

Big Data Analytics 4. Map Reduce I

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute of Computer Science
University of Hildesheim, Germany

original slides by Lucas Rego Drumond, ISMLL

Jrivers/

Outline

1. Introduction

2. Parallel programming paradigms

3. Map-Reduce

Outline

1. Introduction

2. Parallel programming paradigms

3. Map-Reduce

Overview

► Our data is nicely stored in a distributed infrastructure

- ► Our data is nicely stored in a distributed infrastructure
- ▶ We have a number of computers at our disposal

- ► Our data is nicely stored in a distributed infrastructure
- ▶ We have a number of computers at our disposal
- We want our analytics software to take advantage of all this computing power

- Our data is nicely stored in a distributed infrastructure
- ▶ We have a number of computers at our disposal
- We want our analytics software to take advantage of all this computing power
- ► When programming we want to focus on understanding our data and not our infrastructure

Shared Memory Infrastructure

Still ersiter.

Distributed Infrastructure

Outline

1. Introduction

2. Parallel programming paradigms

3. Map-Reduce

Stildeshaft

Parallel Computing principles

► We have p processors available to execute a task T

Jriversite.

- ▶ We have p processors available to execute a task T
- ► Ideally: the more processors the faster a task is executed

- ▶ We have *p* processors available to execute a task *T*
- ► Ideally: the more processors the faster a task is executed
- ► Reality: synchronisation and communication costs

- ▶ We have *p* processors available to execute a task *T*
- ▶ Ideally: the more processors the faster a task is executed
- ► Reality: synchronisation and communication costs
- ▶ Speedup s(T, p) of a task T by using p processors:

- ► We have *p* processors available to execute a task *T*
- ► Ideally: the more processors the faster a task is executed
- ► Reality: synchronisation and communication costs
- ▶ Speedup s(T, p) of a task T by using p processors:
 - ▶ Be t(T, p) the time needed to execute T using p processors

Jrivers/tai

Parallel Computing principles

- ► We have p processors available to execute a task T
- ► Ideally: the more processors the faster a task is executed
- ► Reality: synchronisation and communication costs
- ▶ Speedup s(T, p) of a task T by using p processors:
 - ▶ Be t(T, p) the time needed to execute T using p processors
 - ► **Speedup** is given by:

$$s(T,p) = \frac{t(T,1)}{t(T,p)}$$

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Jniversite,

Parallel Computing principles

▶ We have *p* processors available to execute a task *T*

Shivers/tay

Parallel Computing principles

▶ We have *p* processors available to execute a task *T*

▶ **Efficiency** e(T, p) of a task T by using p processors:

▶ We have *p* processors available to execute a task *T*

▶ **Efficiency** e(T, p) of a task T by using p processors:

$$e(T,p) = \frac{t(T,1)}{p \cdot t(T,p)}$$

Considerations

 \blacktriangleright It is not worth using a lot of processors for solving small problems

Considerations

- ▶ It is not worth using a lot of processors for solving small problems
- ► Algorithms should increase efficiency with problem size

Still deshalf

Paradigms - Shared Memory

lacktriangle All the processors have access to all the data $D:=\{d_1,\ldots,d_n\}$

- ▶ All the processors have access to all the data $D := \{d_1, \dots, d_n\}$
- ► Pieces of data can be overwritten

- lacktriangle All the processors have access to all the data $D:=\{d_1,\ldots,d_n\}$
- ► Pieces of data can be overwritten
- ► Processors need to lock datapoints before using them

Jrivers/rdy

Paradigms - Shared Memory

- ▶ All the processors have access to all the data $D := \{d_1, \ldots, d_n\}$
- ► Pieces of data can be overwritten
- ► Processors need to lock datapoints before using them

For each processor *p*:

- 1. $lock(d_i)$
- 2. process (d_i)
- 3. $unlock(d_i)$

Word Count Example

Given a corpus of text documents

$$D:=\{d_1,\ldots,d_n\}$$

Still deshill

Word Count Example

Given a corpus of text documents

$$D:=\{d_1,\ldots,d_n\}$$

each containing a sequence of words:

"
$$w_1, \ldots, w_m$$
"

pooled from a set W of possible words.

Jeiners/

Word Count Example

Given a corpus of text documents

$$D:=\{d_1,\ldots,d_n\}$$

each containing a sequence of words:

"
$$w_1,\ldots,w_m$$
"

pooled from a set W of possible words.

the task is to generate word counts for each word in the corpus

Word Count - Shared Memory

Shared vector for word counts: $c \in \mathbb{R}^{|W|}$

$$c \leftarrow \{0\}^{|W|}$$

Each processor:

- 1. access a document $d \in D$
- 2. for each word w_i in document d:
 - $2.1 \operatorname{lock}(c_i)$
 - $2.2 \ c_i \leftarrow c_i + 1$
 - 2.3 $unlock(c_i)$

► Inefficient in a distributed scenario

- ► Inefficient in a distributed scenario
- ► Results of a process can easily be overwritten

- ► Inefficient in a distributed scenario
- ► Results of a process can easily be overwritten
- ► Possible long waiting times for a piece of data because of the lock mechanism

Still deshalf

Paradigms - Message passing

▶ Each processor sees only one part of the data $\pi(D,p):=\{d_p,\ldots,d_{p+\frac{n}{p}-1}\}$

Jaivers/tai

Paradigms - Message passing

- ► Each processor sees only one part of the data $\pi(D,p) := \{d_p,\ldots,d_{p+\frac{n}{p}-1}\}$
- ► Each processor works on its partition

Jaivers/tai

Paradigms - Message passing

- ► Each processor sees only one part of the data $\pi(D,p) := \{d_p,\ldots,d_{p+\frac{n}{p}-1}\}$
- ► Each processor works on its partition
- Results are exchanged between processors (message passing)

Shivers/tage

Paradigms - Message passing

- ► Each processor sees only one part of the data $\pi(D,p) := \{d_p,\ldots,d_{p+\frac{n}{p}-1}\}$
- ► Each processor works on its partition
- ► Results are exchanged between processors (message passing)

For each processor *p*:

- 1. For each $d \in \pi(D, p)$
 - 1.1 process(d)
- 2. Communicate results

Shivers/ide

Word Count - Message passing

We need to define two types of processes:

- Slave counts the words on a subset of documents and informs the master
- 2. Master gathers counts from the slaves and sums them up

Shivers/idia

Word Count - Message passing

Slave:

Local memory:

subset of documents: $\pi(D, p) := \{d_p, \dots, d_{p+\frac{n}{p}-1}\}$

address of the master: addr_master

local word counts: $c \in \mathbb{R}^{|W|}$

- 1. $c \leftarrow \{0\}^{|W|}$
- 2. for each document $d \in \pi(D, p)$ for each word w_i in document d: $c_i \leftarrow c_i + 1$
- 3. **Send message** send(addr_master, c)

Word Count - Message passing

Master:

Local memory:

- 1. Global word counts: $c^{\mathsf{global}} \in \mathbb{R}^{|W|}$
- 2. List of slaves: S

$$c^{\mathsf{global}} \leftarrow \{0\}^{|W|}$$

$$s \leftarrow \{0\}^{|S|}$$

For each received message (p, c^p)

- 1. $c^{\text{global}} \leftarrow c^{\text{global}} + c^p$
- 2. $s_p \leftarrow 1$
- 3. if $||s||_1 = |S|$ return c^{global}

Paradigms - Message passing

▶ We need to manually assign master and slave roles for each processor

Paradigms - Message passing

- $\,\blacktriangleright\,$ We need to manually assign master and slave roles for each processor
- ► Partition of the data needs to be done manually

Janeshell.

Paradigms - Message passing

- ▶ We need to manually assign master and slave roles for each processor
- ▶ Partition of the data needs to be done manually
- Implementations like OpenMPI only provide services to exchange messages

Jeiners/

Outline

1. Introduction

2. Parallel programming paradigms

▶ Builds on the distributed message passing paradigm

- ▶ Builds on the distributed message passing paradigm
- ► Considers the data is partitioned over the nodes

- ► Builds on the distributed message passing paradigm
- ► Considers the data is partitioned over the nodes
- ► Pipelined procedure:

- ► Builds on the distributed message passing paradigm
- ► Considers the data is partitioned over the nodes
- ► Pipelined procedure:
 - Map phase

- ► Builds on the distributed message passing paradigm
- ► Considers the data is partitioned over the nodes
- ► Pipelined procedure:
 - 1. Map phase
 - 2. Reduce phase

- ▶ Builds on the distributed message passing paradigm
- Considers the data is partitioned over the nodes
- ► Pipelined procedure:
 - 1. Map phase
 - 2. Reduce phase
- High level abstraction: programmer only specifies a map and a reduce routine

Jaiwers/to

- ► No need to worry about how many processors are available
- ► No need to specify which ones will be mappers and which ones will be reducers

► Map-Reduce requires the data to be stored in a key-value format

- ► Map-Reduce requires the data to be stored in a key-value format
- ► Natural if one works with column databases

- ► Map-Reduce requires the data to be stored in a key-value format
- ► Natural if one works with column databases
- ► Examples:

- ► Map-Reduce requires the data to be stored in a key-value format
- ► Natural if one works with column databases
- Examples:

Key	Value
document	array of words
document	word
user	movies
user	friends
user	tweet

The Paradigm - Formally

Given

- ► A set of input keys *I*
- ► A set of output keys *O*
- ► A set of input values X
- ► A set of intermediate values V
- ► A set of output values *Y*

We can define:

$$\mathsf{map}: I \times X \to \mathcal{P}(O \times V)$$

and

reduce :
$$O \times \mathcal{P}(V) \rightarrow O \times Y$$

where ${\cal P}$ denotes the powerset

The Paradigm - Informally

- 1. Each mapper transforms some key-value pairs into a set of pairs of an output key and an intermediate value
- 2. all intermediate values are grouped according to their output keys
- 3. each reducer receives some pairs of a key and all its intermediate values
- 4. each reducer for each key aggregates all its intermediate values to one final value

Word Count Example

Map:

- ► Input: document-word list pairs
- ► Output: word-count pairs

$$(d_k, w_1, \ldots, w_m'') \mapsto [(w_i, c_i)]$$

Reduce:

- ► Input: word-(count list) pairs
- ► Output: word-count pairs

$$(w_i, [c_i]) \mapsto (w_i, \sum_{c \in [c_i]} c)$$

JriNers/to

Word Count Example

Mappers

□ ► Reducers ← ■ ► → へ へ

Мар


```
1 public static class Map
      extends MapReduceBase
2
      implements Mapper<LongWritable, Text, Text, IntWritable> {
3
      private final static IntWritable one = new IntWritable(1);
      private Text word = new Text():
5
6
      public void map(LongWritable key, Text value,
7
                       OutputCollector<Text, IntWritable> output,
                       Reporter reporter)
          throws IOException {
LO
11
           String line = value. toString ();
12
           StringTokenizer tokenizer = new StringTokenizer(line);
13
          while ( tokenizer .hasMoreTokens()) {
15
              word.set( tokenizer .nextToken());
۱6
              output. collect (word, one);
20 }
```


Reduce

```
1 public static class Reduce
      extends MapReduceBase
2
      implements Reducer<Text, IntWritable, Text, IntWritable> {
      public void reduce(Text key, Iterator <IntWritable> values,
5
                         OutputCollector<Text, IntWritable> output,
6
                         Reporter reporter)
7
          throws IOException {
          int sum = 0:
LO
          while (values.hasNext())
              sum += values.next().get();
          output. collect (key, new IntWritable(sum));
15
```


Execution snippet

```
public static void main(String[] args) throws Exception {
1
        JobConf conf = new JobConf(WordCount.class);
        conf.setJobName("wordcount");
3
        conf.setOutputKeyClass(Text.class);
5
        conf.setOutputValueClass(IntWritable.class);
6
7
        conf.setMapperClass(Map.class);
        conf.setCombinerClass(Reduce.class);
        conf.setReducerClass(Reduce.class);
LO
11
        conf.setInputFormat(TextInputFormat.class);
12
        conf.setOutputFormat(TextOutputFormat.class);
13
        FileInputFormat.setInputPaths(conf, new Path(args[0]));
        FileOutputFormat.setOutputPath(conf, new Path(args[1]));
۱6
        JobClient . runJob(conf);
18
۱9
20 }
```


Considerations

- ► Maps are executed in parallel
- Reduces are executed in parallel
- Bottleneck: Reducers can only execute after all the mappers are finished

Fault tolerance

When the master node detects node failures:

- ► Re-executes completed and in-progress map()
- ► Re-executes in-progress reduce tasks

Fault tolerance

When the master node detects node failures:

- ► Re-executes completed and in-progress map()
- ► Re-executes in-progress reduce tasks

When the master node detects particular key-value pairs that cause mappers to crash:

► Problematic pairs are skipped in the execution

Jnivers/tag

Parallel Efficiency of Map-Reduce

▶ We have *p* processors for performing *map* and *reduce* operations

- ▶ We have *p* processors for performing *map* and *reduce* operations
- ▶ Time to perform a task T on data D: t(T,1) = wD

- ▶ We have *p* processors for performing *map* and *reduce* operations
- ▶ Time to perform a task T on data D: t(T,1) = wD
- ▶ Time for producing intermediate data σD after the map phase: $t(T^{\text{inter}},1)=\sigma D$

- ▶ We have *p* processors for performing *map* and *reduce* operations
- ▶ Time to perform a task T on data D: t(T,1) = wD
- ► Time for producing intermediate data σD after the *map* phase: $t(T^{\text{inter}}, 1) = \sigma D$
- ► Overheads:

- ▶ We have *p* processors for performing *map* and *reduce* operations
- ▶ Time to perform a task T on data D: t(T,1) = wD
- ► Time for producing intermediate data σD after the *map* phase: $t(T^{\text{inter}}, 1) = \sigma D$
- ► Overheads:
 - ▶ intermediate data per mapper: $\frac{\sigma D}{p}$

- ▶ We have *p* processors for performing *map* and *reduce* operations
- ▶ Time to perform a task T on data D: t(T,1) = wD
- ► Time for producing intermediate data σD after the *map* phase: $t(T^{\text{inter}}, 1) = \sigma D$
- Overheads:
 - ▶ intermediate data per mapper: $\frac{\sigma D}{p}$
 - each of the p reducers needs to read one p-th of the data written by each of the p mappers:

$$\frac{\sigma D}{p} \frac{1}{p} p = \frac{\sigma D}{p}$$

Jrivers/Fig.

Parallel Efficiency of Map-Reduce

- ▶ We have *p* processors for performing *map* and *reduce* operations
- ▶ Time to perform a task T on data D: t(T,1) = wD
- ► Time for producing intermediate data σD after the *map* phase: $t(T^{\text{inter}}, 1) = \sigma D$
- Overheads:
 - ▶ intermediate data per mapper: $\frac{\sigma D}{p}$
 - each of the p reducers needs to read one p-th of the data written by each of the p mappers:

$$\frac{\sigma D}{p} \frac{1}{p} p = \frac{\sigma D}{p}$$

► Time for performing the task with Map-reduce:

$$t_{MR}(T,p) = \frac{wD}{p} + 2K\frac{\sigma D}{p}$$

K - constant for representing the overhead of IO operations (reading and writing data to disk)

► Time for performing the task in one processor: wD

- ► Time for performing the task in one processor: wD
- ► Time for performing the task with *p* processors on Map-reduce:

$$t_{MR}(T,p) = \frac{wD}{p} + 2K\frac{\sigma D}{p}$$

- ► Time for performing the task in one processor: wD
- ► Time for performing the task with *p* processors on Map-reduce:

$$t_{MR}(T,p) = \frac{wD}{p} + 2K\frac{\sigma D}{p}$$

Efficiency equation:

$$e(T,p) = \frac{t(T,1)}{p \cdot t(T,p)}$$

- ► Time for performing the task in one processor: wD
- ► Time for performing the task with *p* processors on Map-reduce:

$$t_{MR}(T,p) = \frac{wD}{p} + 2K\frac{\sigma D}{p}$$

► Efficiency equation:

$$e(T,p) = \frac{t(T,1)}{p \cdot t(T,p)}$$

► Efficiency of Map-Reduce:

$$e_{MR}(T,p) = \frac{wD}{p(\frac{wD}{p} + 2K\frac{\sigma D}{p})}$$

$$e_{MR}(T,p) = \frac{wD}{p(\frac{wD}{p} + 2K\frac{\sigma D}{p})}$$

$$e_{MR}(T, p) = \frac{wD}{p(\frac{wD}{p} + 2K\frac{\sigma D}{p})}$$

$$= \frac{wD}{wD + 2K\sigma D}$$

$$e_{MR}(T, p) = \frac{wD}{p(\frac{wD}{p} + 2K\frac{\sigma D}{p})}$$
$$= \frac{wD}{wD + 2K\sigma D}$$
$$= \frac{wD\frac{1}{wD}}{wD\frac{1}{wD} + 2K\sigma D\frac{1}{wD}}$$

$$e_{MR}(T, p) = \frac{wD}{p(\frac{wD}{p} + 2K\frac{\sigma D}{p})}$$

$$= \frac{wD}{wD + 2K\sigma D}$$

$$= \frac{wD\frac{1}{wD}}{wD\frac{1}{wD} + 2K\sigma D\frac{1}{wD}}$$

$$= \frac{1}{1 + 2K\frac{\sigma}{w}}$$

Shiversite.

$$e_{MR}(T,p) = \frac{1}{1 + 2K\frac{\sigma}{w}}$$

Sciversites.

Parallel Efficiency of Map-Reduce

$$e_{MR}(T,p) = rac{1}{1 + 2Krac{\sigma}{w}}$$

► Apparently the efficiency is independent of *p*

$$e_{MR}(T,p) = rac{1}{1 + 2Krac{\sigma}{w}}$$

- ► Apparently the efficiency is independent of *p*
- ► High speedups can be achieved with large number of processors

$$e_{MR}(T,p) = rac{1}{1 + 2Krac{\sigma}{w}}$$

- ► Apparently the efficiency is independent of *p*
- High speedups can be achieved with large number of processors
- lacktriangleright If σ is high (too much intermediate data) the efficiency deteriorates

$$e_{MR}(T,p) = rac{1}{1 + 2Krac{\sigma}{w}}$$

- ► Apparently the efficiency is independent of *p*
- High speedups can be achieved with large number of processors
- lacktriangleright If σ is high (too much intermediate data) the efficiency deteriorates
- ▶ In many cases σ depends on p