.09
3 | x|0] 060 0
4 |x|2| 069 4.29
5 X5 0 0.77 0
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Learning to Rank

NDCG Example (I1) v
. h_
| [+ | il
1 x1 |3 0.30 23.25
» Optimal is sorted by /: 2 x| 2 0.47 6.28
3 x3 | 1 0.60 1.66
4 x| 0 0.69 0
5 |x |0 0.77 0

» IDCGO5 = 31.02

_ DCGOK _ 20.64 _
> NDCGOS5 = pegex = 5120 = 0-94

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Business Analytics 14 / 30



Learning to Rank

NDCG Example (II)

» Another algorithm outputs s = [3,2,0, 1, 0]
. i
rank ‘ X ‘ I; ‘ log,(i + 1) Icpfz(ii—il)
1 x1 | 3 0.30 23.25
. Sorted by s: 2 | % | 2| 047 6.28
3 x4 | O 0.60 0
4 x3 | 1 0.69 1.43
5 x5 | O 0.77 0
» DCGO5 = 30.97
» IDCG@5 = 31.02
_ DCGeK __ 30.97 __
> NDCG@5 = BCCOK _ 30.97 _ () g
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Learning to Rank

Pairwise Rank Approach

Given a ranking order among all documents of query g:

P <qjiffl;> 1]

We estimate the probability that a pair is correctly ranked as:

s A 1
Pij=Pli<a) = yapone o)
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Learning to Rank

Pairwise Rank Loss

The loss of correctly ranking a pair i, is

Lij=—P;ijlog(Pij) — (1 - Pij)log(l - P;;)

where the ground-truth probability follows the given relevances

1 /,'>/J'
Pij=1405 |=]
0 /,'</J'
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Learning to Rank

Pairwise Rank Loss (II)

Introduce S;; for P;; = 3(1+ Si):

1 /,'>/J'
Sij=10 li=1;
-1 /,'</J'

yielding the loss:

1
Lij= (1= S5i;)(si =) +log(1 + e~ (579)
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Learning to Rank

Pairwise Rank Loss (IlI)

Given the loss:

The gradients are:

-

aﬁ,-J
85,'

(1-S5i))

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Business Analytics

1

14 e9)

— S;J)(s,- — SJ) + |Og(1 + ef(s’lfsj))

8£;J‘
Js;

)__

19 / 30



Learning to Rank

How to update model parameters?

Given the gradients:

0L,

Utilize the chain-rule of derivations as:

¢9m - 9m _ <8£,-J 85,' 8/.,‘,'7_,' 8Sj )

ds; 00 | Os; 06m
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Learning to Rank

Learning Algorithm

1: procedure LEARNPAIRWISERANKING

input: 7(9) .= {(,"j) | /i(q) < /@

J
2: Om ~ N(O,0l), m=1,....M
3: repeat
4: for g=1,...,Q do
5: for (i,j) € 79 do
6: for m=1,.... M
-
0. Om < Om — 1 (

10: end for

11: end for

12: end for

13: until convergence

14: return 6
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> In a random order
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Learning to Rank

Improved Learning Runtime

aﬁ,"j B 8[,,',1' (95,'

8[,,'7]' 85J

0m  Os; OOm

Remember our loss:

1

ds; 90m

Lij=5(1 = 5ij)(si — 5) +log(1 + e~(5)

2

The gradients are:

0L,
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Learning to Rank

. . B2z
Improved Learning Runtime (I1) i

8[,,-7]- . 3,6,',] 85,’ i aﬁ,',j aSj

Hm  Os; 00m  Os; 00

8£,-J - )\ 65,- _ﬁ
00 m Y\ob, 00nm

where

1 1
Nij = (2(1 i) 1+<>) Y
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Learning to Rank

. . B2z
Improved Learning Runtime (1) i
Notation: Denote Z := {(/,) | i < I;}, dropping index g for simplicity.

The total amount of updates on 6,,:

st
On = =1 ) ( o aem>

(if)eT
Define:
> g A (2)
J:(ij)eT J:(,N)eT
Leading to:

m _ —T]Z)\ 85,
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Learning to Rank

Improved Learning Algorithm

1: procedure LEARNPAIRWISERANKINGIMPROVED
input: 7 = {(i.)) | ¥ < [}, n.0

2: Om ~ N(O,0l), m=1,....M
3: repeat
4: for g=1,...,Q do
5: si="f(x;, 0), i=1,...,n > Compute s;
6: Aij = (%(1 - Sij) — HT:EI*SJ)) , (i,j) € Z > Compute \;
7: Aj = Z A,"j— jis i=1,...,n > Compute );
J:(ij)exT J:(,i)eT
for m=1,...,Mdo
n

9: Om < 0y — n Z:l )\;78%?’;9)
10: end for I
11: end for
12: until convergence
13: return 6
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Learning to Rank

Pairwise Loss is non-optimal for NDCG

—
'l

Dr. Josif Grabocka, ISMLL, University of Hildesheim
Business Analytics

Source: Burges 2010, MSR-TR .,
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Learning to Rank

LambdaRank Heuristic

Update the parameters by taking into account the amount of NDCG
change that would result by swapping the ranking positions of the pair

-1
Y-
1y~ ]__i_esl*sj

\ANDCG,J|
In a way that maximizes the gain:

0, < 0On +nz/\ Osi

Ai > Nij- Z A
j,i)ET

J:(ij)eT J:Gi

» Take into account the importance of the pair for NDCG
» A large |ANDCG]| shows that the pair is important
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Learning to Rank
How to compute the change in NDCG?
Given the old DCGOK:

DCGoK©Y) — Z Iog(ll)
2

What happens if documents in positions g and r change place?

lg Ir
DCGoK™ — pcgekld - 2°~-t 2r—1
logo(g+1)  logy(r +1)
2la — 1 2l —1

_l’_
logy(r+1) * logy(a+1)

IDCGOK remains the same, therefore |[ANDCG, | is an O(1) operation.
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Learning to Rank

NN
LambdaRank Optimization “

1: procedure LEARNLAMBDARANK

input: 7 = {(i.)) | ¥ < [}, n.0

2: Om ~ N(O,0l), m=1,....M
3: repeat
4: for g=1,...,Q do
5: si="f(x;, 0), i=1,...,n > Compute s;
6: NDCGOK «+ 28K > Compute NDCGOK
7: Aij= 1+eyis},sj)yANDCG,-J\, (i,j)ezT > Compute \;
8: Aj = Z /\,"j— Z )\J',,', i=1,...,n > Compute \;
J:(ij)eT J:(,i)eT
9: for m=1,...,Mdo
n
10: 6m+9m+7721)\,-%’;9)
11: end for I
12: end for
13: until convergence
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Learning to Rank

What is f(x;, 6)?

» It can be a Neural Network, known as RankNet

» |t can be a Gradient Boosted Decision Tree, known as
LambdaMART, (now implemented in XGBoost)

» In the next lecture, we will see how to learn Gradient Boosted
Decision Trees (GBDT) for Ranking.

» Before that, read the last GBDT slides on Predictive Analytics.
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