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Why do we need a Computational Model?

v

Our data is nicely stored in a distributed infrastructure

v

We have a number of computers at our disposal

» We want our analytics software to take advantage of all this
computing power

v

When programming we want to focus on understanding our data and
not our infrastructure

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
2/32



Big Data Analytics 1. Introduction

Shared Memory Infrastructure

Processor | Processor | Processor
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We have p processors available to execute a task T
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Parallel Computing principles “

We have p processors available to execute a task T
Ideally: the more processors the faster a task is executed
Reality: synchronisation and communication costs
Speedup s(T, p) of a task T by using p processors:

vV v vy

» Be t(T, p) the time needed to execute T using p processors
» Speedup is given by:
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Big Data Analytics 2. Parallel programming paradigms

Considerations

» It is not worth using a lot of processors for solving small problems

» Algorithms should increase efficiency with problem size
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Paradigms - Shared Memory

» All the processors have access to all the data D := {d},

[m] = = =

DQAG

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 /32

o d}



Big Data Analytics

2. Parallel programming paradigms

Paradigms - Shared Memory

» All the processors have access to all the data D := {d},
» Pieces of data can be overwritten

] = =

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

8 /32

o d}



Big Data Analytics 2. Parallel programming paradigms

Paradigms - Shared Memory

» All the processors have access to all the data D := {d1,...,dn}
» Pieces of data can be overwritten

» Processors need to lock datapoints before using them

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
8 /32



Big Data Analytics 2. Parallel programming paradigms

Paradigms - Shared Memory

» All the processors have access to all the data D := {d1,...,dn}

» Pieces of data can be overwritten

» Processors need to lock datapoints before using them
For each processor p:

1. lock(d;)

2. process(d;)
3. unlock(d;)
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2. Parallel programming paradigms

Word Count Example

Given a corpus of text documents

D= {dl, .

-, dn}
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Word Count Example

Given a corpus of text documents

D:={d,...,dn}

each containing a sequence of words:

pooled from a set W of possible words.

the task is to generate word counts for each word in the corpus
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Big Data Analytics 2. Parallel programming paradigms

B
Word Count - Shared Memory i

Shared vector for word counts: ¢ € RIW!

c « {0}Vl
Each processor:

1. access a document d € D
2. for each word w; in document d:

2.1 lock(g)
22 ci+—c+1
2.3 unlock(c;)
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2. Parallel programming paradigms

Paradigms - Shared Memory

» |nefficient in a distributed scenario

» Results of a process can easily be overwritten
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Big Data Analytics 2. Parallel programming paradigms

Paradigms - Shared Memory

» Inefficient in a distributed scenario
» Results of a process can easily be overwritten

» Possible long waiting times for a piece of data because of the lock
mechanism
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Paradigms - Message passing

(D, p) = {dp.

» Each processor sees only one part of the data
iy )
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Paradigms - Message passing

» Each processor sees only one part of the data
7T(D7 P) = {dpa SRR dp+§fl}

» Each processor works on its partition

» Results are exchanged between processors (message passing)
For each processor p:

1. For each d € n(D, p)

1.1 process(d)

2. Communicate results

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
12 / 32



Big Data Analytics 2. Parallel programming paradigms

B
Word Count - Message passing i

We need to define two types of processes:

1. Slave - counts the words on a subset of documents and informs the
master

2. Master - gathers counts from the slaves and sums them up
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Big Data Analytics 2. Parallel programming paradigms

Word Count - Message passing

Slave:
Local memory:

subset of documents: 7(D, p) := {dp,...,dp n_1}
P
address of the master: addr _master

local word counts: ¢ € RIYI

1. ¢+ {0}/Wl
2. for each document d € 7(D, p)
for each word w; in document d:
i+ c+1

3. Send message send(addr_master, c)
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Big Data Analytics 2. Parallel programming paradigms

Word Count - Message passing

Master:
Local memory:

1. Global word counts: cg°b2 ¢ RIWI
2. List of slaves: S
c8lobal {O}|W\
s « {0}l
For each received message (p, c”)
Cg;lobal « Cglobal 4 cP
2. 5p¢1

3. if ||s]|1 = |S] return c8loba!
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Paradigms - Message passing

» We need to manually assign master and slave roles for each processor
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Big Data Analytics 2. Parallel programming paradigms

R
Paradigms - Message passing i

» We need to manually assign master and slave roles for each processor
» Partition of the data needs to be done manually

» Implementations like OpenMPI only provide services to exchange
messages
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3. Map-Reduce
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3. Map-Reduce
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Map-Reduce
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Big Data Analytics 3. Map-Reduce

NN
Map-Reduce “

v

Builds on the distributed message passing paradigm

v

Considers the data is partitioned over the nodes

v

Pipelined procedure:

1. Map phase
2. Reduce phase

v

High level abstraction: programmer only specifies a map and a reduce
routine
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Big Data Analytics 3. Map-Reduce

Map-Reduce

Output Data

Input Data

Split Sort Merge
[k1, v1] by k1 [k1, [v1, v2, v3..]]

» No need to worry about how many processors are available
» No need to specify which ones will be mappers and which ones will be
reducers
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3. Map-Reduce

Key-Value input data

» Map-Reduce requires the data to be stored in a key-value format
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Big Data Analytics 3. Map-Reduce

Key-Value input data

» Map-Reduce requires the data to be stored in a key-value format

» Natural if one works with column databases

» Examples:

Key Value
document | array of words
document | word

user movies

user friends

user tweet
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Big Data Analytics 3. Map-Reduce
The Paradigm - Formally

Given
» A set of input keys /
» A set of output keys O
» A set of input values X
» A set of intermediate values V
» A set of output values Y

We can define:

map:/ x X — P(O x V)

and
reduce: O x P(V) - O x Y

where P denotes the powerset
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Big Data Analytics 3. Map-Reduce

NN
The Paradigm - Informally “

1. Each mapper transforms some key-value pairs into a set of pairs of an

output key and an intermediate value
2. all intermediate values are grouped according to their output keys

3. each reducer receives some pairs of a key and all its intermediate

values
4. each reducer for each key aggregates all its intermediate values to one

final value

Input Data
Output Data

Split Sort Merge
[ka, v1] by k1 [k1, [vl, v2,v3 ..]]
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Big Data Analytics 3. Map-Reduce

Word Count Example

Map:
» Input: document-word list pairs

» Output: word-count pairs

(C/k, “Wl, ey W,/,{,) —> [(W,', C,')]
Reduce:

» Input: word-(count list) pairs

» OQutput: word-count pairs

(wis [ci]) = (wi, Y )

c€lci]
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Big Data Analytics 3. Map-Reduce

Word Count Example

Mappers

- . Reducers
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Big Data Analytics 3. Map-Reduce

P2
Map A

1 public static class Map

2 extends MapReduceBase

3 implements Mapper<LongWritable, Text, Text, IntWritable> {
4 private final static IntWritable one = new IntWritable(1);
5 private Text word = new Text();

6

7 public void map(LongWritable key, Text value,

8 OutputCollector< Text, IntWritable> output,
9 Reporter reporter)

10 throws |OException {

11

12 String line = value. toString ();

13 StringTokenizer tokenizer = new StringTokenizer(line );
14

15 while (tokenizer .hasMoreTokens()) {

16 word.set( tokenizer . nextToken());

17 output. collect (word, one);

18 }

19 i

20 }
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Big Data Analytics 3. Map-Reduce

Reduce
public static class Reduce
extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator <IntWritable> values,
OutputCollector< Text, IntWritable> output,
Reporter reporter)
throws |OException {

int sum = 0;
while (values.hasNext())
sum += values.next().get();

output. collect (key, new IntWritable(sum));

}
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Big Data Analytics 3. Map-Reduce
Execution snippet

public static void main(String[] args) throws Exception {

JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);

conf.setReducerClass(Reduce.class);

conf.setlnputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);

FilelnputFormat.setInputPaths(conf, new Path(args[0])):
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient . runJob(conf);
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Big Data Analytics 3. Map-Reduce

Considerations

» Maps are executed in parallel
» Reduces are executed in parallel

» Bottleneck: Reducers can only execute after all the mappers are
finished
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Big Data Analytics

3. Map-Reduce

Fault tolerance

When the master node detects node failures:

» Re-executes completed and in-progress map()
» Re-executes in-progress reduce tasks
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Big Data Analytics 3. Map-Reduce

B
Fault tolerance v

When the master node detects node failures:
» Re-executes completed and in-progress map()

» Re-executes in-progress reduce tasks

When the master node detects particular key-value pairs that cause
mappers to crash:

» Problematic pairs are skipped in the execution
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Big Data Analytics

3. Map-Reduce

Parallel Efficiency of Map-Reduce

» We have p processors for performing map and reduce operations
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Big Data Analytics 3. Map-Reduce

NN
Parallel Efficiency of Map-Reduce i

» We have p processors for performing map and reduce operations
» Time to perform a task T on data D: ¢(T,1) = wD
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» We have p processors for performing map and reduce operations

» Time to perform a task T on data D: ¢(T,1) = wD

» Time for producing intermediate data oD after the map phase:
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Big Data Analytics 3. Map-Reduce

NN
Parallel Efficiency of Map-Reduce i

v

We have p processors for performing map and reduce operations
Time to perform a task T on data D: t(T,1) = wD

Time for producing intermediate data oD after the map phase:
t(T"e 1) = oD

Overheads:

v

v

v
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Big Data Analytics 3. Map-Reduce

NN
Parallel Efficiency of Map-Reduce i

v

We have p processors for performing map and reduce operations
Time to perform a task T on data D: t(T,1) = wD
Time for producing intermediate data oD after the map phase:
t(T"e 1) = oD
Overheads:
» intermediate data per mapper: %
» each of the p reducers needs to read one p-th of the data written by
each of the p mappers:

v

v

v

oD1 oD
Zip="2
p p p
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Big Data Analytics 3. Map-Reduce

NN
Parallel Efficiency of Map-Reduce i

» We have p processors for performing map and reduce operations
» Time to perform a task T on data D: ¢(T,1) = wD
» Time for producing intermediate data oD after the map phase:
t(T"e 1) =0oD
» Overheads:
» intermediate data per mapper: %
» each of the p reducers needs to read one p-th of the data written by
each of the p mappers:
oD1 oD
==
pp p
» Time for performing the task with Map-reduce:

wD oD
tmr(T,p) = — +2K—
p p
K - constant for representing the overhead of 10 operations (reading and
writing data to disk)
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Big Data Analytics

3. Map-Reduce

Parallel Efficiency of Map-Reduce

» Time for performing the task in one processor: wD
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Big Data Analytics 3. Map-Reduce

Parallel Efficiency of Map-Reduce

» Time for performing the task in one processor: wD

» Time for performing the task with p processors on Map-reduce:

wD D
tur(T,p) = = + 2K
» Efficiency equation:
t(7,1)
e(T,p) =
( ) p- t( T, P)
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Big Data Analytics 3. Map-Reduce

NN
Parallel Efficiency of Map-Reduce i

» Time for performing the task in one processor: wD

» Time for performing the task with p processors on Map-reduce:

D D
tur(T.p) =~ + 2K
» Efficiency equation:
t(7T,1)
o(T,p)= — 2L
( ) P t( T? P)
» Efficiency of Map-Reduce:
wD

emr(T,P) = —p— b\
p(“2 +2K22)
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[m] = = =
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Big Data Analytics 3. Map-Reduce

Parallel Efficiency of Map-Reduce

wD
eMR(Ta P) = wD oD
B wD
~ wD +2KoD
_ wD 45
wD 5 + 2Ko D5

] = =
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Parallel Efficiency of Map-Reduce

wD
p(“L + 2K 7D)
B wD
~ wD +2KoD

eI\/IR(Ta P) =

1

= 1 1
WDW + 2K0’Dm

1
S 1+42KZ

=] F = = £ DA
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Parallel Efficiency of Map-Reduce

eMR(T7 p)

C1+2KZ

[m] = = =
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Parallel Efficiency of Map-Reduce

1
emr(T,p) = 11+2KZ

» Apparently the efficiency is independent of p

= = = = =
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w
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Big Data Analytics 3. Map-Reduce

Parallel Efficiency of Map-Reduce H
1
emr(T,p) = m
» Apparently the efficiency is independent of p
» High speedups can be achieved with large number of processors
» If o is high (too much intermediate data) the efficiency deteriorates

» In many cases o depends on p
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