Outline

- 1. What is Big Data?
- 2. Overview
- 3. Organizational Stuff

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 1. What is Big Data?

Outline

- 1. What is Big Data?
- 2. Overview
- 3. Organizational Stuff

What is Big Data?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 1. What is Big Data?

What is Big Data?

1 / 36

"Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it."

- Dan Ariely

What is Big Data?

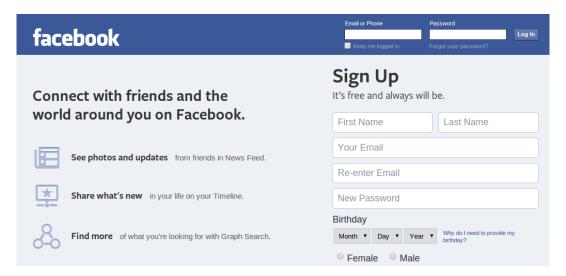
Some definitions:

- ► "A collection of data sets so **large and complex** that it becomes difficult to process using on-hand database management tools or traditional data processing applications."
 - http://en.wikipedia.org/wiki/Big_data
- ► "Big data is high-volume, high-velocity and high-variety information assets that demand cost-effective, innovative forms of information processing for enhanced insight and decision making." www.gartner.com/it-glossary/big-data/

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 1. What is Big Data?

What is Big Data?



Big Data is about:

- Storing and accessing large amounts of (unstructured) data
- Processing high volume data streams
- Making sense of the data
- Predictive technologies

Where to find Big Data?

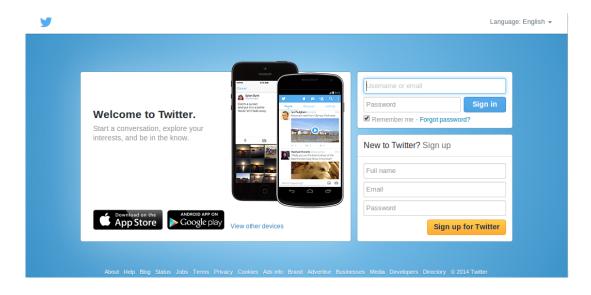
- ▶ 1.28 billion users (1.23 billion monthly active in January 2014)
- ► Size of user data stored by Facebook: 300 Petabytes
- Average amount of data that Facebook takes in daily: 600 terabytes
- ► Size of Facebook's Graph Search database: 700 Terabytes

Source: http://allfacebook.com/orcfile_b130817

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 1. What is Big Data?

Where to find Big Data?

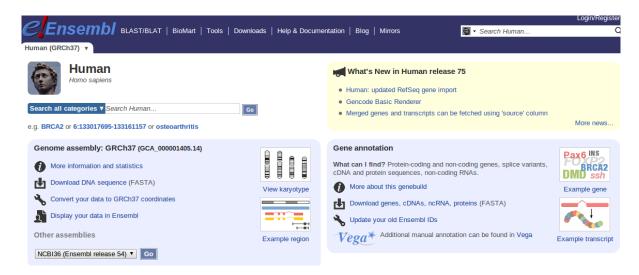


- ► 3.3 billion searches per day (on average)¹
- ▶ 30 trillion unique URLs identified on the Web¹
- ► 20 billion sites crawled a day¹
- ▶ In 2008 Google processed more than 20 Petabytes of data per day²

¹http://searchengineland.com/google-search-press-129925 ²Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing on large clusters. Commun. ACM 51, 1 (January 2008), 107-113.

Where to find Big Data?

- ► Average number of tweets per day: 58 million¹
- ► Number of Twitter search engine queries every day: 2.1 billion¹
- ► Total number of active registered Twitter users: 645,750,000¹


¹http://www.statisticbrain.com/twitter-statistics/

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 1. What is Big Data?

Juneshall.

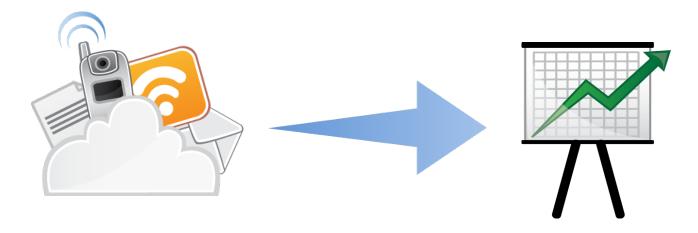
Where to find Big Data?

- Ensembl database contains the genome of humans and 50 other species
- ► "only" 250 GB¹

1http://www.ensembl.org/

Where to find Big Data?

- ► Large Hadron Collider has collected data from over 300 trillion proton-proton collisions
- ► Approx. 25 Petabytes per year


Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 1. What is Big Data?

Skiversitä

What to do with Big Data?

We don't want to know things but to understand them!

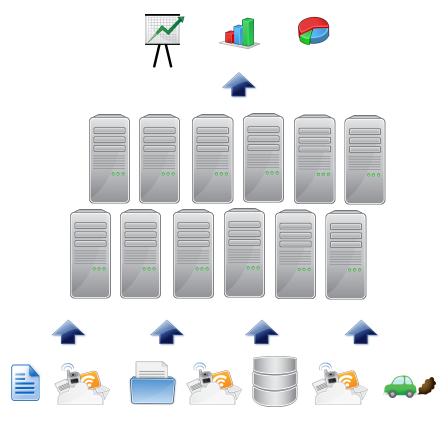
What to do with Big Data? - Case Studies

- ▶ **T-Mobile USA:** integrated Big Data across multiple IT systems to combine customer transaction and interactions data in order to better predict customer defections
 - ▶ By leveraging social media data along with transaction data from CRM and Billing systems, customer defections has been cut in half in a single quarter.
- ▶ US Xpress: collects data elements ranging from fuel usage to tire condition to truck engine operations to GPS information
 - Optimal fleet management
- ▶ McLaren's Formula One racing team: real-time car sensor data during car races
 - ▶ Real time identification of issues with its racing cars

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 1. What is Big Data?

12 / 36


What to do with Big Data? - The BI Approach

- Static databases
- Structured data
- Centralized approaches

What to do with Big Data?

- ► Massive Parallelism
- Heterogeneous data sources
- ► Unstructured data
- Data streams

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 1. What is Big Data?

Jaivers/

What to do with Big Data?

Application examples:

- Online personalized advertising
- ► Sentiment analysis and behavior prediction
- ► Detecting adverse events and predicting their impact
- Automatic Translation
- ► Image Classification and object recognition
- ► Intelligent public services

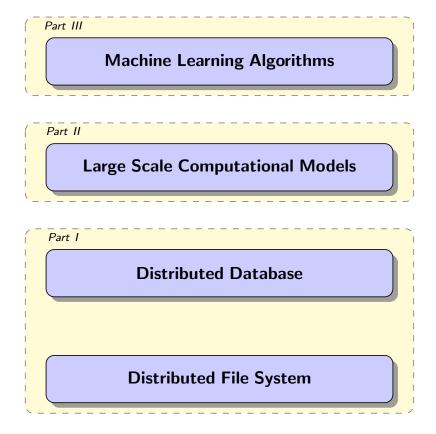
How?

In order to deal with large volumes of data we need to address the following challenges:

- ► Effectively store and large amounts of data in a distributed environment
- Query distributed databases
- ► Parallel and distributed programing models
- Data Mining and machine learning techniques to make sense of the data
- ► Effective data visualisation techniques

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

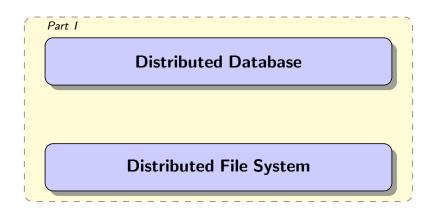
Big Data Analytics 2. Overview



Outline

- 1. What is Big Data?
- 2. Overview
- 3. Organizational Stuff

Overview



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 2. Overview

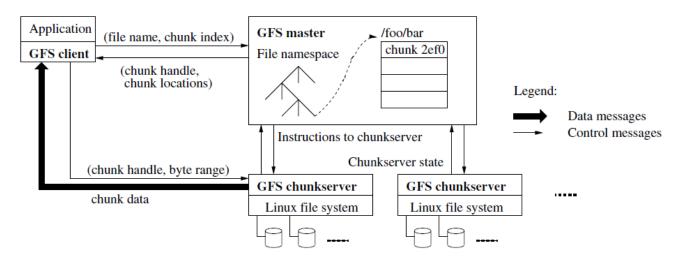
Overview

16 / 36

Storing

In a distributed environment the data storing mechanisms should address the following issues

- ► Parallel Reading and Writing
- ▶ Data node Failures
- ► High Availability


Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 2. Overview

Distributed File Systems

The Google File System Architecture

Databases

Databases are needed for

- Querying and indexing
- ► transaction procesing

State-of-the-art: Relational Databases

For processing big data one needs a database which:

- ► Supports high level of parallelism
- Supports analytical processing
- ► Has a flexible data model to deal with unstructured data sources

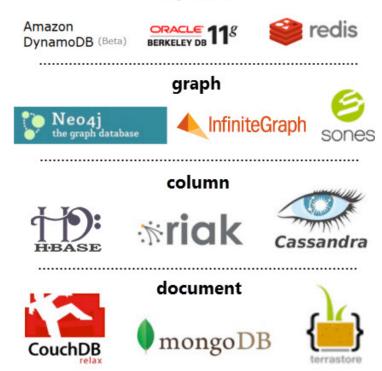
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 2. Overview

Databases for Big Data - NoSQL

21 / 36

NoSQL - "Not only SQL"


- ► Wide variety of database technologies
- ► Dynamic Schema
- ► sharded indexing
- ► horizontal scaling
- ► support columnar storage

Big Data Analytics

NoSQL Databases

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 2. Overview

Overview

Part II

Large Scale Computational Models

Part I

Distributed Database

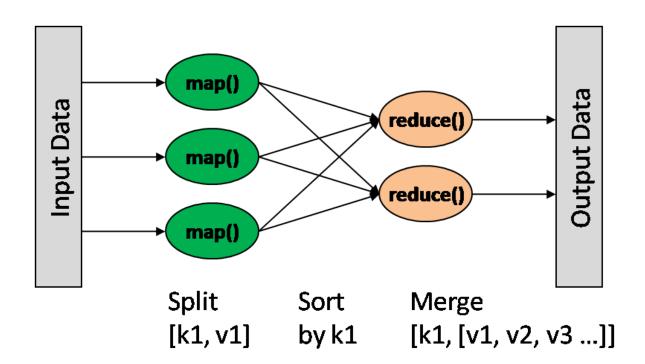
Distributed File System

Accessing

A computational model is needed to:

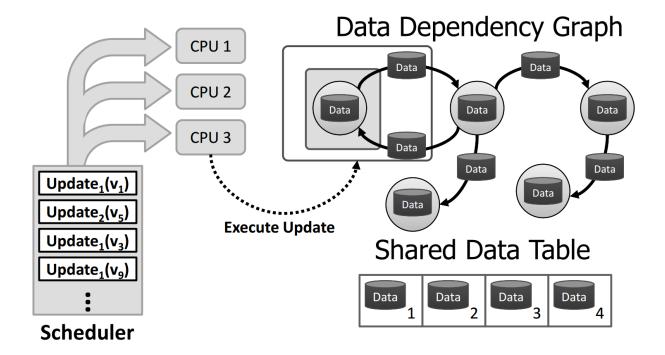
- ► Provide a set of useful computational primitives
- ► Hide the complexity of distributed and parallel programming
- ► Ensure Fault Tolerance

Examples:


- MapReduce
- GraphLab
- ► Pregel
- ► Apache Spark

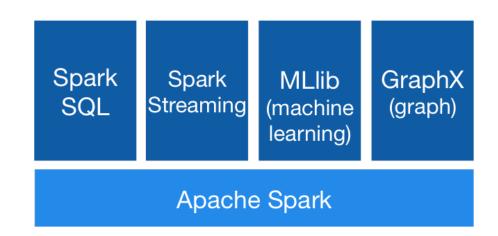
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 2. Overview


Jrivers/

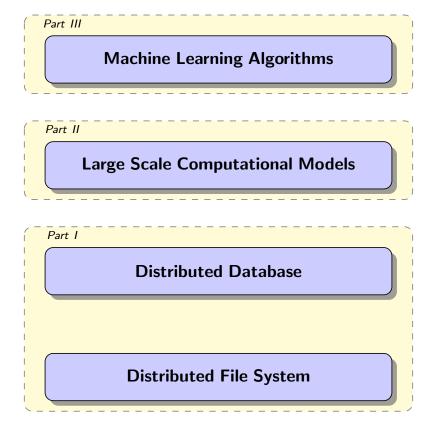
MapReduce

GraphLab



Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 2. Overview

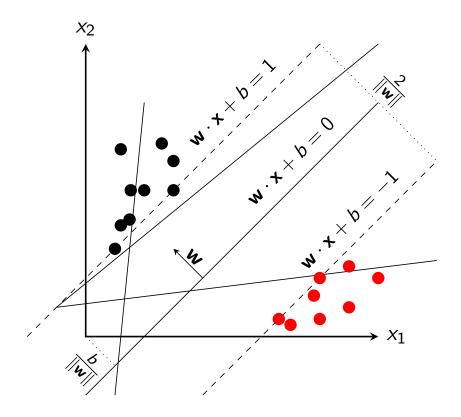

Apache Spark

Overview

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

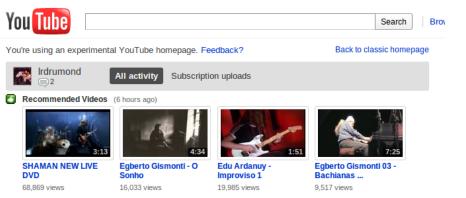
Big Data Analytics 2. Overview

Making sense of the data



- ► Linear and Non Linear Models for classification and regression
 - ► Scalable learning algorithms (e.g. Stochastic Gradient Descent)
 - Distributed Learning Algorithms (e.g. ADMM)
- ► Models for Link Prediction and link analysis
 - ► Factorization models
 - ► Distributed Learning Schemes (e.g. NOMAD, FPSGD)

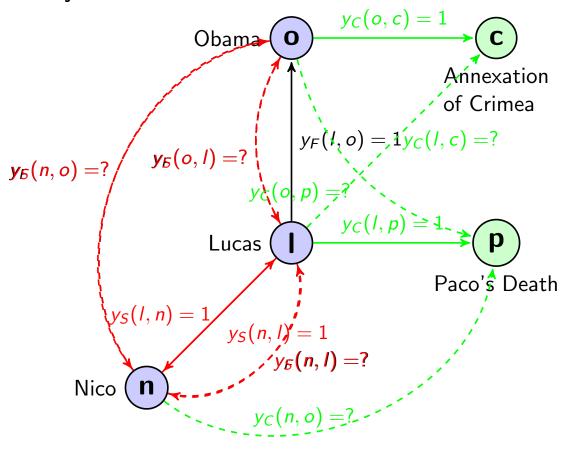
Classification


Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 2. Overview

30 / 36

Recommender Systems



Con More

Graph Analysis

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 2. Overview

33 / 36

Main goal: predictive analytics from large scale data!

- ► Introduction (1 Lecture)
- Machine Learning problems afflicted by Big Data (3 Lectures)
- Distributed Learning algorithms (3 Lectures)
- Parallel and distributed programing models (4 Lectures)
- ► Large scale storage and retrieval mechanisms (1 Lecture)

Outline

- 1. What is Big Data?
- 2. Overview
- 3. Organizational Stuff

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 3. Organizational Stuff

Exercises and tutorials

- ► There will be a weekly sheet with two exercises handed out **each** Wednesday in the lecture.
 - 1st sheet will be handed out Wed. 13.4
- ► Solutions to the exercises can be submitted until **next Wednesday before the lecture**.
 - 1st sheet is due Wed. 20.4.
- Exercises will be corrected
- ► Tutorials each Thursday 14-16. 1st tutorial at Friday 7.4
- ► Successful participation in the tutorial gives up to 10% bonus points for the exam.

Exams and credit points

- ▶ There will be a written exam at the end of the term (2h, 4 problems).
- ► The course gives 6 ECTS
- The course can be used in
 - ► IMIT MSc. / Informatik / Gebiet KI & ML
 - Wirtschaftsinformatik MSc / Informatik / Gebiet KI & ML

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany Big Data Analytics

Big Data Analytics 3. Organizational Stuff

Some books

- ► Anand Rajaraman, Jure Leskovec, and Jeffrey Ullman: "Mining of massive datasets" Available online: http://infolab.stanford.edu/ ullman/mmds.html
- ► Gautam Shroff: "The Intelligent Web: Search, smart algorithms, and big data"