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Big Data Analytics 1. Introduction

Why do we need a Computational Model?

I Our data is nicely stored in a distributed infrastructure

I We have a number of computers at our disposal

I We want our analytics software to take advantage of all this
computing power

I When programming we want to focus on understanding our data and
not our infrastructure
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Big Data Analytics 1. Introduction

Shared Memory Infrastructure
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Processor Processor
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Big Data Analytics 2. Parallel programming paradigms

Parallel Computing principles
I We have p processors available to execute a task T

I Ideally: the more processors the faster a task is executed
I Reality: synchronisation and communication costs
I Speedup s(T , p) of a task T by using p processors:

I Be t(T , p) the time needed to execute T using p processors

I Speedup is given by:

s(T , p) =
t(T , 1)
t(T , p)
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I We have p processors available to execute a task T

I Efficiency e(T , p) of a task T by using p processors:
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Big Data Analytics 2. Parallel programming paradigms

Considerations

I It is not worth using a lot of processors for solving small problems

I Algorithms should increase efficiency with problem size
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Big Data Analytics 2. Parallel programming paradigms

Paradigms - Shared Memory

I All the processors have access to all the data D := {d1, . . . , dn}

I Pieces of data can be overwritten

I Processors need to lock datapoints before using them

For each processor p:

1. lock(di )

2. process(di )

3. unlock(di )
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Big Data Analytics 2. Parallel programming paradigms

Word Count Example

Given a corpus of text documents

D := {d1, . . . , dn}

each containing a sequence of words:

“w1, . . . ,w ′′m

pooled from a set W of possible words.

the task is to generate word counts for each word in the corpus
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Big Data Analytics 2. Parallel programming paradigms

Word Count - Shared Memory

Shared vector for word counts: c ∈ R|W |

c ← {0}|W |

Each processor:
1. access a document d ∈ D
2. for each word wi in document d :

2.1 lock(ci )
2.2 ci ← ci + 1
2.3 unlock(ci )

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
10 / 32



Big Data Analytics 2. Parallel programming paradigms

Paradigms - Shared Memory

I Inefficient in a distributed scenario

I Results of a process can easily be overwritten
I Possible long waiting times for a piece of data because of the lock

mechanism
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Big Data Analytics 2. Parallel programming paradigms

Paradigms - Message passing

I Each processor sees only one part of the data
π(D, p) := {dp, . . . , dp+ n

p−1}

I Each processor works on its partition

I Results are exchanged between processors (message passing)

For each processor p:

1. For each d ∈ π(D, p)

1.1 process(d)

2. Communicate results
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Big Data Analytics 2. Parallel programming paradigms

Word Count - Message passing

We need to define two types of processes:
1. Slave - counts the words on a subset of documents and informs the

master
2. Master - gathers counts from the slaves and sums them up
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Big Data Analytics 2. Parallel programming paradigms

Word Count - Message passing

Slave:
Local memory:

subset of documents: π(D, p) := {dp, . . . , dp+ n
p−1}

address of the master: addr_master
local word counts: c ∈ R|W |

1. c ← {0}|W |

2. for each document d ∈ π(D, p)
for each word wi in document d :

ci ← ci + 1

3. Send message send(addr_master, c)
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Big Data Analytics 2. Parallel programming paradigms

Word Count - Message passing

Master:
Local memory:
1. Global word counts: cglobal ∈ R|W |

2. List of slaves: S

cglobal ← {0}|W |

s ← {0}|S |

For each received message (p, cp)

1. cglobal ← cglobal + cp

2. sp ← 1
3. if ||s||1 = |S | return cglobal
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Big Data Analytics 2. Parallel programming paradigms

Paradigms - Message passing

I We need to manually assign master and slave roles for each processor

I Partition of the data needs to be done manually
I Implementations like OpenMPI only provide services to exchange

messages
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Big Data Analytics 3. Map-Reduce
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Big Data Analytics 3. Map-Reduce

Map-Reduce

I Builds on the distributed message passing paradigm

I Considers the data is partitioned over the nodes
I Pipelined procedure:

1. Map phase
2. Reduce phase

I High level abstraction: programmer only specifies a map and a reduce
routine
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Big Data Analytics 3. Map-Reduce

Map-Reduce

I No need to worry about how many processors are available
I No need to specify which ones will be mappers and which ones will be

reducers
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Big Data Analytics 3. Map-Reduce

Key-Value input data

I Map-Reduce requires the data to be stored in a key-value format

I Natural if one works with column databases
I Examples:

Key Value
document array of words
document word
user movies
user friends
user tweet
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Big Data Analytics 3. Map-Reduce

The Paradigm - Formally

Given
I A set of input keys I
I A set of output keys O
I A set of input values X
I A set of intermediate values V
I A set of output values Y

We can define:

map : I × X → P(O × V )

and
reduce : O × P(V )→ O × Y

where P denotes the powerset

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Big Data Analytics 3. Map-Reduce

The Paradigm - Informally
1. Each mapper transforms some key-value pairs into a set of pairs of an

output key and an intermediate value
2. all intermediate values are grouped according to their output keys
3. each reducer receives some pairs of a key and all its intermediate

values
4. each reducer for each key aggregates all its intermediate values to one

final value
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Big Data Analytics 3. Map-Reduce

Word Count Example

Map:

I Input: document-word list pairs
I Output: word-count pairs

(dk , “w1, . . . ,w ′′m) 7→ [(wi , ci )]

Reduce:

I Input: word-(count list) pairs
I Output: word-count pairs

(wi , [ci ]) 7→ (wi ,
∑

c∈[ci ]

c)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Big Data Analytics 3. Map-Reduce

Word Count Example

(d1, “love ain't no stranger”)

(d2, “crying in the rain”)

(d3, “looking for love”)

(d4, “I'm crying”)

(d5, “the deeper the love”)

(d6, “is this love”)

(d7, “Ain't no love”)

(love, 1)

(ain't, 1)

(stranger,1)

(crying, 1)

(rain, 1)

(looking, 1)

(love, 2)

(crying, 1)

(deeper, 1)

(this, 1)

(love, 2)

(ain't, 1)

(love, 1)

(ain't, 1)

(stranger,1)

(crying, 1)

(rain, 1)

(looking, 1)

(love, 2)

(crying, 1)

(deeper, 1)

(this, 1)

(love, 2)

(ain't, 1)

(love, 5)

(stranger,1)

(crying, 2)

(ain't, 2)

(rain, 1)

(looking, 1)

(deeper, 1)

(this, 1)

Mappers Reducers
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Big Data Analytics 3. Map-Reduce

Map

1 public static class Map
2 extends MapReduceBase
3 implements Mapper<LongWritable, Text, Text, IntWritable> {
4 private final static IntWritable one = new IntWritable(1);
5 private Text word = new Text();
6
7 public void map(LongWritable key, Text value,
8 OutputCollector<Text, IntWritable> output,
9 Reporter reporter)

10 throws IOException {
11
12 String line = value. toString ();
13 StringTokenizer tokenizer = new StringTokenizer(line );
14
15 while ( tokenizer .hasMoreTokens()) {
16 word.set( tokenizer .nextToken());
17 output. collect (word, one);
18 }
19 }
20 }
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Big Data Analytics 3. Map-Reduce

Reduce

1 public static class Reduce
2 extends MapReduceBase
3 implements Reducer<Text, IntWritable, Text, IntWritable> {
4
5 public void reduce(Text key, Iterator <IntWritable> values,
6 OutputCollector<Text, IntWritable> output,
7 Reporter reporter)
8 throws IOException {
9

10 int sum = 0;
11 while (values .hasNext())
12 sum += values.next().get();
13
14 output. collect (key, new IntWritable(sum));
15 }
16 }
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Big Data Analytics 3. Map-Reduce

Execution snippet

1 public static void main(String [] args) throws Exception {
2 JobConf conf = new JobConf(WordCount.class);
3 conf .setJobName("wordcount");
4
5 conf .setOutputKeyClass(Text.class);
6 conf .setOutputValueClass(IntWritable.class);
7
8 conf .setMapperClass(Map.class);
9 conf .setCombinerClass(Reduce.class);

10 conf .setReducerClass(Reduce.class);
11
12 conf .setInputFormat(TextInputFormat.class);
13 conf .setOutputFormat(TextOutputFormat.class);
14
15 FileInputFormat.setInputPaths(conf, new Path(args[0]));
16 FileOutputFormat.setOutputPath(conf, new Path(args[1]));
17
18 JobClient .runJob(conf);
19 }
20 }
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Big Data Analytics 3. Map-Reduce

Considerations

I Maps are executed in parallel
I Reduces are executed in parallel
I Bottleneck: Reducers can only execute after all the mappers are

finished

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Big Data Analytics 3. Map-Reduce

Fault tolerance

When the master node detects node failures:
I Re-executes completed and in-progress map()
I Re-executes in-progress reduce tasks

When the master node detects particular key-value pairs that cause
mappers to crash:

I Problematic pairs are skipped in the execution
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Big Data Analytics 3. Map-Reduce

Parallel Efficiency of Map-Reduce
I We have p processors for performing map and reduce operations

I Time to perform a task T on data D: t(T , 1) = wD
I Time for producing intermediate data σD after the map phase:

t(T inter, 1) = σD
I Overheads:

I intermediate data per mapper: σD
p

I each of the p reducers needs to read one p-th of the data written by
each of the p mappers:

σD
p

1
p

p =
σD
p

I Time for performing the task with Map-reduce:

tMR(T , p) =
wD
p

+ 2K
σD
p

K - constant for representing the overhead of IO operations (reading and
writing data to disk)
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Big Data Analytics 3. Map-Reduce

Parallel Efficiency of Map-Reduce

I Time for performing the task in one processor: wD

I Time for performing the task with p processors on Map-reduce:

tMR(T , p) =
wD
p

+ 2K
σD
p

I Efficiency equation:

e(T , p) =
t(T , 1)

p · t(T , p)
I Efficiency of Map-Reduce:

eMR(T , p) =
wD

p(wD
p + 2K σD

p )
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=
wD

wD + 2KσD

=
wD 1

wD
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=
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Big Data Analytics 3. Map-Reduce

Parallel Efficiency of Map-Reduce

eMR(T , p) =
1

1+ 2K σ
w

I Apparently the efficiency is independent of p
I High speedups can be achieved with large number of processors
I If σ is high (too much intermediate data) the efficiency deteriorates
I In many cases σ depends on p
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