
14.04.2016

1

Shared Memory Programming

Java Threads

Lec 1

1
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

What is a Process?

A process is an “instance” of a program running.
Modern OSes run multiple processes simultaneously

Examples (can all run simultaneously):
 gcc file_A.c – compiler running on file A

 gcc file_B.c – compiler running on file B

 emacs – text editor

 firefox – web browser

Non-examples (implemented as one process):
Multiple firefox tabs are part of one process.

Why processes?
 Simplicity of programming

 Higher throughput (better CPU utilization), lower latency

2
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

14.04.2016

2

What is a Process?

 Each proc. Pi has own view of machine
 Its own address space.

 Its own open files.

 Its own virtual CPU (through preemptive multitasking)

 *(char *)0xc000 different in P1 & P2

 Greatly simplifies programming model
 gcc does not care that firefox is running

 Sometimes want interaction between
processes
 Simplest is through files: emacs edits file, gcc compiles

it

More complicated: Shell/command, Window
manager/app.

3
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

Process Organization in Memory

4
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

14.04.2016

3

Basic Execution

5
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

Basic Execution Environment

int main() { }

int foo1 (int) { }

int foo2 (int) { }

gvar = 100

var1 = 2
var2 = 3

Stack

Global

Text

IP FP SP

main()

int gvar = 100;

int foo2 (int b)
{
 return b * gvar;
}

int foo1 (int a)
{
 int lvar = a + gvar;
 return foo2(lvar);
}

int main ()
{
 int var1, int var2;
 var1 = 2;
 var2 = 3;
 var1 = foo1(var1);
 var2 = foo1(var2);
 return 0;
}

Heap

6
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

14.04.2016

4

Basic Execution Environment

int gvar = 100;

int foo2 (int b)
{
 return b * gvar;
}

int foo1 (int a)
{
 int lvar = a + gvar;
 return foo2(lvar);
}

int main ()
{
 int var1, int var2;
 var1 = 2;
 var2 = 3;
 var1 = foo1(var1);
 var2 = foo1(var2);
 return 0;
}

int main() { }

int foo1 (int) { }

int foo2 (int) { }

gvar = 100

var1 = 2
var2 = 3

Stack

Global

Text

IP FP SP

main()

a = 2
lvar = 102 foo1()

Heap

7
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

Basic Execution Environment

int main() { }

int foo1 (int) { }

int foo2 (int) { }

gvar = 100

var1 = 2
var2 = 3

Stack

Global

Text

IP FP SP

main()

a = 2
lvar = 102 foo1()

foo2() b = 102

int gvar = 100;

int foo2 (int b)
{
 return b * gvar;
}

int foo1 (int a)
{
 int lvar = a + gvar;
 return foo2(lvar);
}

int main ()
{
 int var1, int var2;
 var1 = 2;
 var2 = 3;
 var1 = foo1(var1);
 var2 = foo1(var2);
 return 0;
}

Heap

8
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

14.04.2016

5

Basic Execution Environment

int gvar = 100;

int foo2 (int b)
{
 return b * gvar;
}

int foo1 (int a)
{
 int lvar = a + gvar;
 return foo2(lvar);
}

int main ()
{
 int var1, int var2;
 var1 = 2;
 var2 = 3;
 var1 = foo1(var1);
 var2 = foo1(var2);
 return 0;
}

int main() { }

int foo1 (int) { }

int foo2 (int) { }

gvar = 100

var1 = 2
var2 = 3

Stack

Global

Text

IP FP SP

main()

a = 2
lvar = 102 foo1()

Heap

9
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

Basic Execution Environment

int main() { }

int foo1 (int) { }

int foo2 (int) { }

gvar = 100

var1 = 10200
var2 = 3

Stack

Global

Text

IP FP SP

main()

int gvar = 100;

int foo2 (int b)
{
 return b * gvar;
}

int foo1 (int a)
{
 int lvar = a + gvar;
 return foo2(lvar);
}

int main ()
{
 int var1, int var2;
 var1 = 2;
 var2 = 3;
 var1 = foo1(var1);
 var2 = foo1(var2);
 return 0;
}

Heap

10
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

14.04.2016

6

Basic Execution Environment

int gvar = 100;

int foo2 (int b)
{
 return b * gvar;
}

int foo1 (int a)
{
 int lvar = a + gvar;
 return foo2(lvar);
}

int main ()
{
 int var1, int var2;
 var1 = 2;
 var2 = 3;
 var1 = foo1(var1);
 var2 = foo1(var2);
 return 0;
}

int main() { }

int foo1 (int) { }

int foo2 (int) { }

gvar = 100

var1 = 10200
var2 = 3

Stack

Global

Text

IP FP SP

main()

a = 3
lvar = 103 foo1()

Heap

11
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

Basic Execution Environment

int main() { }

int foo1 (int) { }

int foo2 (int) { }

gvar = 100

var1 = 10200
var2 = 3

Stack

Global

Text

IP FP SP

main()

a = 3
lvar = 103 foo1()

foo2() b = 103

int gvar = 100;

int foo2 (int b)
{
 return b * gvar;
}

int foo1 (int a)
{
 int lvar = a + gvar;
 return foo2(lvar);
}

int main ()
{
 int var1, int var2;
 var1 = 2;
 var2 = 3;
 var1 = foo1(var1);
 var2 = foo1(var2);
 return 0;
}

Heap

12
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

14.04.2016

7

Basic Execution Environment

int gvar = 100;

int foo2 (int b)
{
 return b * gvar;
}

int foo1 (int a)
{
 int lvar = a + gvar;
 return foo2(lvar);
}

int main ()
{
 int var1, int var2;
 var1 = 2;
 var2 = 3;
 var1 = foo1(var1);
 var2 = foo1(var2);
 return 0;
}

int main() { }

int foo1 (int) { }

int foo2 (int) { }

gvar = 100

var1 = 10200
var2 = 3

Stack

Global

Text

IP FP SP

main()

a = 3
lvar = 103 foo1()

Heap

13
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

Basic Execution Environment

int main() { }

int foo1 (int) { }

int foo2 (int) { }

gvar = 100

var1 = 10200
var2 = 10300

Stack

Global

Text

IP FP SP

main()

int gvar = 100;

int foo2 (int b)
{
 return b * gvar;
}

int foo1 (int a)
{
 int lvar = a + gvar;
 return foo2(lvar);
}

int main ()
{
 int var1, int var2;
 var1 = 2;
 var2 = 3;
 var1 = foo1(var1);
 var2 = foo1(var2);
 return 0;
}

Heap

14
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

14.04.2016

8

What is a thread?

What’s needed to run code on CPU
 “execution stream in an execution context”
 Execution stream: sequential seq. of instructions

CPU execution context (1 thread)
 State: stack, heap, registers
 Position: Instruction Pointer(IP) register

OS execution context (n threads):
 identity + open file descriptors, page table, … 15

Mohsan Jameel, Information Systems and
Machine Learning Lab, University of

Hildesheim

What is a thread?

UNIX PROCESS THREADS WITHIN A UNIX PROCESS
16

Mohsan Jameel, Information Systems and
Machine Learning Lab, University of

Hildesheim

14.04.2016

9

What is a thread?

 All threads in a process share the same address
space.
 *(char *)0xc000 means “the same” in thread T1 and T2.

 All threads share the same file descriptors.
 Which implies that they share network sockets.

 All threads have access to the same heap and

same global variables.

 Write access to global variables should be
protected by a synchronization mechanism.

 Each thread has its separate stack, Instruction
Pointer and Local variables.
 Therefore each thread has its own independent flow

of execution
 17

Mohsan Jameel, Information Systems and
Machine Learning Lab, University of

Hildesheim

What is a thread?

18
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

14.04.2016

10

Java Threads

19
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

Thread class

Each thread is an object of the Thread class.

(Java tutorial says: “Each thread is associated with an instance of the class Thread.”)

Java provide two basic ways to creates a thread:

1. Define a class that extends the class Thread.

2. Make your class implement the Runnable interface

20
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

http://java.sun.com/javase/6/docs/api/java/lang/Thread.html

14.04.2016

11

Simplest way is:

1. Define a class that extends the class Thread.

• Object of this class is a thread.

• Provide the method called run (which will override the inherited run method,
which does nothing).

• The run method defines the code for the thread.

• Invoke the start method, which initiates the computation of the thread

21
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

Example

public class HelloThread extends Thread {

 public void run() {

 System.out.println("Hello from a thread!");

 }

 public static void main(String args[]) {

 HelloThread myThread = new HelloThread();

 myThread.start();

 System.out.println("Hello from the Main!");

 myThread.join();

 }

}

Java entry point

Start thread and execute

run method

Create

Thread

object

22
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

14.04.2016

12

Example 2

public class SimpleThread extends Thread {

 public SimpleThread(String str) { super(str); }

 public void run() {

 for (int i = 0; i < 10; i++) {

 System.out.println(i + " " + getName());

 try { // at this point, current thread is ‘this’.

 Thread.sleep((long)(Math.random() * 1000));

 } catch (InterruptedException e) {}

 }

 System.out.println("DONE! " + getName());

 }

 }

 23
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

public class TwoThreadsTest {

 public static void main (String[] args) {

 new SimpleThread(“Thread1").start();

 new SimpleThread(“Thread2").start();

 }

}

possible output DONE! Thread2

9 Thread1

 DONE! Thread1

 5 Thread1

 5 Thread2

 6 Thread2

 6 Thread1

 7 Thread1

 7 Thread2

 8 Thread2

 9 Thread2

 8 Thread1

0 Thread1

0 Thread2

1 Thread2

1 Thread1

2 Thread1

2 Thread2

3 Thread2

3 Thread1

4 Thread1

4 Thread2
24

Mohsan Jameel, Information Systems and
Machine Learning Lab, University of

Hildesheim

14.04.2016

13

The Thread class actually implements the interface called

Runnable.

The Runnable interface defines the single method, run, meant

to contain the code executed in the thread.

Alternate more powerful way to create threads:

2. Make your class explicitly implement the Runnable

interface
 package java.lang;

 public interface Runnable { public void run() ; }

25
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

Example

public class HelloRunnable implements Runnable {

 public void run() {

 System.out.println("Hello from a thread!");

 }

 public static void main(String args[]) {

 HelloRunnable myThread = new HelloRunnable();

 Thread tr = new Thread(myThread);

 tr.start();

 tr.join();

 }

}
26

Mohsan Jameel, Information Systems and
Machine Learning Lab, University of

Hildesheim

14.04.2016

14

Runnable object can subclass a class other than Thread, i.e.:

public class MyRunnable extends SomeClass implements Runnable {

 public void run() {

 System.out.println("Hello from a thread!");

 }

 public static void main(String args[]) {

 (new Thread(new HelloRunnable())).start();

 }

}

Note: both the Thread class and the Runnable interface are part

of the standard Java libraries (java.lang package)

27
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

Java’s Thread class

Various instance and class methods, setters and getters:

• Class methods:

• sleep()
•…

• Instance methods:

• join()
• start()
•…

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html

28
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html

14.04.2016

15

Race conditions and
Synchronization

29
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

Race Conditions

• “A race condition is a programming fault producing
undetermined program state and behavior due to un-
synchronized parallel program executions” – [Liang Chen's
Blog]

• Therac-25 radiation therapy machine — killed 3 people and
seriously injured many more.

• North American Blackout of 2003 — left 50 million people
without power

Race bugs are notoriously
difficult to discover by
conventional testing!

30
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

14.04.2016

16

Determinacy race
• Definition. A determinacy race occurs when two

logically parallel instructions access the same
memory location and at least one of the instructions
performs a write.

31

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

x++;

int x = 0;

assert(x == 2);

x++;

A

B C

D

Mohsan Jameel, Information Systems and
Machine Learning Lab, University of

Hildesheim

Example

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

1

2

3

4

5

6 7

8

?

x

?

r1

?

r2

0 0

0 1

0

0 1 1

1

1

1

32
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

14.04.2016

17

Types of Races

• For given X and Y instructions, suppose both
update a memory location A. Then following
scenario could occur.

X Y Race Type

read read none

read write read race

write read read race

write write write race

33
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

Java Synchronization

• Java provides synchronized keyword to synchronize blocks of

instructions. It can be used with:

• a block of code

• to a method body.

• The thread first arrived at the synchronized keyword acquire lock and

rest of the threads arriving later are blocked.

• Once a lock is released, only one of the waiting thread get the

lock.

Example
public class CounterClass {

 private int counter = 0;

 public synchronized void increment() {

 counter ++;

 }

 public synchronized void decrement() {

 counter --;

 }

 public synchronized int getValue() {

 return counter;

 }

}
34

Mohsan Jameel, Information Systems and
Machine Learning Lab, University of

Hildesheim

14.04.2016

18

Example using synchronized methods

On-line banking

Several entities can access account potentially simultaneously

(maybe a joint account, maybe automatic debits, …)

Suppose three entities each trying to perform an operation,

either:

• deposit()

• withdraw()

• enquire()

 35
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

Create three threads, one for each entities

class InternetBankingSystem {

 public static void main(String [] args) {

 Account accountObject = new Account ();

 Thread t1 = new Thread(new MyThread(accountObject));

 Thread t2 = new Thread(new YourThread(accountObject));

 Thread t3 = new Thread(new HerThread(accountObject));

 t1.start();

 t2.start();

 t3.start();

 // DO some other operation

 t1.join();

 t2.join();

 t3.join();

 } // end main()

} 36
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

14.04.2016

19

Shared account

class MyThread implements Runnable {

 Account account;

 public MyThread (Account s) { account = s;}

 public void run() { account.deposit(); }

} // end class MyThread

class YourThread implements Runnable {

 Account account;

 public YourThread (Account s) { account = s;}

 public void run() { account.withdraw(); }

} // end class YourThread

class HerThread implements Runnable {

 Account account;

 public HerThread (Account s) { account = s; }

 public void run() {account.enquire(); }

} // end class HerThread

account
(shared object)

37
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

Synchronized account methods

class Account {
 int balance;

// if 'synchronized' is removed, outcome unpredictable

 public synchronized void deposit() {
 balance += deposit_amount;
 }

 public synchronized void withdraw() {
 balance -= deposit_amount;
 }
 public synchronized void enquire() {
 display balance.
 }

}

38
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

14.04.2016

20

Synchronized Statements

Unlike synchronized methods, synchronized

statements must specify the object that provides the

intrinsic lock:

Uses construct ion:

synchronized (expression) {

statements

}

Evaluate to an

object or an

array. Used to

identify lock.

“critical section”

39
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

Synchronized Statements

Example

void incCount(){

 synchronized(this){

 count3++;

 }

}

Only this part

synchronized

40
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

14.04.2016

21

atomic action

An atomic action cannot stop in the middle: it either happens

completely, or it doesn't happen at all. No side effects of an

atomic action are visible until the action is complete.

Read/writes can be declared atomic with the volatile keyword,

e.g.

private volatile int x;

Generally for smaller set of instruction it can be more efficient

than synchronized methods.

41

Mohsan Jameel, Information Systems and
Machine Learning Lab, University of

Hildesheim

Coordinating threads
Wait/notify mechanism

Sometimes need a thread to stop running and wait for an event before continuing.

 wait() and notify() methods are methods of class Object.

Every object can maintain a list of waiting threads.

wait() When a thread calls wait() method of an object, any locks the thread holds

are temporarily released and thread added to list of waiting threads for that
object and stops running.

notify() When another thread calls notify() method on the same object, object wakes
up one of the waiting threads and allows it to continue.

42
Mohsan Jameel, Information Systems and

Machine Learning Lab, University of
Hildesheim

14.04.2016

22

References

• Parallel Computing
– https://computing.llnl.gov/tutorials/parallel_comp/

• Java Threads
– https://docs.oracle.com/javase/tutorial/essential/concurrency/runthr

ead.html

– http://www.wideskills.com/java-tutorial/java-threads-tutorial

– https://computing.llnl.gov/tutorials/pthreads

– http://se.inf.ethz.ch/old/teaching/ss2007/0284/book/Threads.pdf

43

Mohsan Jameel, Information Systems and
Machine Learning Lab, University of

Hildesheim

https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
https://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/runthread.html
http://www.wideskills.com/java-tutorial/java-threads-tutorial
http://www.wideskills.com/java-tutorial/java-threads-tutorial
http://www.wideskills.com/java-tutorial/java-threads-tutorial
http://www.wideskills.com/java-tutorial/java-threads-tutorial
http://www.wideskills.com/java-tutorial/java-threads-tutorial
http://www.wideskills.com/java-tutorial/java-threads-tutorial
http://www.wideskills.com/java-tutorial/java-threads-tutorial
http://www.wideskills.com/java-tutorial/java-threads-tutorial
https://computing.llnl.gov/tutorials/pthreads
https://computing.llnl.gov/tutorials/pthreads
http://se.inf.ethz.ch/old/teaching/ss2007/0284/book/Threads.pdf
http://se.inf.ethz.ch/old/teaching/ss2007/0284/book/Threads.pdf

