
Time-series Forecasting - Introduction

Time-series Forecasting - Introduction

Dr. Josif Grabocka

ISMLL, University of Hildesheim

Business Analytics

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Business Analytics 1 / 27



Time-series Forecasting - Introduction

Time-series Forecasting
A time-series is a sequence of measurements ordered in time, such as:

I Daily stock prices

I Monthly rainfall

I Energy consumption/production

I Annual company profits

I Sales of products

Australian Beer Production. Hyndman et al. 2014
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Resources

The lectures on time-series forecasting are based on the book:

I Forecasting: principles and practice, Hyndman et al., 2014

I Freely vailable online https://www.otexts.org/fpp
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Forecasting problem

I The forecasting problem demands estimating the values of a
particular variable, given past measurements.

I The data can be of two types:

I Time-series (our focus):
I Given T measurements of a variable y1, y2, . . . , yT ,
I Accurately estimate ŷT+1|T , ŷT+2|T , . . . , ŷT+h|T

I Cross-sectional/Supervised learning (our mandatory ML course):

I Given NTrain predictors X ∈ RNTrain×M and target Y ∈ RNTrain

,
I Accurately estimate the unknown targets Ŷ ∈ RNTest

of a new test set

of predictors X ∈ RNTest×M and target
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Steps of Forecasting

1. Problem definition: How forecasts are used? Who needs them?
Talking to domain experts.

2. Gathering information: Mostly gather all the relevant recorded data
and also the accumulated expertise

3. Preliminary (explanatory) analysis: Graph the data. Are there
consistent patterns, trends, seasonality? Any business cycles?
Unexplained outliers? How strong is the relationship between
variables?

4. Choosing and fitting models: Understand data properties and
choose a statistical model accordingly. Compare against other
potential models.

5. Using and evaluating a forecast model: Compute accuracy
measures to assess the quality of the predictions.

Dr. Josif Grabocka, ISMLL, University of Hildesheim

Business Analytics 5 / 27



Time-series Forecasting - Introduction

Forecasting Tools - Plot the Series

Weekly economy passengers on Ansett Airlines. Hyndman et al. 2014

’89 - industrial dispute, ’92 - reduced load as economy seats moved to
business, ’91 - a boom, dips at start of year due to holidays.
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Plot the Series (2)

Monthly sales of antidiabetic drugs in Australia. Hyndman et al. 2014

Notice a trend and seasonality. Patients stockpile drugs due to gov.
subsidization, leading to reduced sales at the end of each year.
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Time-series Patterns

I Trend: A long-term increase or decrease in the data

I Seasonality: Seasonal factors: Year, month, or day of week

I Cycle: A non-periodic fluctuation, also known as ”business cycles”

Hyndman et al. 2014
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Inspection: Seasonal Plot

Atidiabetic drugs: Overlapping per-season series. Hyndman et al. 2014
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Inspection: Seasonality Subseries Plot

Atidiabetic drugs: Plot per-season sub-series. Hyndman et al. 2014
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Series Statistics

The mean of a series y1, y2, . . . , yT is defined as:

ȳ =
1

T

T∑
t=1

yt

While its standard deviation:

σ =

√√√√ 1

T − 1

T∑
t=1

(yt − ȳ)2
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Correlation Coefficient
The correlation between vectors a1, a2, . . . , aN and b1, b2, . . . , bN is:

r =

N∑
i=1

(ai − ā)(bi − b̄)√
N∑
i=1

(ai − ā)2

√
N∑
i=1

(bi − b̄)2

Hyndman et al. 2014Dr. Josif Grabocka, ISMLL, University of Hildesheim
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Autocorrelation

I The correlation coefficient between a series and a lagged version of
itself.

I rk measures the correlation between yk+1, yk+2, . . . , yT and
y1, y2, . . . ,YT−k :

rk =

T∑
t=k+1

(yt − ȳ)(yt−k − ȳ)√
T∑

t=k+1

(yt − ȳ)2

√
T−k∑
t=1

(yt − ȳ)2

rk ≈

T∑
t=k+1

(yt − ȳ)(yt−k − ȳ)

T∑
t=1

(yi − ȳ)2
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Autocorrelation Function - ACF - Plot r1, r2, . . .

ACF of Beer Production. Hyndman et al. 2014

I Trend when high values of ordered coefficients r1 > r2 > r3 . . .

I Seasonal of period m where have high values of rt , rt−m, rt−2m . . .

I Noisy series have small coefficients (next slide ...)
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ACF - White Noise

Hyndman et al. 2014

I The dashed blue lines show the ± 2√
T

I Coefficients of non-noisy series exceed those bounds
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Some Simple Forecasting Methods (1)

I Predict the average value:

ŷT+h|T = ȳ =
1

T

T∑
t=1

yt

I Naive: Predict the last observed value:

ŷT+h|T = yT

I Seasonal Naive: Predict the last observed periodic value:

ŷT+h|T = yT+h−km, for k = bh − 1

m
c+ 1
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Few Simple Forecasting Methods (2)
I Drift method: Use the average change/drift:

ŷT+h|T = yT +
h

T − 1

T∑
t=2

(yt − yt−1) = yT + h
yT − y1
T − 1

Hyndman et al. 2014
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Evaluating Forecast Accuracy
I Scale-dependent errors:

I Mean Absolute Error:

MAE =
1

T

T∑
t=1

|yt − ŷt|t−1|

I Root Mean Square Error:

RMSE =

√√√√ 1

T

T∑
t=1

(yt − ŷt|t−1)2

I Percentage errors are independent to scale
I Mean Absolute Percentage Error:

MAPE =
1

T

T∑
t=1

∣∣∣∣yt − ŷt|t−1
yt

∣∣∣∣
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Evaluating Forecast Accuracy (2)

I Percentage errors are undefined when yt = 0 and produce extreme
values when yt ≈ 0

I A solution is to use scaled errors as an alternative to percentage errors

I Hence, the Mean Absolute Scaled Error:

MASE =
1

T

T∑
t=1

∣∣∣∣∣∣∣∣∣
yt − ŷt|t−1

1
T−1

T∑
t′=2

|yt′ − yt′−1|

∣∣∣∣∣∣∣∣∣
I Both nominator and denominator are on the same scale, however

cannot be perceived percentually
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Exercise

Given a series y1 = 2, y2 = −3, y3 = 3, y4 = −2, predict ŷ5|4 =? using

Note y5 = 2.

I Average method:
ŷ5|4 = 1

4(2− 3 + 3− 2) = 0, MAE=2

I Naive method:
ŷ5|4 = y4 = −2, MAE=3

I Seasonal Naive method, m = 2:
ŷ5|4 = y3 = 3, MAE=1

I Drift Method, m = 2:
ŷ5|4 = −2 + (−2− 2)/3 = −3.33, MAE=5.33

Why is the Seasonal Naive method performing better?
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Time-series Decomposition

Time series can be thought as comprising of three components: a
seasonal, trend-cycle and a remainder.

I Additive decomposition model:
yt = St + Tt + Et

I Multiplicative decomposition model:
yt = St × Tt × Et

I Where St is the seasonality, Tt is the trend-cycle, while Et is the
remainder (error or irregular) at time t

I Please note that yt = St × Tt × Et is equivalent to
log yt = log St + logTt + log Et
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Time-series Decomposition (Hyndman et al. 2014)
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Seasonally-Adjusted Series

I Sometimes remove the seasonal component, i.e.
I Additive: ynew

t := yold
t − St

I Multiplicative: ynew
t := yold

t /St

I Seasonality of unemployment caused by school leavers seeking work is
not interesting, while the seasonal trend matters.
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Moving Average Smoothing
Given a neighborhood of size 2k, the moving average smoothing is:

T̂
(1)
t =

1

m

k∑
j=−k

yt+j , (m = 2k + 1); or T̂
(1)
t =

1

m

k−1∑
j=−k

yt+j , (m = 2k)

I Smoothing helps retrieve the trend component
I Chain smoothing:

T̂
(2)
t =

1

m

q∑
j=−q

T
(1)
t+j , (m = 2q + 1); or T̂

(2)
t =

1

m

q−1∑
j=−q

T
(1)
t+j , (m = 2q)

I For instance a 4-MA followed by 2-MA is denoted as 2× 4-MA:

T̂
(2)
t =

1

2

[1

4
(yt−3 + yt−2 + yt−1 + yt) +

1

4
(yt−2 + yt−1 + yt + yt+1)

]
=

1

8
yt−3 +

1

4
yt−2 +

1

4
yt−1 +

1

4
yt +

1

8
yt+1.
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Classical Decomposition - Additive

Assuming a seasonal period m, the Additive decomposition is:

I Step 1: Trend is T̂ =

{
m mod 2 = 0, 2×m −MA

m mod 2 = 1, m −MA

I Step 2: Calculate de-trended series D̂t = yt − T̂t , t = 1, . . . ,T

I Step 3: Seasonality, say, of each month, is the average among the
de-trended values D̂ of that month. Ensure that seasonal indices add
to zero, yielding Ŝt , t = 1, . . . ,T .

I Step 4: Remainder is Êt = yt − T̂t − Ŝt , t = 1, . . . ,T
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Classical Decomposition - Multiplicative

Assuming a seasonal period m, the Multiplicative decomposition is:

I Step 1: Trend is T̂ =

{
m mod 2 = 0, 2×m −MA

m mod 2 = 1, m −MA

I Step 2: Calculate de-trended series D̂t = yt/T̂t , t = 1, . . . ,T

I Step 3: Seasonality, say, of each month, is the average among the
de-trended values D̂ of that month. Ensure that seasonal indices add
to m, yielding Ŝt , t = 1, . . . ,T .

I Step 4: Remainder is Êt = yt/(T̂t Ŝt), t = 1, . . . ,T
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Example - Classical Decomposition - Additive

Source: http://www.alanzucconi.com/
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