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Big Data Analytics 1. Introduction

Core Ildea

To implement fault-tolerance for primary/original data:
» replication:

» partition large data into parts

» store each part on several times on different servers
» if one server crashes, the data is still available on the others

To implement fault-tolerance for secondary/derived data:
» replication
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Core Ildea

To implement fault-tolerance for primary/original data:
» replication:
» partition large data into parts
» store each part on several times on different servers
» if one server crashes, the data is still available on the others

To implement fault-tolerance for secondary/derived data:
» replication or

» resilience:

» partition large data into parts
» for each part, store how it was derived (lineage)

» from which parts of its input data
» by which operations

» if a server crashes, recreate its data on the others
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Big Data Analytics 1. Introduction

How to store data derivation?

journal
» sequence of elementary operations

set an element to a value
remove a value/index from a list
insert a value at an index of a list

>

>

>

>
» generic: supports all types of operations
» but too large

» often same size as data itself
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How to store data derivation?

journal
» sequence of elementary operations
» set an element to a value
» remove a value/index from a list
» insert a value at an index of a list
'S
» generic: supports all types of operations
» but too large
» often same size as data itself

coarse-grained transformations
> just store

» the executable code of the transformations and
» the input
> either primary data or a itself an RDD
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Big Data Analytics 1. Introduction

NS
Resilient Distributed Datasets (RDD) i

Represented by 5 components:
1. partition: a list of parts
dependencies: a list of parent RDDs
transformation: a function to compute the dataset from its parents

partitioner: how elements are assigned to parts

o R~ Db

preferred locations: which hosts store which parts
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NS
Resilient Distributed Datasets (RDD) i

Represented by 5 components:
1. partition: a list of parts
dependencies: a list of parent RDDs
transformation: a function to compute the dataset from its parents

partitioner: how elements are assigned to parts

o R~ Db

preferred locations: which hosts store which parts

distinction into two types of dependencies:
» narrow depenencies:
each parent part is used to derive at most one part of the dataset
» wide dependencies:
some parent part is used to derive several parts of the dataset
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Big Data Analytics 1. Introduction

How to cope with expensive operations?

checkpointing:
» traditionally,
» a long process is broken into several steps A, B, C etc.
» after each step, the state of the process is saved to disk
» if the process crashes within step B,

> it does not have to be run from the very beginning
> but can be restarted at the beginning of step B
reading its state at the end of step A.
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How to cope with expensive operations?

checkpointing:
» traditionally,
» a long process is broken into several steps A, B, C etc.

» after each step, the state of the process is saved to disk
» if the process crashes within step B,

> it does not have to be run from the very beginning
> but can be restarted at the beginning of step B
reading its state at the end of step A.

» in a distributed scenario,

» “saving to disk” is not fault-tolerant
» replicate the data instead (distributed checkpointing)
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Big Data Analytics 1. Introduction

Caching

» RDDs are marketed as technology for in memory cluster computing
derived RDDs are not saved to disks, but kept in (distributed) memory

v

v

derived RDDs are saved to disks on request (checkpointing)

v

allows faster operations
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Big Data Analytics 1. Introduction

Limitations

» RDDs are read-only
» as updating would invalidate them as input for possible derived RDDs

» transformations have to be deterministic

» otherwise lost parts cannot be recreated the very same way
» for stochastic transformations: store random seed

For more conceptual details see the original paper

»  Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S. and
Stoica, |. 2012. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.
Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation (2012).
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Big Data Analytics 2. Apache Spark

NN
Spark Overview v

Apache Spark is an open source framework for large scale data processing
and analysis

Main Ideas:
» Processing occurs where the data resides
» Avoid moving data over the network

» Works with the data in memory
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NN
Spark Overview v

Apache Spark is an open source framework for large scale data processing
and analysis

Main Ideas:
» Processing occurs where the data resides
» Avoid moving data over the network
» Works with the data in memory
Technical details:
» Written in Scala
» Work seamlessly with Java, Python and R

» Developed at UC Berkeley
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Big Data Analytics 2. Apache Spark

NN
Apache Spark Stack “

Data platform: Distributed file system /data base
» Ex: HDFS, HBase, Cassandra

Execution Environment: single machine or a cluster
» Standalone, EC2, YARN, Mesos

Spark Core: Spark API

Spark Ecosystem: libraries of common algorithms
» MLLib, GraphX, Streaming
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Big Data Analytics 2. Apache Spark

Apache Spark Ecosystem

MLlIib

Streamingll (machine

learning)

Apache Spark
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Big Data Analytics 2. Apache Spark

How to use Spark

Spark can be used through:

» The Spark Shell
» Available in Python and Scala

» Useful for learning the Framework

» Spark Applications
» Available in Python, Java and Scala

» For “serious” large scale processing
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Big Data Analytics 3. Working with Spark

P2
Working with Spark i

Working with Spark requires accessing a Spark Context:

» Main entry point to the Spark API

» Already preconfigured in the Shell

Most of the work in Spark is a set of operations on Resilient Distributed
Datasets (RDDs):

» Main data abstraction

» The data used and generated by the application is stored as RDDs
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Big Data Analytics 3. Working with Spark

Spark Java Application

1 import org.apache.spark.api.java.*;
2 import org.apache.spark.SparkConf;
3 import org.apache.spark.api.java.function.Function;

©oo~NOO D

public class HelloWorld {

public static void main(String[] args) {
String logFile = "/home/lst/system/spark/README.md";
SparkConf conf = new SparkConf () .setAppName ("Simple Application");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> logData = sc.textFile(logFile).cache();

long numAs = logData.filter(new Function<String, Boolean>() {
public Boolean call(String s) { return s.contains("a"); }

}).count();

long numBs = logData.filter(new Function<String, Boolean>() {
public Boolean call(String s) { return s.contains("b"); }

}) .count();

System.out.println("Lines with,a: " + numAs + ", linesgwith b: " + numBs);

[m]
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Big Data Analytics

3. Working with Spark

Compile and Run

1. compile:
1

0. install spark (here in ~/system/spark)

javac -cp "/system/spark/lib/spark-assembly-1.6.1-hadoop2.6.0.jar HelloWorld.java
2. create jar archive:
1

run:

jar cf HelloWorld.jar HelloWorldx.class
1

~/system/spark/bin/spark-submit --master local --class HelloWorld HelloWorld.jar
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Big Data Analytics 3. Working with Spark

NS
Spark Interactive Shell (Python) A

$ ./bin/pyspark
Welcome to

A
ANV N Y _
wou/ /o /\_._/_/Ju/_/\_\uwwversionu1.3.1

uuuuuu/_/

Using Python_version 2.7.6,,( default , ,Jun22,,2015,,17:58:13)
SparkContext, available as sc, ,SQLContext available as_sqlContext.
>>>

[M][N}
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Big Data Analytics 3. Working with Spark

Spark Context

The Spark Context is the main entry point for the Spark functionality.

v

It represents the connection to a Spark cluster

Allows to create RDDs

v

v

Allows to broadcast variables on the cluster

Allows to create Accumulators

v
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Big Data Analytics 3. Working with Spark

NS
Resilient Distributed Datasets (RDDs) i

A Spark application stores data as RDDs

Resilient — if data in memory is lost it can be recreated (fault tolerance)
Distributed — stored in memory across different machines

Dataset — data coming from a file or generated by the application

A Spark program is about operations on RDDs

RDDs are immutable: operations on RDDs may create new RDDs but
never change them
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Big Data Analytics 3. Working with Spark

. . 21
Resilient Distributed Datasets (RDDs) i
data ‘ RDD Element
data
data
data

RDD elements can be stored in different machines (transparent to the
developer)

data can have various data types
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Big Data Analytics 3. Working with Spark
P2
RDD Data types i

An element of an RDD can be of any type as long as it is serializable

Example:

» Primitive data types: integers, characters, strings, floating point
numbers, ...

» Sequences: lists, arrays, tuples ...
» Pair RDDs: key-value pairs
» Serializable Scala/Java objects

A single RDD may have elements of different types

Some specific element types have additional functionality
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Big Data Analytics 3. Working with Spark

. NN
Example: Text file to RDD v

[Fooimyem]

| had breakfast this morning. V) EE N ) eI,

The coffee was really good.
| didn't like the bread though.
But | had cheese.

Oh | love cheese.

| The coffee was really good.

| didn't like the bread though.

But | had cheese.

Oh I love cheese.
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Big Data Analytics 3. Working with Spark

RDD operations

There are two types of RDD operations:
» Actions: return a value based on the RDD
» Example:

» count: returns the number of elements in the RDD
» first(): returns the first element in the RDD
» take(n): returns an array with the first n elements in the RDD
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Big Data Analytics 3. Working with Spark

RDD operations

There are two types of RDD operations:
» Actions: return a value based on the RDD
» Example:

» count: returns the number of elements in the RDD
» first(): returns the first element in the RDD
» take(n): returns an array with the first n elements in the RDD

Transformations: creates a new RDD based on the current one

v

v

Example:

» filter: returns the elements of an RDD which match a given criterion
» map: applies a particular function to each RDD element
» reduce: aggregates the elements of a specific RDD
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Big Data Analytics 3. Working with Spark

Actions vs. Transformations

ROD

data

data
Value

data

data

data data

data data

data data

data data
o
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Big Data Analytics 3. Working with Spark

Actions examples

| had breakfast this morning.
The coffee was really good.
| didn't like the bread though.

But | had cheese.
Oh I love cheese.

>>> mydata = sc.textFile("mydiary.txt")
>>> mydata.count()

5

>>> mydata.first()

u' I had breakfast,, thismorning.’

>>> mydata.take(2)

| had breakfast this morning.

The coffee was really good.

| didn't like the bread though.

But | had cheese.

Oh I love cheese.

[u’ Iuhadybreakfast, thisumorning.”, u'The coffee was_really good.’]

o F = = £ DA
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Big Data Analytics 3. Working with Spark

NN
Transformation examples “
RODimgaa | RoDifiered |

I'had breakfast this morning. | had breakfast this morning.

The coffee was really good. I didn't like the bread though.

| didn't like the bread though. Biillhadlcheesey

But | had cheese. Oh | love cheese.

Oh I love cheese.

filter(lambda line: "1 " in line)
| had breakfast this morning. | HAD BREAKFAST THIS MORNING.
| didn't like the bread though. | DIDN'T LIKE THE BREAD THOUGH.
But | had cheese. BUT | HAD CHEESE.
Oh | love cheese. OH | LOVE CHEESE.

map(lambda line: line.upper())

=] 5 = = E DA
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Big Data Analytics 3. Working with Spark

Transformations examples

>>> filtered = mydata.filter (lambda line: "I" in line)
>>> filtered.count()
4
>>> filtered.take(4)
[u’ Iuhad breakfast, this morning.’,
u"ldidn"t,, like _the bread though.",
u'Butyl_had cheese.’,
u'Ohylulove cheese. ']
>>> filterMap = filtered.map(lambda line: line . upper())
>>> filterMap.count()
4
>>> filterMap.take(4)
[u"lLHADUBREAKFAST_THISLMORNING.’,
u"l DIDN' T LIKELTHE_BREAD_ THOUGH.",
u'BUTUILHAD,CHEESE.",
u'OHUILLOVE CHEESE."]
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Big Data Analytics 3. Working with Spark

. N
Operations on specific types “

Numeric RDDs have special operations:

» mean()
» min()
» max ()

>

>>> linelens = mydata.map(lambda line: len(line))
>>> linelens. collect ()
[29, 27, 31, 17, 17]
>>> linelens.mean()
242

>>> linelens.min()

17

>>> linelens.max()
31

>>> linelens.stdev()
6.0133185513491636
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Big Data Analytics 3. Working with Spark
Operations on Key-Value Pairs

Pair RDDs contain a two element tuple: (K, V)
Keys and values can be of any type
Extremely useful for implementing MapReduce algorithms
Examples of operations:
» groupByKey
» reduceByKey

» aggregateByKey

v

sortByKey
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Big Data Analytics 3. Working with Spark

Word Count Example

Map:
» Input: document-word list pairs

» Output: word-count pairs

(C/k, “Wl, ey W,/,{,) —> [(W,', C,')]
Reduce:

» Input: word-(count list) pairs

» OQutput: word-count pairs

(wis [ci]) = (wi, Y )

c€lci]
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Big Data Analytics 3. Working with Spark

Word Count Example

Mappers

- . Reducers
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Big Data Analytics 3. Working with Spark

Word Count on Spark

| had breakfast this morning.

The coffee was really good.

I didn't like the bread though.

But | had cheese.

Oh | love cheese.

| 1,1
had (had,1)
breakfast (breakfast,1)
this (this, 1)
morning. (morning.,1)

1 >>> counts = mydata.flatMap(lambda line: line.split("_")) \

2
3

.map(lambda word: (word, 1)) \

.reduceByKey(lambda x, y: x + y)

[m]

=

reduceByKey

14

(had,2)

(breakfast,1)

(this,1)

(morning.,1)

D¢
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Big Data Analytics 3. Working with Spark

NN
ReduceByKey “

1 .reduceByKey(lambda x, y: x + y)

ReduceByKey works a little different from the MapReduce reduce function:

» |t takes two arguments: combines two values at a time associated with
the same key

» Must be commutative: reduceByKey(x,y) = reduceByKey(y,x)

» Must be associative: reduceByKey(reduceByKey(x,y), z) =
reduceByKey (x,reduceByKey(y,z))

Spark does not guarantee on which order the reduceByKey functions are
executed!
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Big Data Analytics 3. Working with Spark

NS
Considerations v

Spark provides a much more efficient MapReduce implementation then
Hadoop:

» Higher level API

» In memory storage (less |/O overhead)

» Chaining MapReduce operations is simplified: sequence of MapReduce
passes can be done in one job

Spark vs. Hadoop on training a logistic regression model:

—. 120 110
@
@ 90
-E ® Hadoop
o 60
E ™ Spark
s % 09
o 0 .
Source: Apache Spark. https://spark.apache.org/
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Big Data Analytics 4. MLLib: Machine Learning with Spark

MLLib is a Spark Machine Learning library containing implementations for:

Overview

» Computing Basic Statistics from Datasets

» Classification and Regression

» Collaborative Filtering

» Clustering

» Feature Extraction and Dimensionality Reduction
» Frequent Pattern Mining

» Optimization Algorithms
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Big Data Analytics 4. MLLib: Machine Learning with Spark

Logistic Regression with MLLib

Import necessary packages:

from pyspark. mllib . regression import LabeledPoint
from pyspark. mllib . util import MLUtils

from pyspark. mllib . classification import LogisticRegressionWithSGD

Read the data (LibSVM format):

dataset = MLULtils.loadLibSVMFile(sc,
"data/mllib/sample libsvm data.txt")
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Big Data Analytics 4. MLLib: Machine Learning with Spark

Logistic Regression with MLLib

Train the Model:

model = LogisticRegressionWithSGD.train(dataset)

Evaluate:

labelsAndPreds = dataset

.map(lambda p: (p.label, model. predict (p. features )))
trainErr = labelsAndPreds

. filter (lambda (v, p): v I=p)

.count() / float (dataset.count())
print (" TraininguError,=," + str(trainErr))
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