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Big Data Analytics 1. Introduction

The Matrix Completion Problem

Given

» the values D C [N] x [M] x R of some cells of an unknown matrix
Y € RV*M and

» a function £: R x R — R (called loss),

predict the values of the missing cells,
i.e. find a completion ¥ € RV*M with minimal error

errYY ZZK n,m nm)

n=1m=1

Note: [N] :={1,...,N}.
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The Matrix Factorization Model v
» the basic model:

Y =WH, W eRN*K HecRK*M
i.e., \A/njm =W, H m
» K is called latent dimension
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The Matrix Factorization Model A
» the basic model:
Y =WH, W eRN*K HecRK*M
i.e., anm =W, H m

» K is called latent dimension

» parameters are regularized, i.e., minimize

1
Y Uy Wa Hom) + MW + (1H]3)

f(W,H
( ) ‘D‘ (n,m,y)eD
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The Matrix Factorization Model A
» the basic model:
Y =WH, W eRN*K HecRK*M
i.e., anm =W, H m

» K is called latent dimension

» parameters are regularized, i.e., minimize

1
F(W, H) = D Y Uy Wa Hom) + MW + (1H]3)

(n,m,y)eD

» usually a global offset a and bias terms are used, i.e., fix
Wh1:=1, Hopm:=1
yielding \A/n,m =a+ Wpo+ Him + Wy 3.k Hs:km
=a+ by + cm+ w, hm
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Problem Equivalence

» The matrix completion problem really is
a prediction problem with

X ={0,1}" x {0, 1}M, Yy =R
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Stochastic Gradient Descent for Matrix Factorization

1
f(W,H) = D > Uy, Wa H.om) + XIWIS + [ IHIB)
(n,m,y)eD
o > (U Wa Hom) + MIWIE + [[H]3))
(n,m,y)eD
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Stochastic Gradient Descent for Matrix Factorization

1
F(W.H) = o > Uy, Wa Hom) + MIWII3 + [[HI3)
(n,m,y)eD
2 2

o Y (Uy, Wa H.om) + AIW(5 + [|H]13))
(n,m,y)eD

D
= 3 (s Wa Hom) + Ao [ W
(n,m,y)eD req( ’n)

S ol BP0

freq“(D,m)  ~

with freq’(D, n) := |{(n’,m’,y) € D | n' = n}|,
freq®(D, m) == [{(n',m',y) € D
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Stochastic Gradient Descent for Matrix Factorization

1
f(W,H) = D > Uy, Wa H.om) + XIWIS + [ IHIB)
(n,m,y)eD
2 2
o Y (Uy, Wa Hom) + MW + [[HIB))
(n,m,y)eD
D
= Z (Uly, Wy H.m) + A(mfre’l(l)rﬂ” n,.[2
(n,m,y)eD q ’
o H.al)
freq?(D,m)
= ) Uy, w, hm) + ALlwall3 + A2 || Am|13))
(n,m,y)eD
with freq (D, n) .= |{(n,m',y) e D | = n}|, AL:=\

freq®(D, m) == |{(n’,m,y) € D
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Stochastic Gradient Descent for Matrix Factorization

FW,H)Y = Y Uy, w,) hm) + AL |wal13 + A2 | 1hml[3))
(n,m,y)eD

= Z fn,m,y(Wna hm)
(n,m,y)eD
O Frmy (Wi, Bm) = 05l(y, W, him)hm + 2\ w,
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Stochastic Gradient Descent for Matrix Factorization

FW,H)Y = Y Uy, w,) hm) + AL |wal13 + A2 | 1hml[3))
(n,m,y)eD

= Z fn,m,y(Wnu hm)

(n,m,y)eD
O Frmy (Wi, Bm) = 05l(y, W, him)hm + 2\ w,
ahm fn,m,y(Wn, hm) = 8)7«)’: Wr;rhm)Wn + 2)‘Enhm

The derivative of the loss needs to be computed once, e.g., for

Uy.9) =y —9)?
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Stochastic Gradient Descent for Matrix Factorization

1 sgd-mf(9pl, N, M, D, K, X\, T,n):
— 1
2 @ 1p] Xamy)en Y
3 randomly initialize W € RNXK angd H € RMXK
4 Whp1 =1 for all n:=1,..., N
5 Hm2 =1 for all m:=1,..., M
1. |D]| —
6 AL = 2A {(n".m” ) D =n]] for all n:=1,...,N
2 . [2) —
7 Am =22 {7 m’y)E Dlm =m}] for all m:=1,..., M
8
9 for t=1,...,T:
10 for (n,m,y) € D (in random order):
11 e:=0yl(y,a+ w,;rh,.,,)
12 Wi = wn — n(ehm + A} wn)
13 hm == hm — n(ewn + )\fnhm)
14 Wni1:=1,hp2:=1
15
16 return (a, W, H)
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2. Matrix Factorization via Distributed SGD

o F
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim,

N
0
i)

Germany

7/22



Big Data Analytics 2. Matrix Factorization via Distributed SGD

B
ldea VA

» partition the data into row subsets Ry,..., Rp, i.e

DP:=Dig, = {(n,m,y) €D |neR,}

across P workers
» avoid conflicting distributed SGD updates by
» also partitioning the columns into P subsets Cy,...,Cp
» for each epoch, make P passes over the data (at each worker),
in every pass working on each worker on a different column subset,
making sure every column subset finally is worked on every worker

|Rp (Wr,k)reRp,ke{l,...,K}
H|cq (He,k)cec, kel1,...K}

{(n,m,y) € DP | m e C4}

D, :
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Big Data Analytics 2. Matrix Factorization via Distributed SGD

B2
Distributed SGD for Matrix Factorization v

1 sgd-dsgd(9y¢, N, M, D, K, X\, T,n, R, C):
2 for p € {1,..., P} (in parallel):
3 randomly initialize WP € RRpXK
4 W:,l =1 for all n € Rp
5 aP = 3 (nm.y)eDP ¥
6 push aP to server
7
1 P p
8 2= [ >p=12
9 randomly initialize H € RMxK
10 Hm2:=1 for all m:=1,..., M
11
12 LT
13 L., P
14 =1+(g+p—2mod P) for p=1,...,P
15 for p:=1,...,P in parallel:
16 pop CP:= Cgp, HP := H\CqP from server
17 sgdfmf—update(ayﬁ, Rp, CP, D\PCP‘ K,\, T =1,7n,a WP HP)
18 push H|qu := HP to server
19
20 for p:=1,...,P in parallel:
21 push Wig, = WP to server
22
23 return (a, W, H)
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Experiments / Results i
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(a) Netflix data (NZSL, R cluster @ 64) (c) Scalability (Hadoop cluster)

Figure 2: Experimental results
[source: Gemulla et al. [2011]]
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Experiments / Results
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Figure 3: Speed-up experiment (Hadoop cluster, 143GB data)

[source: Gemulla et al. [2011]]
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Big Data Analytics 3. NOMAD

items users items users

Figure 1: Illustration of updates used in matrix comple-
tion. Three algorithms are shown here: (a) alternating least
squares and coordinate descent, (b) stochastic gradient de-
scent. Black indicates that the value of the node is being
updated, gray indicates that the value of the node is being
read. White nodes are neither being read nor undated.

[source: Yun et al. [2014]]
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3. NOMAD

(a) Initial assignment of W
and H. FEach worker works
only on the diagonal active
area in the beginning.

(b) After a worker finishes
processing column j, it sends
the corresponding item pa-
rameter h; to another worker.
Here, hy is sent from worker 1
to 4.

EEE]

(c¢) Upon receipt, the col-
umn is processed by the new
worker. Here, worker 4 can
now process column 2 since it
owns the column.

-

(d) During the execution of
the algorithm, the ownership
of the item parameters h;
changes.

]

=

RN Ge
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Algorithm

Algorithm 1 the basic NOMAD algorithm
1: A: regularization parameter
: {st}: step size sequence
: // initialize parameters
: w; ~ UniformReal (0, ik) for1<i<m,1<I<k

2

3

4

5: hj; ~ UniformReal (O, ﬁ) for1<j<n,1<I<k
6: // initialize queues

7: for j € {1,2,...,n} do

8 q ~ UniformDiscrete {1,2,...,p}
9:  queue[q].push((j, h;))

10: end for

11: // start p workers

12: Parallel Foreach ¢q € {1,2,...,p}

13: while stop signal is not yet received do

14: if queue[g] not empty then

15: (j:h;) < queuelq].pop ()

16: for (i,5) € &? do

17: // SGD update

18: t < number of updates on (i, j)

19: wi < Wi — ¢ - [(Aij — wihj)h; + Aw;]
20: h; + h; —s: - [(Aij — wihj)w; + Ahj].
21: end for

22: ¢’ ~ UniformDiscrete {1,2,...,p}

23: queue|q/]push((j, b))

24: end if

25: end while
26: Parallel End

o = = = E=
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Figure 3: Illustration of DSGD algorithm with 4 workers.
Initially W and H are partitioned as shown on the left. Each
worker runs SGD on its active area as indicated. After each
worker completes processing data points in its own active
area, the columns of item parameters H' are exchanged
randomly, and the active area changes. This process is re-
peated for each iteration.

[source: Yun et al. [2014]]
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(a) DSGD (b) DSGD++
(c) FPSGD** (d) NOMAD

Figure 4: Comparison of data partitioning schemes between
algorithms. Example active area of stochastic gradient sam-
pling is marked as gray.

o = [source: Yun et ak [2014]] ~
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Yahoo!, machines=1, A = 1.00, k = 100 ‘machines=1, A = 0.05, k = 100

—e— 7 cores—1 s
—a— % cores=8

28 —e—# cores=16
—— 4 cores=30

Timoemod
o ame a0 oo

anemmee © @0 0 0

005 1 15 2 25 0

number of updates 10

510 15 20 25 30

number of cores

Figure 6: Left: Test RMSE of NOMAD as a function of the
number of updates on Yahoo! Music, when the number of
cores is varied. Right: Number of updates of NOMAD per
core per second as a function of the number of cores.

[source: Yun et al. [2014]]
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Figure 5: Comparison of NOMAD, FPSGD**, and CCD++ on a single-machine with 30 computation cores.
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test RMSE

test RMSE

Figure 9: Test RMSE of NOMAD as a function of computation time (time in seconds x the number of machines
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Figure 8: Comparison of NOMAD, DSGD, DSGD++, and CCD++ on a HPC cluster.
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Yahoo!, cores=4, A = 1.00, & = 100 Netflix, cores=1, A = 0.05, k = 100
o 10

- # machines=32

test RMSE

updates per m

005 1 15 2 0 2 30

number of updates 0% tumber of machines

Figure 10: Results on HPC cluster when the number of
machines is varied. Left: Test RMSE of NOMAD as a func-
tion of the number of updates on Netflix and Yahoo! Music.
Right: Number of updates of NOMAD per machine per core
per second as a function of the number of machines.

[source: Yun et al. [2014]]
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Figure 11: Comparison of NOMAD, DSGD, DSGD++, and CCD++ on a commodity hardware cluster.

[source: Yun et al. [2014]]
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Figure 12: Comparison of algorithms when both dataset size and the number of machines

grows. Left: 4 machines, middle
16 machines, right: 32 machines

[source: Yun et al. [2014]]
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