

# Big Data Analytics

### Lucas Rego Drumond

Information Systems and Machine Learning Lab (ISMLL)
Institute of Computer Science
University of Hildesheim, Germany

Big Data Analytics



### Outline

1. GraphLab Application Deployment

2. Relational Classification Example





1. GraphLab Application Deployment

2. Relational Classification Example



## Steps

- 1. Install GraphLab into a specific directory
  - ► Example: /home/user/graphlab
- Create a directory for your application under /home/user/graphlab/apps
- 3. Create a CMakeLists.txt file into your application directory
- 4. Add the source files for your program under your application directory
- 5. Run ./configure under /home/user/graphlab
- Go to /home/user/graphlab/release/apps/your\_application and type make

## CMakeLists.txt



project (MyProjectName)

add\_graphlab\_executable(executable\_name implementation.cpp)

3 / 7

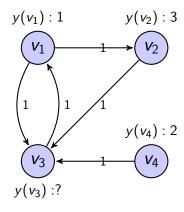
#### Hello World

```
#include <graphlab.hpp>
int main(int argc, char** argv) {
    graphlab::mpi_tools::init(argc, argv);
    graphlab::distributed_control dc;
    dc.cout() << "Hello_World!\n";
    graphlab::mpi_tools::finalize();
}</pre>
```

Outline



#### 1. GraphLab Application Deployment


2. Relational Classification Example

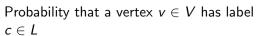


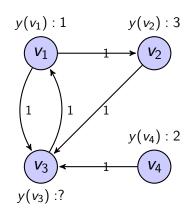
#### Big Data Analytics 2. Rela



## Relational Classification




Given a graph G := (V, E) and a set of labels L


- ▶ Some nodes have labels  $y: V \to L$
- ► Edges v, u have weights  $w_{v,u}$
- ▶ Task: estimate a function  $\hat{y}: V \rightarrow L$



# Weighted voted Relational Neighbor







$$P(c|v) = \frac{1}{Z_v} \sum_{u \in \{u|u \in \mathcal{N}_v \land y(u) = c\}} w_{(u,v)}$$

Where:

$$Z_{v} = \sum_{u \in \mathcal{N}_{v}} w_{(u,v)}$$

 $\triangleright \mathcal{N}_{v}$  denotes the neighbors of v

$$\hat{y}(v) := \arg\max_{\substack{c \in L \\ \text{distribution}}} P(c|v)$$



Lucas Rego Drumond, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics



## wvRN Vertex Program:

1: procedure

WVRNGATHER

**input:** vertex v, scope  $S_v$ , ingoing edge  $(u \rightarrow v)$ 

return  $(w_{(u,v)},y(u))$ 

3: end procedure

1: **procedure** WVRNAPPLY **input:** vertex v, scope  $S_v$ , gather result  $(Z_v, \left(\sum_{\{u|u\in\mathcal{N}_v\wedge y(u)=c\}} w_{u,v}\right)_{c\in I})$ ,

2: 
$$\hat{y}(v) := \arg\max_{c \in L} \left( \sum_{\{u \mid u \in \mathcal{N}_v \land y(u) = c\}} w_{u,v} \right)$$

3: end procedure



7 / 7

## wvRN Code

- ► Code and toy data:
  - ▶ http://www.ismll.uni-hildesheim.de/lehre/bd-14s/script/ gl\_ex/wvRN\_example.zip