

Time-series Forecasting - Exponential Smoothing

Dr. Josif Grabocka

ISMLL, University of Hildesheim

Business Analytics

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics ふして 前 ふぼとえばやえる

1 / 26

Motivation

Extreme recentivism: The Naive forecast considers only the last value:

$$\hat{y}_{T+h|T} = y_T$$

Extreme *nostalgia*: The **Average** method equally considers all previous values:

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t$$

A middle way is needed: How to capture the influence of previous values while prioritizing recent measurements?

Exponential Smoothing

An exponentially-weighted average for 0 < $\alpha \le 1$:

$$\hat{y}_{T+1|T} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \dots$$

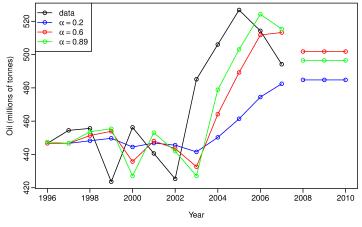
The weights decrease exponentially for past measurements:

Observation	$\alpha = 0.2$	$\alpha = 0.4$	$\alpha = 0.6$	$\alpha = 0.8$
Ут	0.2	0.4	0.6	0.8
<i>YT</i> -1	0.16	0.24	0.24	0.16
<i>У</i> Т-2	0.128	0.144	0.096	0.032
У <i>Т</i> -3	0.1024	0.0864	0.0384	0.0064
<i>УТ</i> -4	0.08192	0.05184	0.01536	0.00128

The recentivism is controlled by α , where $\sum_{t=1}^{T} \alpha (1-\alpha)^{T-t} \approx 1, \forall \alpha \in (0,1]$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

Example - Oil Production



Oil production in Saudi Arabia (1996–2007). Hyndman et al. 2014

Weighted Average Form

Forecast of time T + 1 is a weighted average of observation y_T and forecast $\hat{y}_{T|T-1}$:

$$\hat{y}_{T+1|T} = \alpha y_T + (1-\alpha) \hat{y}_{T|T-1}
\hat{y}_{T|T-1} = \alpha y_{T-1} + (1-\alpha) \hat{y}_{T-1|T-2}
\dots
\hat{y}_{3|2} = \alpha y_2 + (1-\alpha) \hat{y}_{2|1}
\hat{y}_{2|1} = \alpha y_1 + (1-\alpha) \ell_0$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics ・ロト 《聞 》 《臣 》 《臣 》 《日 》

5 / 26

Component and Error Correction Forms

The only component influencing forecast $\hat{y}_{t|t-1}$ is the level ℓ_t :

 $\begin{array}{ll} \text{Forecast Equation} & \hat{y}_{t+1|t} = \ell_t \\ \text{Smoothing Equation} & \ell_t = \alpha y_t + (1-\alpha)\ell_{t-1} \end{array}$

Similarly we can derive the error (e_t) correction form:

$$\ell_t = \ell_{t-1} + \alpha(y_t - \ell_{t-1})$$

= $\ell_{t-1} + \alpha(y_t - \hat{y}_{t|t-1})$
= $\ell_{t-1} + \alpha e_t$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

Holt's Linear Trend Method

Tackle trend in $\hat{y}_{t+1|h}$ by decomposing out a slope/trend term b_t :

 $\begin{array}{ll} \text{Forecast Equation} & \hat{y}_{t+h|t} = \ell_t + hb_t \\ \text{Level Equation} & \ell_t = \alpha y_t + (1-\alpha)(\ell_{t-1} + b_{t-1}) \\ \text{Trend Equation} & b_t = \beta^*(\ell_t - \ell_{t-1}) + (1-\beta^*)b_{t-1} \end{array}$

▶
$$0 < \alpha \leq 1$$
, $0 < \beta^* \leq 1$

- ▶ ℓ_t as a waited average of current observation y_t and estimation $\hat{y}_{t|t-1} = \ell_{t-1} + b_{t-1}$
- ▶ b_t as a weighted average of prediction differences $\ell_t \ell_{t-1}$ and previous trend b_{t-1}

Holt's Linear Trend Method - Error Correction

• Rewrite by taking ℓ_t and b_t on the left side:

$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha e_t$$

$$b_t = b_{t-1} + \alpha \beta^* e_t$$

• Where the isolated error is:

$$e_t = y_t - (\ell_{t-1} + b_{t-1}) = y_t - \hat{y}_{t|t-1}$$

• Set
$$\ell_0 = y_1$$
 and $b_0 = y_2 - y_1$ when making predictions

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

 \exists

イロト 不得 トイヨト イヨト

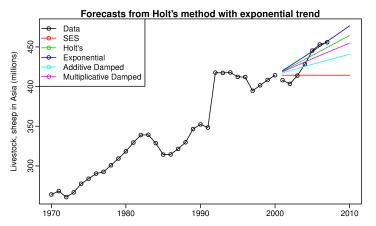
Exercise

Given a series $y_1 = 2, y_2 = -3, y_3 = 3, y_4 = -2$, predict $\hat{y}_{5|4} =$? using

▶ Holt's Linear Trend with $\alpha = 0.5, \beta^* = 0.5$

In fact, it was later observed that $y_5 = 2$.

Example - Livestock, sheep in Asia



Comparison of different forecasting approaches using non-seasonal exponential smoothing. Hyndman et al. 2014

Exponential Trend Method

Replace an additive model (constant slope) with a multiplicative one (constant growth):

Forecast Equation $\hat{y}_{t+h|t} = \ell_t b_t^h$ Level Equation $\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1}b_{t-1})$ Trend Equation $b_t = \beta^* \frac{\ell_t}{\ell_{t-1}} + (1 - \beta^*)b_{t-1}$

► b_t represents a multiplicative growth rate in relative terms $\frac{\ell_t}{\ell_{t-1}}$

 Forecasts project a constant growth rate rather than a constant slope (as in the additive model)

Exponential Trend Method - Error Correction

• Rewrite by taking ℓ_t and b_t on the left side:

$$\ell_t = \ell_{t-1}b_{t-1} + \alpha e_t$$

$$b_t = b_{t-1} + \alpha \beta^* \frac{e_t}{\ell_{t-1}}$$

Where the isolated error is:

$$e_t = y_t - (\ell_{t-1} b_{t-1}) = y_t - \hat{y}_{t|t-1}$$

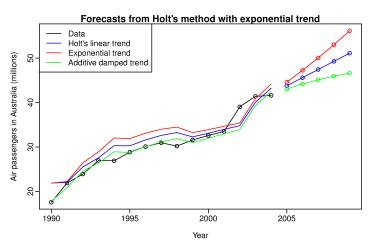
• Set $\ell_0 = y_1$ and $b_0 = y_2/y_1$ when making predictions

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

12 / 26

Sac

Example - Air Passengers (Hyndman et al. 2014)



Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

Damped Additive Trend Model

Include a damping/prohibitory parameter $0 < \phi < 1$:

 $\begin{array}{ll} \text{Forecast Equation} & \hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h) b_t \\ \text{Level Equation} & \ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1}) \\ \text{Trend Equation} & b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1} \end{array}$

- $\blacktriangleright \ \phi = 1$ leads Holt's additive linear trend model
- Error correction form:

$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha e_t$$

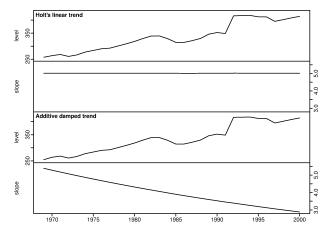
$$b_t = \phi b_{t-1} + \alpha \beta^* e_t$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

 \equiv

・ロト ・ 同ト ・ ヨト ・ ヨト

Example - Livestock, sheep in Asia



Level ℓ_t and trend b_t computed from a Livestock, sheep time series. Hyndman et al. 2014

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

Time-series Forecasting - Exponential Smoothing

Damped Multiplicative Trend Model

Include a damping/prohibitory parameter $0 < \phi < 1$ to the exponential trend:

Forecast Equation
$$\hat{y}_{t+h|t} = \ell_t \ b_t^{(\phi+\phi^2+\dots+\phi^h)}$$
Level Equation $\ell_t = \alpha y_t + (1-\alpha)(\ell_{t-1} \ b_{t-1}^{\phi})$ Trend Equation $b_t = \beta^* \frac{\ell_t}{\ell_{t-1}} + (1-\beta^*) b_{t-1}^{\phi}$

- $\blacktriangleright \ \phi = 1$ leads to exponential trend model
- Error correction form:

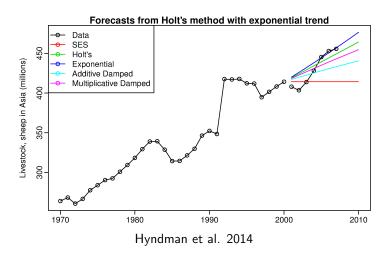
$$\ell_t = \ell_{t-1} b_{t-1}^{\phi} + \alpha e_t$$
$$b_t = b_{t-1}^{\phi} + \alpha \beta^* \frac{e_t}{\ell_{t-1}}$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

3

・ロト ・ 同ト ・ ヨト ・ ヨト

Example - Livestock, sheep in Asia



<ロト < 団 > < 三 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Exercise (2)

Given a series $y_1 = 2, y_2 = -3, y_3 = 3, y_4 = -2$, predict $\hat{y}_{5|4} =$? using:

▶ Damped Additive Trend Model with $\alpha = 0.5, \beta^* = 0.5, \phi = 0.5$

In fact, it was later observed that $y_5 = 2$.

Solve it at home!

Setting parameters

• How to set $\alpha, \beta^*, b_0, \ell_0, \phi$?

► Search for combinations that minimize the Sum of Squared Errors:

$$SSE = \sum_{t=1}^{T} e_t^2 = \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

Holt-Winters Additive Seasonal Method

Forecast	$\hat{y}_{t+h t} = \ell_t + hb_t + s_{t-m+h_m^+}$
Level	$\ell_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1})$
Trend	$b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 - \beta^*) b_{t-1}$
Seasonality	$s_t = \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}$

- ▶ $h_m^+ = \lfloor (h-1) \mod m \rfloor + 1$ ensures estimates come from final year
- \blacktriangleright ℓ_t is the weighted average between seasonally-adjusted observation and non-seasonal forecast
- ► *b_t* same as Holt's linear model
- ► st is the weighted average between current seasonal value and the last season's (m periods ago)

Time-series Forecasting - Exponential Smoothing

Holt-Winters Additive Seasonal Method (2)

With error correction forms:

$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha e_t$$

$$b_t = b_{t-1} + \alpha \beta^* e_t$$

$$s_t = s_{t-m} + \gamma e_t$$

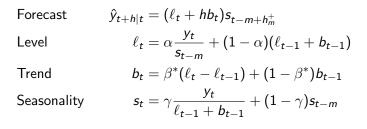
and residual errors:

$$e_t = y_t - (\ell_{t-1} + b_t + s_{t-m}) = y_t - \hat{y}_{t|t-1}$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ の へ ()・

Holt-Winters Multiplicative Seasonal Method



<ロト < 団 > < 臣 > < 臣 > 三 三 の < で</p>

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

Time-series Forecasting - Exponential Smoothing

Holt-Winters Multiplicative Seasonal Method (2)

With an error correction form:

$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \frac{e_t}{s_{t-m}}$$
$$b_t = b_{t-1} + \alpha \beta^* \frac{e_t}{s_{t-m}}$$
$$s_t = s_{t-m} + \gamma \frac{e_t}{\ell_{t-1} + b_{t-1}}$$

With residual errors:

$$e_t = y_t - (\ell_{t-1} + b_t)s_{t-m}$$

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ の へ ()・

Exercise (3)

Given a series $y_1 = 2, y_2 = -3, y_3 = 3, y_4 = -2$, predict $\hat{y}_{5|4} =$? using:

► Holt-Winters Additive Seasonal Model with $\alpha = 0.5, \beta^* = 0.5, \gamma = 0.5, m = 2$

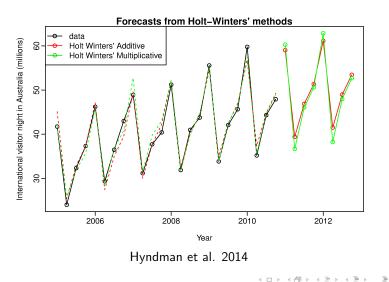
In fact, it was later observed that $y_5 = 2$.

t	l	b	S	ŷ
-1			2	
0	2	-5	2	
1	-1.5	-4.25	3.5	-1
2	-5.375	-4.0625	2.375	-3.75
3	-4.96875	-1.828125	7.96875	-5.9375
4	-5.5859375	-1.22265625	3.5859375	-4.421875
5				1.16015625

- ◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○ ○

Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

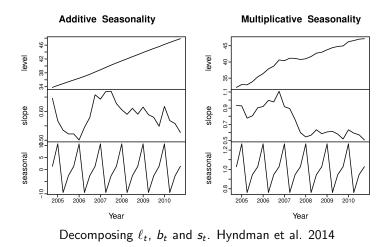
Example - International Visitors in Australia



Dr. Josif Grabocka, ISMLL, University of Hildesheim Business Analytics

Time-series Forecasting - Exponential Smoothing

Example - International Visitors in Australia (2)



<ロト < 団ト < 臣ト < 臣ト 三 のへで</p>