
Big Data Analytics

Big Data Analytics
8. Distributed Stochastic Gradient Descent

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute of Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 27

Big Data Analytics

Outline

1. Introduction

2. Parallel Stochastic Gradient Descent

3. Lockfree Parallelized SGD (HogWild)

4. The Parameter Server Framework

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 27

Big Data Analytics 1. Introduction

Outline

1. Introduction

2. Parallel Stochastic Gradient Descent

3. Lockfree Parallelized SGD (HogWild)

4. The Parameter Server Framework

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 27

Big Data Analytics 1. Introduction

Supervised Learning / The Prediction Problem
Given

I samples D ⊆ X × Y from an unknown distribution p on X × Y,
(called data)

I a function ` : Y × Y → R (called loss)
find a function

ŷ : X → Y
(called model) with minimal expected loss

E(x ,y)∼p(`(y , ŷ(x)))

I N := |D| number of instances
I M number of predictors: X = RM

I regression: Y = R (or Y = RT)
I classification: Y any finite set (called classes)

I T := |Y| number of classes

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 27

Big Data Analytics 1. Introduction

Supervised Learning / The Prediction Problem
Given

I samples D ⊆ X × Y from an unknown distribution p on X × Y,
(called data)

I a function ` : Y × Y → R (called loss)
find a function

ŷ : X → Y
(called model) with minimal expected loss

E(x ,y)∼p(`(y , ŷ(x)))

I N := |D| number of instances
I M number of predictors: X = RM

I regression: Y = R (or Y = RT)
I classification: Y any finite set (called classes)

I T := |Y| number of classes

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 27

Big Data Analytics 1. Introduction

Supervised Learning / Parametrized Models

Limit models to a parametrized family of functions:

ŷ(x ; θ), θ ∈ Θ

e.g.,
I linear model:

ŷ(x ; θ) := θT x

I logistic regression

ŷ(x ; θ) :=
1

1 + eθT x

I support vector machine, neural network, etc.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
2 / 27

Big Data Analytics 1. Introduction

Supervised Learning / Learning

I Finding a function then means finding/estimating parameters θ:

θ̂ := argmin
θ

1
N

∑

(x ,y)∈D
`(y , ŷ(x , θ))

I If there are many parameters, reduce the adaptivity/complexity of the
model to avoid overfitting, e.g., by forcing them to be small:

θ̂ := argmin
θ

1
N

∑

(x ,y)∈D
`(y , ŷ(x , θ)) + λR(θ)

I e.g., R(θ) = ||θ||22 (called regularization)
I `+ R is called objective function

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
3 / 27

Big Data Analytics 1. Introduction

Supervised Learning / Learning

I Finding a function then means finding/estimating parameters θ:

θ̂ := argmin
θ

1
N

∑

(x ,y)∈D
`(y , ŷ(x , θ))

I If there are many parameters, reduce the adaptivity/complexity of the
model to avoid overfitting, e.g., by forcing them to be small:

θ̂ := argmin
θ

1
N

∑

(x ,y)∈D
`(y , ŷ(x , θ)) + λR(θ)

I e.g., R(θ) = ||θ||22 (called regularization)
I `+ R is called objective function

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
3 / 27

Big Data Analytics 1. Introduction

Stochastic Gradient Descent (SGD)

1 sgd(D ∈ (X × Y)∗, f ,T , η):
2 θ := random initialization
3 for t := 1, . . . ,T:
4 draw (x, y) ∼ Dp

5 θ := θ − η∂θ f (y, x, θ)
6 return θ

I D: data, i.e., a set/sequence of instances (x , y)
I f : objective function for an instance (x , y)

I usually

f (y , x , θ) := `(y , ŷ(x , θ)) + R(θ)

for a model ŷ , a loss ` and a regularizer R.

I T : sample size, number of iterations
I η: learning rate, step length

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
4 / 27

Big Data Analytics 2. Parallel Stochastic Gradient Descent

Outline

1. Introduction

2. Parallel Stochastic Gradient Descent

3. Lockfree Parallelized SGD (HogWild)

4. The Parameter Server Framework

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
5 / 27

Big Data Analytics 2. Parallel Stochastic Gradient Descent

Parallel Stochastic Gradient Descent (PSGD)

I Underlying idea:
1. estimate parameters θp on each worker p based on each data part Dp

in isolation
2. estimate parameters simply as average at the end:

θ :=
1
P

∑

p=1

Pθp

I see Zinkevich et al. [2010]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
5 / 27

Big Data Analytics 2. Parallel Stochastic Gradient Descent

Parallel Stochastic Gradient Descent (PSGD)

1 sgd-psgd(D ∈ ((X × Y)∗)P , f ,T , η):
2 for p ∈ {1, . . . ,P} in parallel:
3 θp := random initialization
4 for t := 1, . . . ,T:
5 draw (x, y) ∼ Dp

6 θp := θp − η∂θ f (y, x, θp)
7 collect θp from all workers

8 θ := 1
P

∑P
p=1 θ

p

9 return θ

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
6 / 27

Big Data Analytics 2. Parallel Stochastic Gradient Descent

Experiments / Dataset

name T N M nonzeros density X
Yahoo mail 2 3,189,235 262,144 ≈ 999,093,494 0.0012 {0, 1}

I approx. 80:20 time-wise split (≈ 2.5M training instances)
I predictors normalized to length 1
I total size ca. 7.5 GB

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
7 / 27

Big Data Analytics 2. Parallel Stochastic Gradient Descent

Experiment / Error Measures
I error measures:

RMSE(y , ŷ) := (
1
N

N∑

n=1

(yn − ŷ(xn))2)
1
2

normalized RMSE(y , ŷ) :=
RMSE(y , ŷ)

RMSE(y , ŷSP)

Huberε(y , ŷ) :=
1
N

N∑

n=1

huberε(|yn − ŷ(xn)|)

with huberε(z) :=

{
1
2z2, if z < ε,

z − 1
2ε

2, otherwise

normalized Huber(y , ŷ) :=
Huber(y , ŷ)

Huber(y , ŷSP)

where ŷSP is the model trained by a single sequential pass over all
trainings data.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
8 / 27

Big Data Analytics 2. Parallel Stochastic Gradient Descent

Experiment / Results

0 200 400 600 800 1000 1200 1400
Number of training instances per machine (thousands)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

R
e
la

ti
v
e
 R

M
S
E
 o

n
 t

h
e
 t

e
st

 s
e
t

1 Machines
10 Machines
100 Machines

0 200 400 600 800 1000 1200 1400
Number of training instances per machine (thousands)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
e
la

ti
v
e
 R

M
S
E
 o

n
 t

h
e
 t

e
st

 s
e
t

1 Machines
10 Machines
100 Machines

Figure 2: Relative Test-RMSE with λ = 1e−3: Huber loss (left) and squared error (right)

0 200 400 600 800 1000 1200 1400
Number of trainining instances per machine (thousands)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
e
la

ti
v
e
 o

b
je

ct
iv

e
 f

u
n
ct

io
n
 v

a
lu

e

1 Machines
10 Machines
100 Machines

0 200 400 600 800 1000 1200 1400
Number of trainining instances per machine (thousands)

0.5

1.0

1.5

2.0

2.5

3.0

R
e
la

ti
v
e
 o

b
je

ct
iv

e
 f

u
n
ct

io
n
 v

a
lu

e

1 Machines
10 Machines
100 Machines

Figure 3: Relative train-error using Huber loss: λ = 1e−3 (left), λ = 1e−6 (right)

Performance using different λ: The last experiment is conducted to study the effect of the regu-
larization constant λ on the parallelization ability: Figure 3 shows the objective function plot using
the Huber loss and λ = 1e−3 and λ = 1e−6. The lower regularization constant leads to more
variance in the problem which in turn should increase the benefit of the averaging algorithm. The
plots exhibit exactly this characteristic: For λ = 1e−6, the loss for 10 and 100 machines not only
drops faster, but the final solution for both beats the solution found by a single pass, adding further
empirical evidence for the behaviour predicted by our theory.

4 Conclusion

In this paper, we propose a novel data-parallel stochastic gradient descent algorithm that enjoys a
number of key properties that make it highly suitable for parallel, large-scale machine learning: It
imposes very little I/O overhead: Training data is accessed locally and only the model is communi-
cated at the very end. This also means that the algorithm is indifferent to I/O latency. These aspects
make the algorithm an ideal candidate for a MapReduce implementation. Thereby, it inherits the lat-
ter’s superb data locality and fault tolerance properties. Our analysis of the algorithm’s performance
is based on a novel technique that uses contraction theory to quantify finite-sample convergence
rate of stochastic gradient descent. We show worst-case bounds that are comparable to stochastic
gradient descent in terms of wall clock time, and vastly faster in terms of overall time. Lastly, our
experiments on a large-scale real world dataset show that the parallelization reduces the wall-clock
time needed to obtain a set solution quality. Unsurprisingly, we also see diminishing marginal util-
ity of adding more machines. Finally, solving problems with more variance (smaller regularization
constant) benefits more from the parallelization.

8

[source: Zinkevich et al. [2010]]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
9 / 27

Big Data Analytics 2. Parallel Stochastic Gradient Descent

Discussion

I PSGD is easy to implement with map-reduce
I Works well for mild distribution (small number of workers P)
I in practice, the explicit sample size T has to replaced by a proper

convergence criterion

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
10 / 27

Big Data Analytics 3. Lockfree Parallelized SGD (HogWild)

Outline

1. Introduction

2. Parallel Stochastic Gradient Descent

3. Lockfree Parallelized SGD (HogWild)

4. The Parameter Server Framework

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
11 / 27

Big Data Analytics 3. Lockfree Parallelized SGD (HogWild)

Lockfree Parallelized SGD (HogWild)

I Underlying idea:
1. compute parameter updates ∆θn for each sample n, on each worker p

in which data part Dp it resides
I using shared model parameters

2. continuously update shared model parameters:

θt+1 := θt + ∆θn(t)

I targeted to shared memory architectures where step 2 is fast
I for sparse updates (e.g., linear models for sparse data),

overwriting updates becomes less likely
I see Recht et al. [2011]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
11 / 27

Big Data Analytics 3. Lockfree Parallelized SGD (HogWild)

Lockfree Parallelized SGD (HogWild)

I Underlying idea:
1. compute parameter updates ∆θn for each sample n, on each worker p

in which data part Dp it resides
I using shared model parameters

2. continuously update shared model parameters:

θt+1 := θt + ∆θn(t)

I targeted to shared memory architectures where step 2 is fast
I for sparse updates (e.g., linear models for sparse data),

overwriting updates becomes less likely
I see Recht et al. [2011]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
11 / 27

Big Data Analytics 3. Lockfree Parallelized SGD (HogWild)

Lockfree Parallelized SGD (HogWild)

1 sgd-roundrobin(D ∈ ((X × Y)∗)P , f ,T , η):
2 θ := random initialization (shared)
3 for p ∈ {1, . . . ,P} in parallel:
4 for t := 1, . . . ,T:
5 draw (x, y) ∼ Dp

6 ∆θ := −η∂θ f (y, x, θ)
7 lck:= lock(θ)
8 θ := θ + ∆θ
9 release(lck)

10 return θ

1 sgd-hogwild(D ∈ ((X × Y)∗)P , f ,T , η):
2 θ := random initialization (shared)
3 for p ∈ {1, . . . ,P} in parallel:
4 for t := 1, . . . ,T:
5 draw (x, y) ∼ Dp

6 ∆θ := −η∂θ f (y, x, θ)
7 for m := 1, . . . ,M with ∆θm 6= 0:
8 θm := θm + ∆θm
9 return θ

I updates of θm are atomic.
I thus hogwild does not require locking

I AIG: roundrobin variant with sparse locking
I lock only θm with ∆θm 6= 0

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
12 / 27

Big Data Analytics 3. Lockfree Parallelized SGD (HogWild)

Experiments / Dataset Characteristics

Maximal fraction of nonzeros of a predictor:

∆ := max
m=1,...,M

|{n ∈ {1, . . . ,N} | xn,m 6= 0}|
N

Maximal fraction of instances linked by a common nonzero:

ρ := max
n=1,...,N

|{n′ ∈ {1, . . . ,N} | xn � xn′ 6= 0}|
N

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
13 / 27

Big Data Analytics 3. Lockfree Parallelized SGD (HogWild)

Experiments / Datasets
name T N M nonzeros density X size
Yahoo mail 2 3,189,235 262,144 ≈ 999,093,494 0.0012 {0, 1} 7.5 GB
RCV1 2 804,414 47,236 0.9 GB
Netflix 5 100,198,805 497,959 200,397,610 4 · 10−6 {0, 1} 1.5 GB
KDD Cup 2011 252,800,275 1,625,951 505,600,550 1.2 · 10−6 {0, 1} 3.9 GB

Hogwild! Round Robin

type
data size ρ ∆ time train test time train test
set (GB) (s) error error (s) error error

SVM RCV1 0.9 0.44 1.0 9.5 0.297 0.339 61.8 0.297 0.339

MC
Netflix 1.5 2.5e-3 2.3e-3 301.0 0.754 0.928 2569.1 0.754 0.927
KDD 3.9 3.0e-3 1.8e-3 877.5 19.5 22.6 7139.0 19.5 22.6

Jumbo 30 2.6e-7 1.4e-7 9453.5 0.031 0.013 N/A N/A N/A

Cuts
DBLife 3e-3 8.6e-3 4.3e-3 230.0 10.6 N/A 413.5 10.5 N/A

Abdomen 18 9.2e-4 9.2e-4 1181.4 3.99 N/A 7467.25 3.99 N/A

Figure 2: Comparison of wall clock time across of Hogwild! and RR. Each algorithm is run
for 20 epochs and parallelized over 10 cores.

different machines and averaging their output [30]. Though the authors claim this method can
reduce both the variance of their estimate and the overall bias, we show in our experiments that
for the sorts of problems we are concerned with, this method does not outperform a serial scheme.

Schemes involving the averaging of gradients via a distributed protocol have also been proposed
by several authors [10, 12]. While these methods do achieve linear speedups, they are difficult
to implement efficiently on multicore machines as they require massive communication overhead.
Distributed averaging of gradients requires message passing between the cores, and the cores need
to synchronize frequently in order to compute reasonable gradient averages.

The work most closely related to our own is a round-robin scheme proposed by Langford et
al [16]. In this scheme, the processors are ordered and each update the decision variable in order.
When the time required to lock memory for writing is dwarfed by the gradient computation time,
this method results in a linear speedup, as the errors induced by the lag in the gradients are not
too severe. However, we note that in many applications of interest in machine learning, gradient
computation time is incredibly fast, and we now demonstrate that in a variety of applications,
Hogwild! outperforms such a round-robin approach by an order of magnitude.

7 Experiments

We ran numerical experiments on a variety of machine learning tasks, and compared against a
round-robin approach proposed in [16] and implemented in Vowpal Wabbit [15]. We refer to this
approach as RR. To be as fair as possible to prior art, we hand coded RR to be nearly identical
to the Hogwild! approach, with the only difference being the schedule for how the gradients are
updated. One notable change in RR from the Vowpal Wabbit software release is that we optimized
RR’s locking and signaling mechanisms to use spinlocks and busy waits (there is no need for generic
signaling to implement round robin). We verified that this optimization results in nearly an order
of magnitude increase in wall clock time for all problems that we discuss.

We also compare against a model which we call AIG which can be seen as a middle ground
between RR and Hogwild!. AIG runs a protocol identical to Hogwild! except that it locks all
of the variables in e in before and after the for loop on line 4 of Algorithm 1. Our experiments
demonstrate that even this fine-grained locking induces undesirable slow-downs.

All of the experiments were coded in C++ are run on an identical configuration: a dual Xeon
X650 CPUs (6 cores each x 2 hyperthreading) machine with 24GB of RAM and a software RAID-0

11

[source: Recht et al. [2011]]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
14 / 27

Big Data Analytics 3. Lockfree Parallelized SGD (HogWild)

Experiments / Results

0 2 4 6 8 10
0

1

2

3

4

5

Number of Splits

S
p

ee
d

u
p

(a)

Hogwild
AIG
RR

0 2 4 6 8 10
0

1

2

3

4

5

Number of Splits

S
p

ee
d

u
p

(b)

Hogwild
AIG
RR

0 2 4 6 8 10
0

2

4

6

8

10

Number of Splits

S
p

ee
d

u
p

(c)

Hogwild
AIG
RR

Figure 3: Total CPU time versus number of threads for (a) RCV1, (b) Abdomen, and (c)
DBLife.

over 7 2TB Seagate Constellation 7200RPM disks. The kernel is Linux 2.6.18-128. We never use
more than 2GB of memory. All training data is stored on a seven-disk raid 0. We implemented a
custom file scanner to demonstrate the speed of reading data sets of disk into small shared memory.
This allows us to read data from the raid at a rate of nearly 1GB/s.

All of the experiments use a constant stepsize γ which is diminished by a factor β at the end of
each pass over the training set. We run all experiments for 20 such passes, even though less epochs
are often sufficient for convergence. We show results for the largest value of the learning rate γ
which converges and we use β = 0.9 throughout. We note that the results look the same across a
large range of (γ, β) pairs and that all three parallelization schemes achieve train and test errors
within a few percent of one another. We present experiments on the classes of problems described
in Section 2.

Sparse SVM. We tested our sparse SVM implementation on the Reuters RCV1 data set on
the binary text classification task CCAT [19]. There are 804,414 examples split into 23,149 training
and 781,265 test examples, and there are 47,236 features. We swapped the training set and the
test set for our experiments to demonstrate the scalability of the parallel multicore algorithms.
In this example, ρ = 0.44 and ∆ = 1.0—large values that suggest a bad case for Hogwild!.
Nevertheless, in Figure 3(a), we see that Hogwild! is able to achieve a factor of 3 speedup with
while RR gets worse as more threads are added. Indeed, for fast gradients, RR is worse than a
serial implementation.

For this data set, we also implemented the approach in [30] which runs multiple SGD runs in
parallel and averages their output. In Figure 5(b), we display at the train error of the ensemble
average across parallel threads at the end of each pass over the data. We note that the threads
only communicate at the very end of the computation, but we want to demonstrate the effect of
parallelization on train error. Each of the parallel threads touches every data example in each pass.
Thus, the 10 thread run does 10x more gradient computations than the serial version. Here, the
error is the same whether we run in serial or with ten instances. We conclude that on this problem,
there is no advantage to running in parallel with this averaging scheme.

Matrix Completion. We ran Hogwild! on three very large matrix completion problems.
The Netflix Prize data set has 17,770 rows, 480,189 columns, and 100,198,805 revealed entries. The
KDD Cup 2011 (task 2) data set has 624,961 rows, 1,000,990, columns and 252,800,275 revealed
entries. We also synthesized a low-rank matrix with rank 10, 1e7 rows and columns, and 2e9
revealed entries. We refer to this instance as “Jumbo.” In this synthetic example, ρ and ∆ are
both around 1e-7. These values contrast sharply with the real data sets where ρ and ∆ are both

12

[source: Recht et al. [2011]]

0 2 4 6 8 10
0

1

2

3

4

5

6

Number of Splits

S
p

ee
d

u
p

Hogwild
AIG
RR

0 2 4 6 8 10
0

1

2

3

4

5

6

Number of Splits

S
p

ee
d

u
p

Hogwild
AIG
RR

0 2 4 6 8 10
0

2

4

6

8

Number of Splits
S

p
ee

d
u

p

Hogwild
AIG

Figure 4: Total CPU time versus number of threads for the matrix completion problems (a)
Netflix Prize, (b) KDD Cup 2011, and (c) the synthetic Jumbo experiment.

on the order of 1e-3.
Figure 5(a) shows the speedups for these three data sets using Hogwild!. Note that the

Jumbo and KDD examples do not fit in our allotted memory, but even when reading data off disk,
Hogwild! attains a near linear speedup. The Jumbo problem takes just over two and a half
hours to complete. Speedup graphs comparing Hogwild! to AIG and RR on the three matrix
completion experiments are provided in Figure 4. Similar to the other experiments with quickly
computable gradients, RR does not show any improvement over a serial approach. In fact, with
10 threads, RR is 12% slower than serial on KDD Cup and 62% slower on Netflix. In fact, it is
too slow to complete the Jumbo experiment in any reasonable amount of time, while the 10-way
parallel Hogwild! implementation solves this problem in under three hours.

Graph Cuts. Our first cut problem was a standard image segmentation by graph cuts problem
popular in computer vision. We computed a two-way cut of the abdomen data set [1]. This data
set consists of a volumetric scan of a human abdomen, and the goal is to segment the image into
organs. The image has 512 × 512 × 551 voxels, and the associated graph is 6-connected with
maximum capacity 10. Both ρ and ∆ are equal to 9.2e-4 We see that Hogwild! speeds up the cut
problem by more than a factor of 4 with 10 threads, while RR is twice as slow as the serial version.

Our second graph cut problem sought a mulit-way cut to determine entity recognition in a
large database of web data. We created a data set of clean entity lists from the DBLife website
and of entity mentions from the DBLife Web Crawl [11]. The data set consists of 18,167 entities
and 180,110 mentions and similarities given by string similarity. In this problem each stochastic
gradient step must compute a Euclidean projection onto a simplex of dimension 18,167. As a
result, the individual stochastic gradient steps are quite slow. Nonetheless, the problem is still
very sparse with ρ=8.6e-3 and ∆=4.2e-3. Consequently, in Figure 3, we see the that Hogwild!
achieves a ninefold speedup with 10 cores. Since the gradients are slow, RR is able to achieve a
parallel speedup for this problem, however the speedup with ten processors is only by a factor of 5.
That is, even in this case where the gradient computations are very slow, Hogwild! outperforms
a round-robin scheme.

What if the gradients are slow? As we saw with the DBLIFE data set, the RR method
does get a nearly linear speedup when the gradient computation is slow. This raises the question
whether RR ever outperforms Hogwild! for slow gradients. To answer this question, we ran the
RCV1 experiment again and introduced an artificial delay at the end of each gradient computation
to simulate a slow gradient. In Figure 5(c), we plot the wall clock time required to solve the SVM
problem as we vary the delay for both the RR and Hogwild! approaches.

13

[source: Recht et al. [2011]]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
15 / 27

Big Data Analytics 4. The Parameter Server Framework

Outline

1. Introduction

2. Parallel Stochastic Gradient Descent

3. Lockfree Parallelized SGD (HogWild)

4. The Parameter Server Framework

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
16 / 27

Big Data Analytics 4. The Parameter Server Framework

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
16 / 27

Big Data Analytics 4. The Parameter Server Framework

Distributed Machine Learning Systems

584 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Shared Data Consistency Fault Tolerance
Graphlab [34] graph eventual checkpoint

Petuum [12] hash table delay bound none
REEF [10] array BSP checkpoint
Naiad [37] (key,value) multiple checkpoint

Mlbase [29] table BSP RDD
Parameter (sparse) various continuousServer vector/matrix

Table 2: Attributes of distributed data analysis systems.

cisions were guided by the workloads found in real sys-
tems. Our parameter server provides five key features:
Efficient communication: The asynchronous commu-
nication model does not block computation (unless re-
quested). It is optimized for machine learning tasks to
reduce network traffic and overhead.
Flexible consistency models: Relaxed consistency fur-
ther hides synchronization cost and latency. We allow the
algorithm designer to balance algorithmic convergence
rate and system efficiency. The best trade-off depends on
data, algorithm, and hardware.
Elastic Scalability: New nodes can be added without
restarting the running framework.
Fault Tolerance and Durability: Recovery from and re-
pair of non-catastrophic machine failures within 1s, with-
out interrupting computation. Vector clocks ensure well-
defined behavior after network partition and failure.
Ease of Use: The globally shared parameters are repre-
sented as (potentially sparse) vectors and matrices to facil-
itate development of machine learning applications. The
linear algebra data types come with high-performance
multi-threaded libraries.

The novelty of the proposed system lies in the synergy
achieved by picking the right systems techniques, adapt-
ing them to the machine learning algorithms, and modify-
ing the machine learning algorithms to be more systems-
friendly. In particular, we can relax a number of other-
wise hard systems constraints since the associated ma-
chine learning algorithms are quite tolerant to perturba-
tions. The consequence is the first general purpose ML
system capable of scaling to industrial scale sizes.

1.2 Engineering Challenges
When solving distributed data analysis problems, the is-
sue of reading and updating parameters shared between
different worker nodes is ubiquitous. The parameter
server framework provides an efficient mechanism for ag-
gregating and synchronizing model parameters and statis-
tics between workers. Each parameter server node main-

101 102 103 104 105104

105

106

107

108

109

1010

1011

number of cores

nu
m

be
r o

f s
ha

re
d

pa
ra

m
et

er
s

Distbelief (DNN)

VW (LR)
YahooLDA (LDA)

Graphlab (LDA)

Naiad (LR)

REEF (LR)

Petuum (Lasso)

MLbase (LR)

Parameter server (Sparse LR)

Parameter server (LDA)

Figure 1: Comparison of the public largest machine learn-
ing experiments each system performed. Problems are
color-coded as follows: Blue circles — sparse logistic re-
gression; red squares — latent variable graphical models;
grey pentagons — deep networks.

tains only a part of the parameters, and each worker node
typically requires only a subset of these parameters when
operating. Two key challenges arise in constructing a high
performance parameter server system:
Communication. While the parameters could be up-
dated as key-value pairs in a conventional datastore, us-
ing this abstraction naively is inefficient: values are typi-
cally small (floats or integers), and the overhead of send-
ing each update as a key value operation is high.

Our insight to improve this situation comes from the
observation that many learning algorithms represent pa-
rameters as structured mathematical objects, such as vec-
tors, matrices, or tensors. At each logical time (or an it-
eration), typically a part of the object is updated. That is,
workers usually send a segment of a vector, or an entire
row of the matrix. This provides an opportunity to auto-
matically batch both the communication of updates and
their processing on the parameter server, and allows the
consistency tracking to be implemented efficiently.
Fault tolerance, as noted earlier, is critical at scale, and
for efficient operation, it must not require a full restart of a
long-running computation. Live replication of parameters
between servers supports hot failover. Failover and self-
repair in turn support dynamic scaling by treating machine
removal or addition as failure or repair respectively.

Figure 1 provides an overview of the scale of the largest
supervised and unsupervised machine learning experi-
ments performed on a number of systems. When possi-
ble, we confirmed the scaling limits with the authors of
each of these systems (data current as of 4/2014). As is
evident, we are able to cover orders of magnitude more
data on orders of magnitude more processors than any

2

[source: Li et al. [2014]]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
17 / 27

Big Data Analytics 4. The Parameter Server Framework

Largest Machine Learning Experiments 2014

584 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Shared Data Consistency Fault Tolerance
Graphlab [34] graph eventual checkpoint

Petuum [12] hash table delay bound none
REEF [10] array BSP checkpoint
Naiad [37] (key,value) multiple checkpoint

Mlbase [29] table BSP RDD
Parameter (sparse) various continuousServer vector/matrix

Table 2: Attributes of distributed data analysis systems.

cisions were guided by the workloads found in real sys-
tems. Our parameter server provides five key features:
Efficient communication: The asynchronous commu-
nication model does not block computation (unless re-
quested). It is optimized for machine learning tasks to
reduce network traffic and overhead.
Flexible consistency models: Relaxed consistency fur-
ther hides synchronization cost and latency. We allow the
algorithm designer to balance algorithmic convergence
rate and system efficiency. The best trade-off depends on
data, algorithm, and hardware.
Elastic Scalability: New nodes can be added without
restarting the running framework.
Fault Tolerance and Durability: Recovery from and re-
pair of non-catastrophic machine failures within 1s, with-
out interrupting computation. Vector clocks ensure well-
defined behavior after network partition and failure.
Ease of Use: The globally shared parameters are repre-
sented as (potentially sparse) vectors and matrices to facil-
itate development of machine learning applications. The
linear algebra data types come with high-performance
multi-threaded libraries.

The novelty of the proposed system lies in the synergy
achieved by picking the right systems techniques, adapt-
ing them to the machine learning algorithms, and modify-
ing the machine learning algorithms to be more systems-
friendly. In particular, we can relax a number of other-
wise hard systems constraints since the associated ma-
chine learning algorithms are quite tolerant to perturba-
tions. The consequence is the first general purpose ML
system capable of scaling to industrial scale sizes.

1.2 Engineering Challenges
When solving distributed data analysis problems, the is-
sue of reading and updating parameters shared between
different worker nodes is ubiquitous. The parameter
server framework provides an efficient mechanism for ag-
gregating and synchronizing model parameters and statis-
tics between workers. Each parameter server node main-

101 102 103 104 105104

105

106

107

108

109

1010

1011

number of cores

nu
m

be
r o

f s
ha

re
d

pa
ra

m
et

er
s

Distbelief (DNN)

VW (LR)
YahooLDA (LDA)

Graphlab (LDA)

Naiad (LR)

REEF (LR)

Petuum (Lasso)

MLbase (LR)

Parameter server (Sparse LR)

Parameter server (LDA)

Figure 1: Comparison of the public largest machine learn-
ing experiments each system performed. Problems are
color-coded as follows: Blue circles — sparse logistic re-
gression; red squares — latent variable graphical models;
grey pentagons — deep networks.

tains only a part of the parameters, and each worker node
typically requires only a subset of these parameters when
operating. Two key challenges arise in constructing a high
performance parameter server system:
Communication. While the parameters could be up-
dated as key-value pairs in a conventional datastore, us-
ing this abstraction naively is inefficient: values are typi-
cally small (floats or integers), and the overhead of send-
ing each update as a key value operation is high.

Our insight to improve this situation comes from the
observation that many learning algorithms represent pa-
rameters as structured mathematical objects, such as vec-
tors, matrices, or tensors. At each logical time (or an it-
eration), typically a part of the object is updated. That is,
workers usually send a segment of a vector, or an entire
row of the matrix. This provides an opportunity to auto-
matically batch both the communication of updates and
their processing on the parameter server, and allows the
consistency tracking to be implemented efficiently.
Fault tolerance, as noted earlier, is critical at scale, and
for efficient operation, it must not require a full restart of a
long-running computation. Live replication of parameters
between servers supports hot failover. Failover and self-
repair in turn support dynamic scaling by treating machine
removal or addition as failure or repair respectively.

Figure 1 provides an overview of the scale of the largest
supervised and unsupervised machine learning experi-
ments performed on a number of systems. When possi-
ble, we confirmed the scaling limits with the authors of
each of these systems (data current as of 4/2014). As is
evident, we are able to cover orders of magnitude more
data on orders of magnitude more processors than any

2

[source: Li et al. [2014]]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
18 / 27

Big Data Analytics 4. The Parameter Server Framework

Example Subgradient Descent

586 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

To motivate the design decisions in our system, next
we briefly outline the two widely used machine learning
technologies that we will use to demonstrate the efficacy
of our parameter server. More detailed overviews can be
found in [36, 28, 42, 22, 6].

2.2 Risk Minimization

The most intuitive variant of machine learning problems
is that of risk minimization. The “risk” is, roughly, a mea-
sure of prediction error. For example, if we were to predict
tomorrow’s stock price, the risk might be the deviation be-
tween the prediction and the actual value of the stock.

The training data consists of n examples. xi is the ith
such example, and is often a vector of length d. As noted
earlier, both n and d may be on the order of billions to tril-
lions of examples and dimensions, respectively. In many
cases, each training example xi is associated with a label
yi. In ad click prediction, for example, yi might be 1 for
“clicked” or -1 for “not clicked”.

Risk minimization learns a model that can predict the
value y of a future example x. The model consists of pa-
rameters w. In the simplest example, the model param-
eters might be the “clickiness” of each feature in an ad
impression. To predict whether a new impression would
be clicked, the system might simply sum its “clickiness”
based upon the features present in the impression, namely
x�w :=

∑d
j=1 xjwj , and then decide based on the sign.

In any learning algorithm, there is an important re-
lationship between the amount of training data and the
model size. A more detailed model typically improves
accuracy, but only up to a point: If there is too little train-
ing data, a highly-detailed model will overfit and become
merely a system that uniquely memorizes every item in
the training set. On the other hand, a too-small model
will fail to capture interesting and relevant attributes of
the data that are important to making a correct decision.

Regularized risk minimization [48, 19] is a method to
find a model that balances model complexity and training
error. It does so by minimizing the sum of two terms:
a loss �(x, y, w) representing the prediction error on the
training data and a regularizer Ω[w] penalizing the model
complexity. A good model is one with low error and low
complexity. Consequently we strive to minimize

F (w) =
n∑

i=1

�(xi, yi, w) + Ω(w). (1)

The specific loss and regularizer functions used are impor-
tant to the prediction performance of the machine learning
algorithm, but relatively unimportant for the purpose of

worker 1

�������������

�������������

��������������

��������������

g1 +... +gm

w

��������������
����������
��������������

servers
g1

w1

gm

wm

����������������
���������
���������

worker m

...2. push

training
data

4. pull

4. pull

2. push

3. update

1. compute

1. compute

Figure 2: Steps required in performing distributed subgra-
dient descent, as described e.g. in [46]. Each worker only
caches the working set of w rather than all parameters.

Algorithm 1 Distributed Subgradient Descent
Task Scheduler:

1: issue LoadData() to all workers
2: for iteration t = 0, . . . , T do
3: issue WORKERITERATE(t) to all workers.
4: end for

Worker r = 1, . . . ,m:
1: function LOADDATA()
2: load a part of training data {yik , xik}nr

k=1

3: pull the working set w(0)
r from servers

4: end function
5: function WORKERITERATE(t)
6: gradient g(t)r ← ∑nr

k=1 ∂�(xik , yik , w
(t)
r)

7: push g
(t)
r to servers

8: pull w(t+1)
r from servers

9: end function
Servers:

1: function SERVERITERATE(t)
2: aggregate g(t) ← ∑m

r=1 g
(t)
r

3: w(t+1) ← w(t) − η
(
g(t) + ∂Ω(w(t)

)

4: end function

this paper: the algorithms we present can be used with all
of the most popular loss functions and regularizers.

In Section 5.1 we use a high-performance distributed
learning algorithm to evaluate the parameter server. For
the sake of simplicity we describe a much simpler model

4

[source: Li et al. [2014]]
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 27

Big Data Analytics 4. The Parameter Server Framework

Example Subgradient Descent / Steps

586 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

To motivate the design decisions in our system, next
we briefly outline the two widely used machine learning
technologies that we will use to demonstrate the efficacy
of our parameter server. More detailed overviews can be
found in [36, 28, 42, 22, 6].

2.2 Risk Minimization

The most intuitive variant of machine learning problems
is that of risk minimization. The “risk” is, roughly, a mea-
sure of prediction error. For example, if we were to predict
tomorrow’s stock price, the risk might be the deviation be-
tween the prediction and the actual value of the stock.

The training data consists of n examples. xi is the ith
such example, and is often a vector of length d. As noted
earlier, both n and d may be on the order of billions to tril-
lions of examples and dimensions, respectively. In many
cases, each training example xi is associated with a label
yi. In ad click prediction, for example, yi might be 1 for
“clicked” or -1 for “not clicked”.

Risk minimization learns a model that can predict the
value y of a future example x. The model consists of pa-
rameters w. In the simplest example, the model param-
eters might be the “clickiness” of each feature in an ad
impression. To predict whether a new impression would
be clicked, the system might simply sum its “clickiness”
based upon the features present in the impression, namely
x�w :=

∑d
j=1 xjwj , and then decide based on the sign.

In any learning algorithm, there is an important re-
lationship between the amount of training data and the
model size. A more detailed model typically improves
accuracy, but only up to a point: If there is too little train-
ing data, a highly-detailed model will overfit and become
merely a system that uniquely memorizes every item in
the training set. On the other hand, a too-small model
will fail to capture interesting and relevant attributes of
the data that are important to making a correct decision.

Regularized risk minimization [48, 19] is a method to
find a model that balances model complexity and training
error. It does so by minimizing the sum of two terms:
a loss �(x, y, w) representing the prediction error on the
training data and a regularizer Ω[w] penalizing the model
complexity. A good model is one with low error and low
complexity. Consequently we strive to minimize

F (w) =
n∑

i=1

�(xi, yi, w) + Ω(w). (1)

The specific loss and regularizer functions used are impor-
tant to the prediction performance of the machine learning
algorithm, but relatively unimportant for the purpose of

worker 1

�������������

�������������

��������������

��������������

g1 +... +gm

w

��������������
����������
��������������

servers
g1

w1

gm

wm

����������������
���������
���������

worker m

...2. push

training
data

4. pull

4. pull

2. push

3. update

1. compute

1. compute

Figure 2: Steps required in performing distributed subgra-
dient descent, as described e.g. in [46]. Each worker only
caches the working set of w rather than all parameters.

Algorithm 1 Distributed Subgradient Descent
Task Scheduler:

1: issue LoadData() to all workers
2: for iteration t = 0, . . . , T do
3: issue WORKERITERATE(t) to all workers.
4: end for

Worker r = 1, . . . ,m:
1: function LOADDATA()
2: load a part of training data {yik , xik}nr

k=1

3: pull the working set w(0)
r from servers

4: end function
5: function WORKERITERATE(t)
6: gradient g(t)r ← ∑nr

k=1 ∂�(xik , yik , w
(t)
r)

7: push g
(t)
r to servers

8: pull w(t+1)
r from servers

9: end function
Servers:

1: function SERVERITERATE(t)
2: aggregate g(t) ← ∑m

r=1 g
(t)
r

3: w(t+1) ← w(t) − η
(
g(t) + ∂Ω(w(t)

)

4: end function

this paper: the algorithms we present can be used with all
of the most popular loss functions and regularizers.

In Section 5.1 we use a high-performance distributed
learning algorithm to evaluate the parameter server. For
the sake of simplicity we describe a much simpler model

4

[source: Li et al. [2014]]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
20 / 27

Big Data Analytics 4. The Parameter Server Framework

Consistency Models

590 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

0 1 2 0 1 2 0 1 2 3

(a) Sequential (b) Eventual (c) 1 Bounded delay

4

Figure 6: Directed acyclic graphs for different consistency
models. The size of the DAG increases with the delay.

difference of hardware components. Instead of forcing the
user to adopt one particular dependency that may be ill-
suited to the problem, the parameter server gives the algo-
rithm designer flexibility in defining consistency models.
This is a substantial difference to other machine learning
systems.

We show three different models that can be imple-
mented by task dependency. Their associated directed
acyclic graphs are given in Figure 6.

Sequential In sequential consistency, all tasks are exe-
cuted one by one. The next task can be started only
if the previous one has finished. It produces results
identical to the single-thread implementation, and
also named Bulk Synchronous Processing.

Eventual Eventual consistency is the opposite: all tasks
may be started simultaneously. For instance, [43]
describes such a system. However, this is only rec-
ommendable if the underlying algorithms are robust
with regard to delays.

Bounded Delay When a maximal delay time τ is set, a
new task will be blocked until all previous tasks τ
times ago have been finished. Algorithm 3 uses such
a model. This model provides more flexible controls
than the previous two: τ = 0 is the sequential consis-
tency model, and an infinite delay τ = ∞ becomes
the eventual consistency model.

Note that the dependency graphs may be dynamic. For
instance the scheduler may increase or decrease the max-
imal delay according to the runtime progress to balance
system efficiency and convergence of the underlying op-
timization algorithm. In this case the caller traverses the
DAG. If the graph is static, the caller can send all tasks
with the DAG to the callee to reduce synchronization cost.

3.6 User-defined Filters
Complementary to a scheduler-based flow control, the
parameter server supports user-defined filters to selec-
tively synchronize individual (key,value) pairs, allowing
fine-grained control of data consistency within a task.
The insight is that the optimization algorithm itself usu-
ally possesses information on which parameters are most

Algorithm 2 Set vector clock to t for range R and node i

1: for S ∈ {Si : Si ∩R �= ∅, i = 1, . . . , n} do
2: if S ⊆ R then vci(S) ← t else
3: a ← max(Sb,Rb) and b ← min(Se,Re)
4: split range S into [Sb, a), [a, b), [b,Se)
5: vci([a, b)) ← t
6: end if
7: end for

useful for synchronization. One example is the signifi-
cantly modified filter, which only pushes entries that have
changed by more than a threshold since their last synchro-
nization. In Section 5.1, we discuss another filter named
KKT which takes advantage of the optimality condition of
the optimization problem: a worker only pushes gradients
that are likely to affect the weights on the servers.

4 Implementation
The servers store the parameters (key-value pairs) using
consistent hashing [45] (Sec. 4.3). For fault tolerance, en-
tries are replicated using chain replication [47] (Sec. 4.4).
Different from prior (key,value) systems, the parameter
server is optimized for range based communication with
compression on both data (Sec. 4.2) and range based vec-
tor clocks (Sec. 4.1).

4.1 Vector Clock
Given the potentially complex task dependency graph and
the need for fast recovery, each (key,value) pair is associ-
ated with a vector clock [30, 15], which records the time
of each individual node on this (key,value) pair. Vector
clocks are convenient, e.g., for tracking aggregation sta-
tus or rejecting doubly sent data. However, a naive im-
plementation of the vector clock requires O(nm) space
to handle n nodes and m parameters. With thousands of
nodes and billions of parameters, this is infeasible in terms
of memory and bandwidth.

Fortunately, many parameters hare the same timestamp
as a result of the range-based communication pattern of
the parameter server: If a node pushes the parameters in
a range, then the timestamps of the parameters associated
with the node are likely the same. Therefore, they can be
compressed into a single range vector clock. More specif-
ically, assume that vci(k) is the time of key k for node i.
Given a key range R, the ranged vector clock vci(R) = t
means for any key k ∈ R, vci(k) = t.

Initially, there is only one range vector clock for each
node i. It covers the entire parameter key space as its

8

[source: Li et al. [2014]]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
21 / 27

Big Data Analytics 4. The Parameter Server Framework

Server Node Layout

592 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

owned
by S1

replicated
by S1

key ring

S1

S3

S1'

S2

S3'

S2'

S4

S4'

Figure 7: Server node layout.

2: f(x+y)W1
S2

push: ack:
1a: x

3: f(x+y)
4

1b: y
5b

5a

W2

S1
2: f(x)

S2S1W1 1: x 3: f(x)
45

Figure 8: Replica generation. Left: single worker. Right: multiple workers updating
values simultaneously.

1. The server manager assigns the new node a key range
to serve as master. This may cause another key range
to split or be removed from a terminated node.

2. The node fetches the range of data to maintains as
master and k additional ranges to keep as slave.

3. The server manager broadcasts the node changes.
The recipients of the message may shrink their own
data based on key ranges they no longer hold and to
resubmit unfinished tasks to the new node.

Fetching the data in the range R from some node S
proceeds in two stages, similar to the Ouroboros proto-
col [38]. First S pre-copies all (key,value) pairs in the
range together with the associated vector clocks. This
may cause a range vector clock to split similar to Algo-
rithm 2. If the new node fails at this stage, S remains
unchanged. At the second stage S no longer accepts mes-
sages affecting the key range R by dropping the messages
without executing and replying. At the same time, S sends
the new node all changes that occurred in R during the
pre-copy stage.

On receiving the node change message a node N first
checks if it also maintains the key range R. If true and
if this key range is no longer to be maintained by N , it
deletes all associated (key,value) pairs and vector clocks
in R. Next, N scans all outgoing messages that have not
received replies yet. If a key range intersects with R, then
the message will be split and resent.

Due to delays, failures, and lost acknowledgements N
may send messages twice. Due to the use of vector clocks
both the original recipient and the new node are able to
reject this message and it does not affect correctness.

The departure of a server node (voluntary or due to fail-
ure) is similar to a join. The server manager tasks a new
node with taking the key range of the leaving node. The
server manager detects node failure by a heartbeat sig-
nal. Integration with a cluster resource manager such as
Yarn [17] or Mesos [23] is left for future work.

4.6 Worker Management
Adding a new worker node W is similar but simpler than
adding a new server node:

1. The task scheduler assigns W a range of data.
2. This node loads the range of training data from a net-

work file system or existing workers. Training data is
often read-only, so there is no two-phase fetch. Next,
W pulls the shared parameters from servers.

3. The task scheduler broadcasts the change, possibly
causing other workers to free some training data.

When a worker departs, the task scheduler may start a
replacement. We give the algorithm designer the option
to control recovery for two reasons: If the training data
is huge, recovering a worker node be may more expen-
sive than recovering a server node. Second, losing a small
amount of training data during optimization typically af-
fects the model only a little. Hence the algorithm designer
may prefer to continue without replacing a failed worker.
It may even be desirable to terminate the slowest workers.

5 Evaluation
We evaluate our parameter server based on the use cases
of Section 2 — Sparse Logistic Regression and Latent
Dirichlet Allocation. We also show results of sketching
to illustrate the generality of our framework. The experi-
ments were run on clusters in two (different) large inter-
net companies and a university research cluster to demon-
strate the versatility of our approach.

5.1 Sparse Logistic Regression
Problem and Data: Sparse logistic regression is one
of the most popular algorithms for large scale risk min-
imization [9]. It combines the logistic loss4 with the �1

4�(xi, yi, w) = log(1 + exp(−yi〈xi, w〉))

10

[source: Li et al. [2014]]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
22 / 27

Big Data Analytics 4. The Parameter Server Framework

Replica Generation

592 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

owned
by S1

replicated
by S1

key ring

S1

S3

S1'

S2

S3'

S2'

S4

S4'

Figure 7: Server node layout.

2: f(x+y)W1
S2

push: ack:
1a: x

3: f(x+y)
4

1b: y
5b

5a

W2

S1
2: f(x)

S2S1W1 1: x 3: f(x)
45

Figure 8: Replica generation. Left: single worker. Right: multiple workers updating
values simultaneously.

1. The server manager assigns the new node a key range
to serve as master. This may cause another key range
to split or be removed from a terminated node.

2. The node fetches the range of data to maintains as
master and k additional ranges to keep as slave.

3. The server manager broadcasts the node changes.
The recipients of the message may shrink their own
data based on key ranges they no longer hold and to
resubmit unfinished tasks to the new node.

Fetching the data in the range R from some node S
proceeds in two stages, similar to the Ouroboros proto-
col [38]. First S pre-copies all (key,value) pairs in the
range together with the associated vector clocks. This
may cause a range vector clock to split similar to Algo-
rithm 2. If the new node fails at this stage, S remains
unchanged. At the second stage S no longer accepts mes-
sages affecting the key range R by dropping the messages
without executing and replying. At the same time, S sends
the new node all changes that occurred in R during the
pre-copy stage.

On receiving the node change message a node N first
checks if it also maintains the key range R. If true and
if this key range is no longer to be maintained by N , it
deletes all associated (key,value) pairs and vector clocks
in R. Next, N scans all outgoing messages that have not
received replies yet. If a key range intersects with R, then
the message will be split and resent.

Due to delays, failures, and lost acknowledgements N
may send messages twice. Due to the use of vector clocks
both the original recipient and the new node are able to
reject this message and it does not affect correctness.

The departure of a server node (voluntary or due to fail-
ure) is similar to a join. The server manager tasks a new
node with taking the key range of the leaving node. The
server manager detects node failure by a heartbeat sig-
nal. Integration with a cluster resource manager such as
Yarn [17] or Mesos [23] is left for future work.

4.6 Worker Management
Adding a new worker node W is similar but simpler than
adding a new server node:

1. The task scheduler assigns W a range of data.
2. This node loads the range of training data from a net-

work file system or existing workers. Training data is
often read-only, so there is no two-phase fetch. Next,
W pulls the shared parameters from servers.

3. The task scheduler broadcasts the change, possibly
causing other workers to free some training data.

When a worker departs, the task scheduler may start a
replacement. We give the algorithm designer the option
to control recovery for two reasons: If the training data
is huge, recovering a worker node be may more expen-
sive than recovering a server node. Second, losing a small
amount of training data during optimization typically af-
fects the model only a little. Hence the algorithm designer
may prefer to continue without replacing a failed worker.
It may even be desirable to terminate the slowest workers.

5 Evaluation
We evaluate our parameter server based on the use cases
of Section 2 — Sparse Logistic Regression and Latent
Dirichlet Allocation. We also show results of sketching
to illustrate the generality of our framework. The experi-
ments were run on clusters in two (different) large inter-
net companies and a university research cluster to demon-
strate the versatility of our approach.

5.1 Sparse Logistic Regression
Problem and Data: Sparse logistic regression is one
of the most popular algorithms for large scale risk min-
imization [9]. It combines the logistic loss4 with the �1

4�(xi, yi, w) = log(1 + exp(−yi〈xi, w〉))

10

[source: Li et al. [2014]]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
23 / 27

Big Data Analytics 4. The Parameter Server Framework

Experiments / Systems Compared

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 593

Algorithm 3 Delayed Block Proximal Gradient [31]
Scheduler:

1: Partition features into b ranges R1, . . . ,Rb

2: for t = 0 to T do
3: Pick random range Rit and issue task to workers
4: end for

Worker r at iteration t

1: Wait until all iterations before t− τ are finished
2: Compute first-order gradient g

(t)
r and diagonal

second-order gradient u(t)
r on range Rit

3: Push g
(t)
r and u

(t)
r to servers with the KKT filter

4: Pull w(t+1)
r from servers

Servers at iteration t

1: Aggregate gradients to obtain g(t) and u(t)

2: Solve the proximal operator

w(t+1) ← argmin
u

Ω(u) +
1

2η
‖w(t) − ηg(t) + u‖2H ,

where H = diag(h(t)) and ‖x‖2H = xTHx

Method Consistency LOC
System A L-BFGS Sequential 10,000
System B Block PG Sequential 30,000
Parameter Block PG Bounded Delay 300Server KKT Filter

Table 3: Systems evaluated.

regularizer5 of Section 2.2. The latter biases a compact
solution with a large portion of 0 value entries. The non-
smoothness of this regularizer, however, makes learning
more difficult.

We collected an ad click prediction dataset with 170 bil-
lion examples and 65 billion unique features. This dataset
is 636 TB uncompressed (141 TB compressed). We ran
the parameter server on 1000 machines, each with 16
physical cores, 192GB DRAM, and connected by 10 Gb
Ethernet. 800 machines acted as workers, and 200 were
parameter servers. The cluster was in concurrent use by
other (unrelated) tasks during operation.

Algorithm: We used a state-of-the-art distributed re-
gression algorithm (Algorithm 3, [31, 32]). It differs from
the simpler variant described earlier in four ways: First,
only a block of parameters is updated in an iteration. Sec-
ond, the workers compute both gradients and the diagonal
part of the second derivative on this block. Third, the pa-
rameter servers themselves must perform complex com-

5Ω(w) =
∑n

i=1 |wi|

10
−1

10
0

10
1

10
10.6

10
10.7

time (hours)

o
b
je

c
ti
v
e
 v

a
lu

e

System−A
System−B
Parameter Server

Figure 9: Convergence of sparse logistic regression. The
goal is to minimize the objective rapidly.

System−A System−B Parameter Server
0

1

2

3

4

5

ti
m

e
 (

h
o

u
rs

)

computing
waiting

Figure 10: Time per worker spent on computation and
waiting during sparse logistic regression.

putation: the servers update the model by solving a prox-
imal operator based on the aggregated local gradients.
Fourth, we use a bounded-delay model over iterations and
use a “KKT” filter to suppress transmission of parts of the
generated gradient update that are small enough that their
effect is likely to be negligible.6

To the best of our knowledge, no open source system
can scale sparse logistic regression to the scale described
in this paper.7 We compare the parameter server with two
special-purpose systems, named System A and B, devel-

6A user-defined Karush-Kuhn-Tucker (KKT) filter [26]. Feature k is
filtered if wk = 0 and |ĝk| ≤ ∆. Here ĝk is an estimate of the global
gradient based on the worker’s local information and ∆ > 0 is a user-
defined parameter.

7Graphlab provides only a multi-threaded, single machine imple-
mentation, while Petuum, Mlbase and REEF do not support sparse lo-
gistic regression. We confirmed this with the authors as per 4/2014.

11

[source: Li et al. [2014]]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
24 / 27

Big Data Analytics 4. The Parameter Server Framework

Experiments / Results

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 593

Algorithm 3 Delayed Block Proximal Gradient [31]
Scheduler:

1: Partition features into b ranges R1, . . . ,Rb

2: for t = 0 to T do
3: Pick random range Rit and issue task to workers
4: end for

Worker r at iteration t

1: Wait until all iterations before t− τ are finished
2: Compute first-order gradient g

(t)
r and diagonal

second-order gradient u(t)
r on range Rit

3: Push g
(t)
r and u

(t)
r to servers with the KKT filter

4: Pull w(t+1)
r from servers

Servers at iteration t

1: Aggregate gradients to obtain g(t) and u(t)

2: Solve the proximal operator

w(t+1) ← argmin
u

Ω(u) +
1

2η
‖w(t) − ηg(t) + u‖2H ,

where H = diag(h(t)) and ‖x‖2H = xTHx

Method Consistency LOC
System A L-BFGS Sequential 10,000
System B Block PG Sequential 30,000
Parameter Block PG Bounded Delay 300Server KKT Filter

Table 3: Systems evaluated.

regularizer5 of Section 2.2. The latter biases a compact
solution with a large portion of 0 value entries. The non-
smoothness of this regularizer, however, makes learning
more difficult.

We collected an ad click prediction dataset with 170 bil-
lion examples and 65 billion unique features. This dataset
is 636 TB uncompressed (141 TB compressed). We ran
the parameter server on 1000 machines, each with 16
physical cores, 192GB DRAM, and connected by 10 Gb
Ethernet. 800 machines acted as workers, and 200 were
parameter servers. The cluster was in concurrent use by
other (unrelated) tasks during operation.

Algorithm: We used a state-of-the-art distributed re-
gression algorithm (Algorithm 3, [31, 32]). It differs from
the simpler variant described earlier in four ways: First,
only a block of parameters is updated in an iteration. Sec-
ond, the workers compute both gradients and the diagonal
part of the second derivative on this block. Third, the pa-
rameter servers themselves must perform complex com-

5Ω(w) =
∑n

i=1 |wi|

10
−1

10
0

10
1

10
10.6

10
10.7

time (hours)

o
b
je

c
ti
v
e
 v

a
lu

e

System−A
System−B
Parameter Server

Figure 9: Convergence of sparse logistic regression. The
goal is to minimize the objective rapidly.

System−A System−B Parameter Server
0

1

2

3

4

5

ti
m

e
 (

h
o

u
rs

)

computing
waiting

Figure 10: Time per worker spent on computation and
waiting during sparse logistic regression.

putation: the servers update the model by solving a prox-
imal operator based on the aggregated local gradients.
Fourth, we use a bounded-delay model over iterations and
use a “KKT” filter to suppress transmission of parts of the
generated gradient update that are small enough that their
effect is likely to be negligible.6

To the best of our knowledge, no open source system
can scale sparse logistic regression to the scale described
in this paper.7 We compare the parameter server with two
special-purpose systems, named System A and B, devel-

6A user-defined Karush-Kuhn-Tucker (KKT) filter [26]. Feature k is
filtered if wk = 0 and |ĝk| ≤ ∆. Here ĝk is an estimate of the global
gradient based on the worker’s local information and ∆ > 0 is a user-
defined parameter.

7Graphlab provides only a multi-threaded, single machine imple-
mentation, while Petuum, Mlbase and REEF do not support sparse lo-
gistic regression. We confirmed this with the authors as per 4/2014.

11

[source: Li et al. [2014]]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
25 / 27

Big Data Analytics 4. The Parameter Server Framework

Experiments / Results

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 593

Algorithm 3 Delayed Block Proximal Gradient [31]
Scheduler:

1: Partition features into b ranges R1, . . . ,Rb

2: for t = 0 to T do
3: Pick random range Rit and issue task to workers
4: end for

Worker r at iteration t

1: Wait until all iterations before t− τ are finished
2: Compute first-order gradient g

(t)
r and diagonal

second-order gradient u(t)
r on range Rit

3: Push g
(t)
r and u

(t)
r to servers with the KKT filter

4: Pull w(t+1)
r from servers

Servers at iteration t

1: Aggregate gradients to obtain g(t) and u(t)

2: Solve the proximal operator

w(t+1) ← argmin
u

Ω(u) +
1

2η
‖w(t) − ηg(t) + u‖2H ,

where H = diag(h(t)) and ‖x‖2H = xTHx

Method Consistency LOC
System A L-BFGS Sequential 10,000
System B Block PG Sequential 30,000
Parameter Block PG Bounded Delay 300Server KKT Filter

Table 3: Systems evaluated.

regularizer5 of Section 2.2. The latter biases a compact
solution with a large portion of 0 value entries. The non-
smoothness of this regularizer, however, makes learning
more difficult.

We collected an ad click prediction dataset with 170 bil-
lion examples and 65 billion unique features. This dataset
is 636 TB uncompressed (141 TB compressed). We ran
the parameter server on 1000 machines, each with 16
physical cores, 192GB DRAM, and connected by 10 Gb
Ethernet. 800 machines acted as workers, and 200 were
parameter servers. The cluster was in concurrent use by
other (unrelated) tasks during operation.

Algorithm: We used a state-of-the-art distributed re-
gression algorithm (Algorithm 3, [31, 32]). It differs from
the simpler variant described earlier in four ways: First,
only a block of parameters is updated in an iteration. Sec-
ond, the workers compute both gradients and the diagonal
part of the second derivative on this block. Third, the pa-
rameter servers themselves must perform complex com-

5Ω(w) =
∑n

i=1 |wi|

10
−1

10
0

10
1

10
10.6

10
10.7

time (hours)

o
b
je

c
ti
v
e
 v

a
lu

e

System−A
System−B
Parameter Server

Figure 9: Convergence of sparse logistic regression. The
goal is to minimize the objective rapidly.

System−A System−B Parameter Server
0

1

2

3

4

5

ti
m

e
 (

h
o

u
rs

)

computing
waiting

Figure 10: Time per worker spent on computation and
waiting during sparse logistic regression.

putation: the servers update the model by solving a prox-
imal operator based on the aggregated local gradients.
Fourth, we use a bounded-delay model over iterations and
use a “KKT” filter to suppress transmission of parts of the
generated gradient update that are small enough that their
effect is likely to be negligible.6

To the best of our knowledge, no open source system
can scale sparse logistic regression to the scale described
in this paper.7 We compare the parameter server with two
special-purpose systems, named System A and B, devel-

6A user-defined Karush-Kuhn-Tucker (KKT) filter [26]. Feature k is
filtered if wk = 0 and |ĝk| ≤ ∆. Here ĝk is an estimate of the global
gradient based on the worker’s local information and ∆ > 0 is a user-
defined parameter.

7Graphlab provides only a multi-threaded, single machine imple-
mentation, while Petuum, Mlbase and REEF do not support sparse lo-
gistic regression. We confirmed this with the authors as per 4/2014.

11

[source: Li et al. [2014]]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
26 / 27

Big Data Analytics 4. The Parameter Server Framework

Experiments / Results

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 595

baseline +caching keys +KKT filter
0

20

40

60

80

100

re
la

ti
v
e
 n

e
tw

o
rk

 t
ra

ff
ic

 (
%

)

2x 2x2x

40.8x 40.3x

non−compressed
compressed

baseline +caching keys +KKT filter
0

20

40

60

80

100

re
la

ti
v
e
 n

e
tw

o
rk

 t
ra

ff
ic

 (
%

)

1.9x 1.9x

1.1x

2.5x

12.3x

non−compressed
compressed

Figure 11: The savings of outgoing network traffic by different components. Left: per server. Right: per worker.

0 0.5 1
94.5

95

95.5

96

96.5

97

97.5

time (hours)

fi
lt
e
re

d
 (

%
)

Figure 12: Unique features (keys) filtered by the
KKT filter as optimization proceeds.

0 1 2 4 8 16
0

0.5

1

1.5

2

ti
m

e
 (

h
o
u
rs

)

maximal delays

computing
waiting

Figure 13: Time a worker spent to achieve the same
convergence criteria by different maximal delays.

(measuring goodness of fit) converges. As can be seen
in Figure 14, we observe an approximately 4x speedup
in convergence when increasing the number of machines
from 1000 to 6000. The stragglers observed in Figure 14
(leftmost) also illustrate the importance of having an ar-
chitecture that can cope with performance variation across
workers.

Topic name # Top urls

Programming
stackoverflow.com w3schools.com cplusplus.com github.com tutorials-
point.com jquery.com codeproject.com oracle.com qt-project.org bytes.com
android.com mysql.com

Music ultimate-guitar.com guitaretab.com 911tabs.com e-chords.com song-
sterr.com chordify.net musicnotes.com ukulele-tabs.com

Baby Related
babycenter.com whattoexpect.com babycentre.co.uk circleofmoms.com
thebump.com parents.com momtastic.com parenting.com americanpreg-
nancy.org kidshealth.org

Strength Train-
ing

bodybuilding.com muscleandfitness.com mensfitness.com menshealth.com
t-nation.com livestrong.com muscleandstrength.com myfitnesspal.com elit-
efitness.com crossfit.com steroid.com gnc.com askmen.com

Table 4: Example topics learned using LDA over the .5
billion dataset. Each topic represents a user interest

5.3 Sketches

Problem and Data: We include sketches as part of our
evaluation as a test of generality, because they operate
very differently from machine learning algorithms. They
typically observe a large number of writes of events com-
ing from a streaming data source [11, 5].

We evaluate the time required to insert a streaming log
of pageviews into an approximate structure that can effi-
ciently track pageview counts for a large collection of web
pages. We use the Wikipedia (and other Wiki projects)
page view statistics as benchmark. Each entry is an unique
key of a webpage with the corresponding number of re-
quests served in a hour. From 12/2007 to 1/2014, there
are 300 billion entries for more than 100 million unique
keys. We run the parameter server with 90 virtual server
nodes on 15 machines of a research cluster [40] (each has

13

[source: Li et al. [2014]]Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
27 / 27

Big Data Analytics

References I
Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G. Andersen, and Alexander Smola. Parameter server for

distributed machine learning. In Big Learning NIPS Workshop, volume 6, page 2, 2013. URL
http://www.cs.cmu.edu/~feixia/files/ps.pdf.

Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James Long,
Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed machine learning with the parameter server. In 11th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 14), pages 583–598, 2014. URL
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In Advances in Neural Information Processing Systems, pages 693–701, 2011. URL
http:
//papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.

M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient descent. Advances in Neural
Information Processing Systems, 23(23):1–9, 2010. URL
http://www.martin.zinkevich.org/publications/nips2010.pdf.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
28 / 27

http://www.cs.cmu.edu/~feixia/files/ps.pdf
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent
http://www.martin.zinkevich.org/publications/nips2010.pdf

	1. Introduction
	2. Parallel Stochastic Gradient Descent
	3. Lockfree Parallelized SGD (HogWild)
	4. The Parameter Server Framework
	Appendix

