
Big Data Analytics

Big Data Analytics
7. Resilient Distributed Datasets: Apache Spark

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute of Computer Science

University of Hildesheim, Germany

original slides by Lucas Rego Drumond, ISMLL

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 34



Big Data Analytics

Outline

1. Introduction

2. Apache Spark

3. Working with Spark

4. MLLib: Machine Learning with Spark

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 34



Big Data Analytics 1. Introduction

Outline

1. Introduction

2. Apache Spark

3. Working with Spark

4. MLLib: Machine Learning with Spark

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 34



Big Data Analytics 1. Introduction

Core Idea

To implement fault-tolerance for primary/original data:
I replication:

I partition large data into parts
I store each part on several times on different servers
I if one server crashes, the data is still available on the others

To implement fault-tolerance for secondary/derived data:
I replication

or
I resilience:

I partition large data into parts
I for each part, store how it was derived (lineage)

I from which parts of its input data
I by which operations

I if a server crashes, recreate its data on the others
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Big Data Analytics 1. Introduction

How to store data derivation?
journal

I sequence of elementary operations
I set an element to a value
I remove a value/index from a list
I insert a value at an index of a list
I . . .

I generic: supports all types of operations
I but too large

I often same size as data itself

coarse-grained transformations
I just store

I the executable code of the transformations and
I the input

I either primary data or a itself an RDD
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Big Data Analytics 1. Introduction

Resilient Distributed Datasets (RDD)

Represented by 5 components:
1. partition: a list of parts
2. dependencies: a list of parent RDDs
3. transformation: a function to compute the dataset from its parents
4. partitioner: how elements are assigned to parts
5. preferred locations: which hosts store which parts

distinction into two types of dependencies:
I narrow depenencies:

each parent part is used to derive at most one part of the dataset
I wide dependencies:

some parent part is used to derive several parts of the dataset
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Big Data Analytics 1. Introduction

How to cope with expensive operations?

checkpointing:
I traditionally,

I a long process is broken into several steps A, B, C etc.
I after each step, the state of the process is saved to disk
I if the process crashes within step B,

I it does not have to be run from the very beginning
I but can be restarted at the beginning of step B

reading its state at the end of step A.

I in a distributed scenario,
I “saving to disk” is not fault-tolerant
I replicate the data instead (distributed checkpointing)
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Big Data Analytics 1. Introduction

Caching

I RDDs are marketed as technology for in memory cluster computing
I derived RDDs are not saved to disks, but kept in (distributed) memory
I derived RDDs are saved to disks on request (checkpointing)
I allows faster operations
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Big Data Analytics 1. Introduction

Limitations

I RDDs are read-only
I as updating would invalidate them as input for possible derived RDDs

I transformations have to be deterministic
I otherwise lost parts cannot be recreated the very same way
I for stochastic transformations: store random seed

For more conceptual details see the original paper
I Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S. and

Stoica, I. 2012. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.
Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation (2012).
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Big Data Analytics 2. Apache Spark

Spark Overview
Apache Spark is an open source framework for large scale data processing
and analysis

Main Ideas:
I Processing occurs where the data resides

I Avoid moving data over the network

I Works with the data in memory

Technical details:
I Written in Scala

I Work seamlessly with Java, Python and R

I Developed at UC Berkeley
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Big Data Analytics 2. Apache Spark

Apache Spark Stack

Data platform: Distributed file system /data base
I Ex: HDFS, HBase, Cassandra

Execution Environment: single machine or a cluster
I Standalone, EC2, YARN, Mesos

Spark Core: Spark API

Spark Ecosystem: libraries of common algorithms
I MLLib, GraphX, Streaming
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Big Data Analytics 2. Apache Spark

Apache Spark Ecosystem
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Big Data Analytics 2. Apache Spark

How to use Spark

Spark can be used through:

I The Spark Shell
I Available in Python and Scala

I Useful for learning the Framework

I Spark Applications
I Available in Python, Java and Scala

I For “serious” large scale processing
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Big Data Analytics 3. Working with Spark

Working with Spark

Working with Spark requires accessing a Spark Context:

I Main entry point to the Spark API

I Already preconfigured in the Shell

Most of the work in Spark is a set of operations on Resilient Distributed
Datasets (RDDs):

I Main data abstraction

I The data used and generated by the application is stored as RDDs
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Big Data Analytics 3. Working with Spark

Spark Java Application

1 import org.apache.spark.api.java.*;
2 import org.apache.spark.SparkConf;
3 import org.apache.spark.api.java.function.Function;
4
5 public class HelloWorld {
6 public static void main(String[] args) {
7 String logFile = "/home/lst/system/spark/README.md";
8 SparkConf conf = new SparkConf().setAppName("Simple␣Application");
9 JavaSparkContext sc = new JavaSparkContext(conf);

10 JavaRDD<String> logData = sc.textFile(logFile).cache();
11
12 long numAs = logData.filter(new Function<String, Boolean>() {
13 public Boolean call(String s) { return s.contains("a"); }
14 }).count();
15
16 long numBs = logData.filter(new Function<String, Boolean>() {
17 public Boolean call(String s) { return s.contains("b"); }
18 }).count();
19
20 System.out.println("Lines␣with␣a:␣" + numAs + ",␣lines␣with␣b:␣" + numBs);
21 }
22 }
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Big Data Analytics 3. Working with Spark

Compile and Run

0. install spark (here in ~/system/spark)

1. compile:
1 javac -cp ~/system/spark/lib/spark-assembly-1.6.1-hadoop2.6.0.jar HelloWorld.java

2. create jar archive:
1 jar cf HelloWorld.jar HelloWorld*.class

3. run:
1 ~/system/spark/bin/spark-submit --master local --class HelloWorld HelloWorld.jar
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Big Data Analytics 3. Working with Spark

Spark Interactive Shell (Python)

1 $ ./bin/pyspark
2 Welcome to
3 ____ __
4 / __/__ ___ _____/ /__
5 _\ \/ _ \/ _ ‘/ __/ ’_/
6 ␣␣␣/__␣/␣.__/\_,_/_/␣/_/\_\␣␣␣version␣1.3.1
7 ␣␣␣␣␣␣/_/
8
9 Using␣Python␣version␣2.7.6␣(default ,␣Jun␣22␣2015␣17:58:13)

10 SparkContext␣available␣as␣sc,␣SQLContext␣available␣as␣sqlContext.
11 >>>
12 ␣␣␣
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Big Data Analytics 3. Working with Spark

Spark Context

The Spark Context is the main entry point for the Spark functionality.

I It represents the connection to a Spark cluster

I Allows to create RDDs

I Allows to broadcast variables on the cluster

I Allows to create Accumulators
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Big Data Analytics 3. Working with Spark

Resilient Distributed Datasets (RDDs)

A Spark application stores data as RDDs

Resilient → if data in memory is lost it can be recreated (fault tolerance)

Distributed → stored in memory across different machines

Dataset → data coming from a file or generated by the application

A Spark program is about operations on RDDs

RDDs are immutable: operations on RDDs may create new RDDs but
never change them
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Big Data Analytics 3. Working with Spark

Resilient Distributed Datasets (RDDs)

data

data

data

data

RDD
RDD Element

RDD elements can be stored in different machines (transparent to the
developer)

data can have various data types
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Big Data Analytics 3. Working with Spark

RDD Data types

An element of an RDD can be of any type as long as it is serializable

Example:

I Primitive data types: integers, characters, strings, floating point
numbers, ...

I Sequences: lists, arrays, tuples ...

I Pair RDDs: key-value pairs

I Serializable Scala/Java objects

A single RDD may have elements of different types

Some specific element types have additional functionality
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Big Data Analytics 3. Working with Spark

Example: Text file to RDD

I had breakfast this morning.
The coffee was really good.
I didn't like the bread though.
But I had cheese.
Oh I love cheese.

I had breakfast this morning.

The coffee was really good.

I didn't like the bread though.

But I had cheese.

RDD: mydata

Oh I love cheese.

File: mydiary.txt
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Big Data Analytics 3. Working with Spark

RDD operations
There are two types of RDD operations:

I Actions: return a value based on the RDD

I Example:

I count: returns the number of elements in the RDD
I first(): returns the first element in the RDD
I take(n): returns an array with the first n elements in the RDD

I Transformations: creates a new RDD based on the current one

I Example:

I filter: returns the elements of an RDD which match a given criterion
I map: applies a particular function to each RDD element
I reduce: aggregates the elements of a specific RDD
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Big Data Analytics 3. Working with Spark

Actions vs. Transformations

data

data

data

data

RDD

Action Value

data

data

data

data

BaseRDD

Transformation

data

data

data

data

NewRDD
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Big Data Analytics 3. Working with Spark

Actions examples

I had breakfast this morning.
The coffee was really good.
I didn't like the bread though.
But I had cheese.
Oh I love cheese.

I had breakfast this morning.

The coffee was really good.

I didn't like the bread though.

But I had cheese.

RDD: mydata

Oh I love cheese.

File: mydiary.txt

1 >>> mydata = sc.textFile("mydiary.txt")
2 >>> mydata.count()
3 5
4 >>> mydata.first()
5 u’ I␣had␣breakfast␣ this␣morning.’
6 >>> mydata.take(2)
7 [u’ I␣had␣breakfast␣ this␣morning.’ , u’The␣coffee␣was␣really␣good.’]
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Big Data Analytics 3. Working with Spark

Transformation examples

I had breakfast this morning.

The coffee was really good.

I didn't like the bread though.

But I had cheese.

RDD: mydata

Oh I love cheese.

filter

I had breakfast this morning.

I didn't like the bread though.

But I had cheese.

RDD: filtered

Oh I love cheese.

filter(lambda line: "I " in line)

I had breakfast this morning.

I didn't like the bread though.

But I had cheese.

RDD: filtered

Oh I love cheese.

I HAD BREAKFAST THIS MORNING.

I DIDN'T LIKE THE BREAD THOUGH.

BUT I HAD CHEESE.

RDD: filterMap

OH I LOVE CHEESE.

map

map(lambda line: line.upper())
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Big Data Analytics 3. Working with Spark

Transformations examples

1 >>> filtered = mydata.filter(lambda line: "I␣" in line )
2 >>> filtered.count()
3 4
4 >>> filtered.take(4)
5 [u’ I␣had␣breakfast␣ this␣morning.’ ,
6 u"I␣didn’ t␣ like ␣the␣bread␣though.",
7 u’But␣I␣had␣cheese.’ ,
8 u’Oh␣I␣love␣cheese. ’ ]
9 >>> filterMap = filtered.map(lambda line: line .upper())

10 >>> filterMap.count()
11 4
12 >>> filterMap.take(4)
13 [u’ I␣HAD␣BREAKFAST␣THIS␣MORNING.’,
14 u"I␣DIDN’T␣LIKE␣THE␣BREAD␣THOUGH.",
15 u’BUT␣I␣HAD␣CHEESE.’,
16 u’OH␣I␣LOVE␣CHEESE.’]
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Big Data Analytics 3. Working with Spark

Operations on specific types
Numeric RDDs have special operations:

I mean()

I min()

I max()

I ...

1 >>> linelens = mydata.map(lambda line: len(line))
2 >>> linelens. collect ()
3 [29, 27, 31, 17, 17]
4 >>> linelens.mean()
5 24.2
6 >>> linelens.min()
7 17
8 >>> linelens.max()
9 31

10 >>> linelens.stdev()
11 6.0133185513491636
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Big Data Analytics 3. Working with Spark

Operations on Key-Value Pairs

Pair RDDs contain a two element tuple: (K ,V )

Keys and values can be of any type

Extremely useful for implementing MapReduce algorithms

Examples of operations:

I groupByKey

I reduceByKey

I aggregateByKey

I sortByKey

I ...
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Big Data Analytics 3. Working with Spark

Word Count Example

Map:

I Input: document-word list pairs
I Output: word-count pairs

(dk , “w1, . . . ,w ′′
m) 7→ [(wi , ci )]

Reduce:

I Input: word-(count list) pairs
I Output: word-count pairs

(wi , [ci ]) 7→ (wi ,
∑

c∈[ci ]

c)
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Big Data Analytics 3. Working with Spark

Word Count Example

(d1, “love ain't no stranger”)

(d2, “crying in the rain”)

(d3, “looking for love”)

(d4, “I'm crying”)

(d5, “the deeper the love”)

(d6, “is this love”)

(d7, “Ain't no love”)

(love, 1)

(ain't, 1)

(stranger,1)

(crying, 1)

(rain, 1)

(looking, 1)

(love, 2)

(crying, 1)

(deeper, 1)

(this, 1)

(love, 2)

(ain't, 1)

(love, 1)

(ain't, 1)

(stranger,1)

(crying, 1)

(rain, 1)

(looking, 1)

(love, 2)

(crying, 1)

(deeper, 1)

(this, 1)

(love, 2)

(ain't, 1)

(love, 5)

(stranger,1)

(crying, 2)

(ain't, 2)

(rain, 1)

(looking, 1)

(deeper, 1)

(this, 1)

Mappers Reducers
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Big Data Analytics 3. Working with Spark

Word Count on Spark

I had breakfast this morning.

The coffee was really good.

I didn't like the bread though.

But I had cheese.

RDD: mydata

Oh I love cheese.

flatMap

I

had

breakfast

RDD 

this

morning.

...

map

(I,1)

(had,1)

(breakfast,1)

RDD 

(this,1)

(morning.,1)

...

reduceByKey

(I,4)

(had,2)

(breakfast,1)

RDD 

(this,1)

(morning.,1)

...

1 >>> counts = mydata.flatMap(lambda line: line.split("␣")) \
2 .map(lambda word: (word, 1)) \
3 .reduceByKey(lambda x, y: x + y)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
29 / 34



Big Data Analytics 3. Working with Spark

ReduceByKey

1 .reduceByKey(lambda x, y: x + y)

ReduceByKey works a little different from the MapReduce reduce function:

I It takes two arguments: combines two values at a time associated with
the same key

I Must be commutative: reduceByKey(x,y) = reduceByKey(y,x)

I Must be associative: reduceByKey(reduceByKey(x,y), z) =
reduceByKey(x,reduceByKey(y,z))

Spark does not guarantee on which order the reduceByKey functions are
executed!
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Big Data Analytics 3. Working with Spark

Considerations
Spark provides a much more efficient MapReduce implementation then
Hadoop:

I Higher level API
I In memory storage (less I/O overhead)
I Chaining MapReduce operations is simplified: sequence of MapReduce

passes can be done in one job

Spark vs. Hadoop on training a logistic regression model:

Source: Apache Spark. https://spark.apache.org/
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Big Data Analytics 4. MLLib: Machine Learning with Spark

Overview

MLLib is a Spark Machine Learning library containing implementations for:

I Computing Basic Statistics from Datasets

I Classification and Regression

I Collaborative Filtering

I Clustering

I Feature Extraction and Dimensionality Reduction

I Frequent Pattern Mining

I Optimization Algorithms
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Big Data Analytics 4. MLLib: Machine Learning with Spark

Logistic Regression with MLLib

Import necessary packages:
1 from pyspark.mllib . regression import LabeledPoint
2 from pyspark.mllib . util import MLUtils
3 from pyspark.mllib . classification import LogisticRegressionWithSGD

Read the data (LibSVM format):
1 dataset = MLUtils.loadLibSVMFile(sc,
2 "data/mllib/sample_libsvm_data.txt")
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Big Data Analytics 4. MLLib: Machine Learning with Spark

Logistic Regression with MLLib

Train the Model:
1 model = LogisticRegressionWithSGD.train(dataset)

Evaluate:
1 labelsAndPreds = dataset
2 .map(lambda p: (p.label, model.predict (p. features )))
3 trainErr = labelsAndPreds
4 . filter (lambda (v, p): v != p)
5 .count() / float (dataset .count())
6 print ("Training␣Error␣=␣" + str(trainErr ))
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