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Big Data Analytics 1. Introduction

N
Supervised Learning / The Prediction Problem i
Given

» samples D C X x Y from an unknown distribution p on X’ x ),
(called data)

» a function £: ) x ) — R (called loss)
find a function

y:x=Y

(called model) with minimal expected loss

Exyy~p(tly, 9(x)))
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N
Supervised Learning / The Prediction Problem i

Given

» samples D C X x Y from an unknown distribution p on X’ x ),
(called data)

» a function £: ) x ) — R (called loss)
find a function
y:x=Y
(called model) with minimal expected loss

Exyy~p(tly, 9(x)))

N := |D| number of instances

M number of predictors: X = RM

regression: Y =R (or Y =RT)

classification: ) any finite set (called classes)
» T :=|Y| number of classes

vy VYy
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Supervised Learning / Parametrized Models

Limit models to a parametrized family of functions:

y(x;0), 60

e.g.,
» linear model:
9(x;0) =07 x
» logistic regression
. 1
o) = g

» support vector machine, neural network, etc.
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Supervised Learning / Learning

» Finding a function then means finding/estimating parameters 6:

. 1 .
0= arg min > Uy, 9(x.0))

(x,y)eD

] = =
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Supervised Learning / Learning

» Finding a function then means finding/estimating parameters 6:

" 1 N
0= argemmﬁ Z ﬁ(y,y(x,@))
(x.y)€D

» If there are many parameters, reduce the adaptivity/complexity of the
model to avoid overfitting, e.g., by forcing them to be small:

. 1 A
0= argemln N Z Uy, y(x,0)) + AR(6)
(x,y)eD

» e.g., R(0) =||0]|3 (called regularization)
» /+ R is called objective function
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MUE
Stochastic Gradient Descent (SGD) v

1 sgd(D € (X x V), f, T,m:
2 6 := random initialization
3 for t:=1,...,T:

4 draw (x,y) ~ DP

5 0 :=0 —ndyf(y,x,0)
6 return 6

v

D: data, i.e., a set/sequence of instances (x, y)

v

f: objective function for an instance (x,y)
» usually

fy,x,0) =Ly, y(x,0)) + R(0)

for a model ¥ , a loss ¢ and a regularizer R.
» T: sample size, number of iterations

» 17 learning rate, step length
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NS
Parallel Stochastic Gradient Descent (PSGD) i

» Underlying idea:

1. estimate parameters 6° on each worker p based on each data part DP
in isolation
2. estimate parameters simply as average at the end:

1
0:=75) PO°
p=1

» see Zinkevich et al. [2010]
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Big Data Analytics 2. Parallel Stochastic Gradient Descent

Parallel Stochastic Gradient Descent (PSGD)

sgd-psgd(D € ((X X y)*)”, f,T,m):
for p € {1,...,P} in parallel:
6P := random initialization
for t:=1,...,T:
draw (x,y) ~ DP
OP := 9P — nogyf(y, x, 6P)
collect 6P from all workers
P
0:=%3p 16"
return 6
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Experiments / Dataset

name T N M nonzeros density X
Yahoo mail 2 3,189,235 262,144 ~ 999,093,494 0.0012 {0,1}

» approx. 80:20 time-wise split (= 2.5M training instances)
» predictors normalized to length 1
» total size ca. 7.5 GB
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Experiment / Error Measures

» error measures:
1 .
RMSE(y. 9) = (> (0 — 90

normalized RMSE(y, y) :=

Huber(y,y) := Zhubere lyn — ¥(xn)])

527, if z <e,

with huber(z) := { ) _
z— 55 , otherwise
Huber(y, ¥)
Huber(y, jsp)
where ysp is the model trained by a single sequential pass over all

trainings data.
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Ny
Experiment / Results i
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Figure 2: Relative Test-RMSE with A\ = 1e~3: Huber loss (left) and squared error (right)

[source: Zinkevich et al. [2010]]
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Discussion

» PSGD is easy to implement with map-reduce
» Works well for mild distribution (small number of workers P)

» in practice, the explicit sample size T has to replaced by a proper
convergence criterion
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N
Lockfree Parallelized SGD (HogWild) i

» Underlying idea:

1. compute parameter updates A6” for each sample n, on each worker p
in which data part DP it resides

» using shared model parameters
2. continuously update shared model parameters:

9t+1 — gt + Aen(t)
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N
Lockfree Parallelized SGD (HogWild) i

» Underlying idea:

1. compute parameter updates A6” for each sample n, on each worker p
in which data part DP it resides

» using shared model parameters
2. continuously update shared model parameters:

9t+1 — gt + Aen(t)

» targeted to shared memory architectures where step 2 is fast

» for sparse updates (e.g., linear models for sparse data),
overwriting updates becomes less likely

» see Recht et al. [2011]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
11/ 27



Big Data Analytics 3. Lockfree Parallelized SGD (HogWild)

N
Lockfree Parallelized SGD (HogWild) i

sgd-roundrobin(D € ((X x ¥)*)P,f, T,m:
0 := random initialization (shared)
for p € {1,...,P} in parallel:

for t:=1,...,T:
draw (x,y) ~ DP
AO == —ndgf(y,x, 0)
lck:= lock(6)
6 :=0+ A6
release(lck)
return 6

-t N WON W R W T

» updates of 0, are atomic.

CO~NOODAWNH

sgd-hogwild(D € ((X x V)*)P,f, T, m):
0 := random initialization (shared)
for p € {1,...,P} in parallel:
for t:=1,...,T:
draw (x,y) ~ DP
AG = —ndgf(y, x, 0)
for m:=1,..., M with A0, # 0:
Om = 0m + A0,
return 6

» thus hogwild does not require locking
» AIG: roundrobin variant with sparse locking

» lock only 6,, with Ag,, #0
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Experiments / Dataset Characteristics

Maximal fraction of nonzeros of a predictor:

Ar e HnELL MY [ Xom # 0}
m=1,...,M N

Maximal fraction of instances linked by a common nonzero:

pie max T E{L o N} [ X0 O x # 0}
. n=1,...,N N
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Experiments / Datasets

name T N M nonzeros

density X size
Yahoo mail 2 3,189,235 262,144  ~ 999,093,404 _ 0.0012 10,1} 75GB
RCV1 2 804,414 47,236 0.9 GB
Netflix 5 100,198,805 497,959 200,397,610 4.107¢ {0,1} 1.5 GB
KDD Cup 2011 252,800,275 1,625,951 505,600,550 1.2.10°° {0,1} 3.9 GB
HoGwiLp! RouND ROBIN
b data size p A time  train  test time train  test
ype set (GB) (s) error  error (s) error  error
SVM RCV1 0.9 0.44 1.0 9.5 0.297 0.339 61.8 0.297 0.339
Netflix 1.5 2.5e-3 23e-3 | 301.0 0.754 0.928 | 2569.1 0.754 0.927
MC KDD 3.9 3.0e3 1.8e3 | 877.5 195 226 | 7139.0 195 226
Jumbo 30 2.6e-7 1.4e-7 | 9453.5 0.031 0.013 N/A N/A N/A
Cuts DBLife 3e-3  8.6e-3 4.3e-3 | 230.0 10.6 N/A 4135 105 N/A
Abdomen 18 9.2e-4 9.2e4 | 11814 399 N/A | 7467.25 399 N/A

Figure 2: Comparison of wall clock time across of HOGWILD! and RR. Each algorithm is run

for 20 epochs and parallelized over 10 cores.

[source: ,Recht et ak [2011]]
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Experiments / Results
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Figure 3: Total CPU time versus number of threads for (a) RCV1, (b) Abdomen, and (c)

DBLife.
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Figure 4: Total CPU time versus number of threads for the matrix completion problems (a)
Netflix Prize, (b) KDD Cup 2011, and (c) the synthetic Jumbo experiment.
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Big Data Analytics 4. The Parameter Server Framework

Distributed Machine Learning Systems

Shared Data  Consistency Fault Tolerance

Graphlab [34] | graph eventual checkpoint
Petuum [12] | hash table delay bound none

REEF [10] | array BSP checkpoint

Naiad [37] | (key,value)  multiple checkpoint
Milbase [29] | table BSP RDD
Parameter | (sparse) . .

. various continuous

Server | vector/matrix

Table 2: Attributes of distributed data analysis systems.

[source: Li et al. [2014]]
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Largest Machine Learning Experiments 2014

© » 10
§ 0 Parameter server (Sparse LR)—O
g 10 Parameter server (LDA)—
£10° Distbelief (DNN)—<
%‘108 Petuum (La/scs)o)
T Naiad (LR)
S 7 YahooLDA (LDA)
<10
o W (LR)/O
S 10°
5 Graphlab (LDA)—O
g 10° MLbase (LR)—O
ER [O—REEF (LR)
107 5 z 3 7 5
10 10 10 10 10

number of cores

Figure 1: Comparison of the public largest machine learn-
ing experiments each system performed. Problems are
color-coded as follows: Blue circles — sparse logistic re-
gression; red squares — latent variable graphical models;
grey pentagons — deep networks.

[source: ki et ak [2014]]
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Example Subgradient Descent

Algorithm 1 Distributed Subgradient Descent
Task Scheduler:
1: issue LoadData() to all workers
2: for iterationt = 0,...,7 do
3 issue WORKERITERATE(?) to all workers.
4: end for
Worker r = 1,...,m:
1: function LOADDATA()
2 load a part of training data {y;, , z;, } 7,
3 pull the working set w,(-U) from servers
4: end function
5
6
7

function WORKERITERATE()‘)

gradient g S, dl(x,“,y“,ww)
push (15 " to servers

8: pull w( U from servers

9: end function

Servers:

1: function SERVERITERATE(?)

2 aggregate g() Y Q)

3: wttD ) — (q(t) + 0Q(w®)

4: end function

- g lsource: Li et af. (201471
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NN
Example Subgradient Descent / Steps “

3. update

A 1. compute

XX X X X me

training
data

Figure 2: Steps required in performing distributed subgra-
dient descent, as described e.g. in [46]. Each worker only
caches the working set of w rather than all parameters.

o & [source: Li et ak [2014]] ~
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NN
Consistency Models “

@00 00 0: OV

(a) Sequential g (b) Eventual (c) 1 Bounded delay

Figure 6: Directed acyclic graphs for different consistency
models. The size of the DAG increases with the delay.

[source: Li et al. [2014]]
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NN
Server Node Layout i

Figure 7: Server node layout.

[source: Li et al. [2014]]
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Replica Generation

push: —>

- . 2:Sf(x) oy
2 N 2 D

)

Figure 8: Replica generation. Left: single worker. Right: multiple workers updating

values simultaneously.
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[source: Li et al. [2014]]
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NS
Experiments / Systems Compared i

Method Consistency LOC

System A | L-BFGS | Sequential 10,000

System B | Block PG | Sequential 30,000
Parameter Bounded Delay

Server Block PG KKT Filter 300

Table 3: Systems evaluated.

[source: Li et al. [2014]]
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NN
Experiments / Results i

10.7
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“‘ ===System-B
2 ., ==Parameter Server
g
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o
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Figure 9: Convergence of sparse logistic regression. The
goal is to minimize the objective rapidly.
[source: Li et al. [2014]]
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Experiments / Results

time (hours)

System-A System-B Parameter Server

Figure 10: Time per worker spent on computation and
waiting during sparse logistic regression.

[source: Li et al. [2014]]
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Experiments / Results
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Figure 11: The savings of outgoing network traffic by different components. Left: per server. Right: per worker.
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Figure 12: Unique features (keys) filtered by the Figure 13: Time a worker spent to achieve the same
KKT filter as optimization proceeds. convergence criteria by different maximal delays.
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