Big Data Analytics

Big Data Analytics
9. Distributed Matrix Factorization

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute of Computer Science
University of Hildesheim, Germany

[m] = = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim,

Germany
1/22

Big Data Analytics
Outline
1. Introduction

2. Matrix Factorization via Distributed SGD

3. NOMAD

[m] = = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim,

N
0
i)

Germany
1/22

Big Data Analytics 1. Introduction

Outline

1. Introduction

[m] = = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim,

Big Data Analytics 1. Introduction

The Matrix Completion Problem

Given

» the values D C [N] x [M] x R of some cells of an unknown matrix
Y € RV*M and

» a function £: R x R — R (called loss),

predict the values of the missing cells,
i.e. find a completion ¥ € RV*M with minimal error

errYY ZZK n,m nm)

n=1m=1

Note: [N] :={1,...,N}.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1/22

Big Data Analytics 1. Introduction
.) . 2
The Matrix Factorization Model v
» the basic model:

Y =WH, W eRN*K HecRK*M
i.e., \A/njm =W, H m
» K is called latent dimension

] = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim,

Germany

2/ 22

Big Data Analytics 1. Introduction

The Matrix Factorization Model A
» the basic model:
Y =WH, W eRN*K HecRK*M
i.e., anm =W, H m

» K is called latent dimension

» parameters are regularized, i.e., minimize

1
Y Uy Wa Hom) + MW + (1H]3)

f(W,H
() ‘D‘ (n,m,y)eD

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
2/ 22

Big Data Analytics 1. Introduction

The Matrix Factorization Model A
» the basic model:
Y =WH, W eRN*K HecRK*M
i.e., anm =W, H m

» K is called latent dimension

» parameters are regularized, i.e., minimize

1
F(W, H) = D Y Uy Wa Hom) + MW + (1H]3)

(n,m,y)eD

» usually a global offset a and bias terms are used, i.e., fix
Wh1:=1, Hopm:=1
yielding \A/n,m =a+ Wpo+ Him + Wy 3.k Hs:km
=a+ by + cm+ w, hm

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
2/ 22

Big Data Analytics 1. Introduction

Problem Equivalence

» The matrix completion problem really is
a prediction problem with

X ={0,1}" x {0, 1}M, Yy =R

= =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim,

Germany

3/22

Big Data Analytics 1. Introduction

Stochastic Gradient Descent for Matrix Factorization

1
f(W,H) = D > Uy, Wa H.om) + XIWIS + [IHIB)
(n,m,y)eD
o > (U Wa Hom) + MIWIE + [[H]3))
(n,m,y)eD

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
4/ 22

Big Data Analytics 1. Introduction

Stochastic Gradient Descent for Matrix Factorization

1
F(W.H) = o > Uy, Wa Hom) + MIWII3 + [[HI3)
(n,m,y)eD
2 2

o Y (Uy, Wa H.om) + AIW(5 + [|H]13))
(n,m,y)eD

D
= 3 (s Wa Hom) + Ao [W
(n,m,y)eD req(’n)

S ol BP0

freq“(D,m) ~

with freq’(D, n) := |{(n’,m’,y) € D | n' = n}|,
freq®(D, m) == [{(n',m',y) € D

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
4/ 22

m' = m}|

Big Data Analytics 1. Introduction

Stochastic Gradient Descent for Matrix Factorization

1
f(W,H) = D > Uy, Wa H.om) + XIWIS + [IHIB)
(n,m,y)eD
2 2
o Y (Uy, Wa Hom) + MW + [[HIB))
(n,m,y)eD
D
= Z (Uly, Wy H.m) + A(mfre’l(l)rﬂ” n,.[2
(n,m,y)eD q ’
o H.al)
freq?(D,m)
=) Uy, w, hm) + ALlwall3 + A2 || Am|13))
(n,m,y)eD
with freq (D, n) .= |{(n,m',y) e D | = n}|, AL:=\

freq®(D, m) == |{(n’,m,y) € D

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
4/ 22

m' = m}|

Big Data Analytics 1. Introduction

Stochastic Gradient Descent for Matrix Factorization

FW,H)Y = Y Uy, w,) hm) + AL |wal13 + A2 | 1hml[3))
(n,m,y)eD

= Z fn,m,y(Wna hm)
(n,m,y)eD
O Frmy (Wi, Bm) = 05l(y, W, him)hm + 2\ w,

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
5 /22

Big Data Analytics 1. Introduction

Stochastic Gradient Descent for Matrix Factorization

FW,H)Y = Y Uy, w,) hm) + AL |wal13 + A2 | 1hml[3))
(n,m,y)eD

= Z fn,m,y(Wna hm)

(n,m,y)eD
O Frmy (Wi, Bm) = 05l(y, W, him)hm + 2\ w,
ahm fn,m,y(Wn, hm) = 8)7“)’: Wr;rhm)Wn + 2)‘Enhm

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
5 /22

Big Data Analytics 1. Introduction

Stochastic Gradient Descent for Matrix Factorization

FW,H)Y = Y Uy, w,) hm) + AL |wal13 + A2 | 1hml[3))
(n,m,y)eD

= Z fn,m,y(Wnu hm)

(n,m,y)eD
O Frmy (Wi, Bm) = 05l(y, W, him)hm + 2\ w,
ahm fn,m,y(Wn, hm) = 8)7«)’: Wr;rhm)Wn + 2)‘Enhm

The derivative of the loss needs to be computed once, e.g., for

Uy.9) =y —9)?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

5/ 22

Big Data Analytics 1. Introduction

Stochastic Gradient Descent for Matrix Factorization

1 sgd-mf(9pl, N, M, D, K, X\, T,n):
— 1
2 @ 1p] Xamy)en Y
3 randomly initialize W € RNXK angd H € RMXK
4 Whp1 =1 for all n:=1,..., N
5 Hm2 =1 for all m:=1,..., M
1. |D]| —
6 AL = 2A {(n".m”) D =n]] for all n:=1,...,N
2 . [2) —
7 Am =22 {7 m’y)E Dlm =m}] for all m:=1,..., M
8
9 for t=1,...,T:
10 for (n,m,y) € D (in random order):
11 e:=0yl(y,a+ w,;rh,.,,)
12 Wi = wn — n(ehm + A} wn)
13 hm == hm — n(ewn +)\fnhm)
14 Wni1:=1,hp2:=1
15
16 return (a, W, H)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
6 /22

Big Data Analytics 2. Matrix Factorization via Distributed SGD

Outline

2. Matrix Factorization via Distributed SGD

o F
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim,

N
0
i)

Germany

7/22

Big Data Analytics 2. Matrix Factorization via Distributed SGD

B
ldea VA

» partition the data into row subsets Ry,..., Rp, i.e

DP:=Dig, = {(n,m,y) €D |neR,}

across P workers
» avoid conflicting distributed SGD updates by
» also partitioning the columns into P subsets Cy,...,Cp
» for each epoch, make P passes over the data (at each worker),
in every pass working on each worker on a different column subset,
making sure every column subset finally is worked on every worker

|Rp (Wr,k)reRp,ke{l,...,K}
H|cq (He,k)cec, kel1,...K}

{(n,m,y) € DP | m e C4}

D, :

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
7/22

Big Data Analytics 2. Matrix Factorization via Distributed SGD

(=] = = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim,

= DAl
Germany
8 /22

Big Data Analytics 2. Matrix Factorization via Distributed SGD

B2
Distributed SGD for Matrix Factorization v

1 sgd-dsgd(9y¢, N, M, D, K, X\, T,n, R, C):
2 for p € {1,..., P} (in parallel):
3 randomly initialize WP € RRpXK
4 W:,l =1 for all n € Rp
5 aP = 3 (nm.y)eDP ¥
6 push aP to server
7
1 P p
8 2= [>p=12
9 randomly initialize H € RMxK
10 Hm2:=1 for all m:=1,..., M
11
12 LT
13 L., P
14 =1+(g+p—2mod P) for p=1,...,P
15 for p:=1,...,P in parallel:
16 pop CP:= Cgp, HP := H\CqP from server
17 sgdfmf—update(ayﬁ, Rp, CP, D\PCP‘ K,\, T =1,7n,a WP HP)
18 push H|qu := HP to server
19
20 for p:=1,...,P in parallel:
21 push Wig, = WP to server
22
23 return (a, W, H)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
9/22

Big Data Analytics 2. Matrix Factorization via Distributed SGD

Ny
Experiments / Results i

3
B L3
S 3x
2 Q%X XXX XXX XXX X=X X
= _ 3
S P—B-A—A—A—A—A—A—-A 2
8 % 1x 1x
o g
s [2
S o
% g
s
B
o0 o 0 s o0 s T 0 e 20 ST i6Ba5 GABG20 250Ba80

: (36GB) (143GB) (572GB)
Wall clock time (hours) ‘Wall clock time (hours)

Data size @ concurrent map tasks
(b) Synth. data (L2, A = 0.1, R cluster @ 64)

(a) Netflix data (NZSL, R cluster @ 64) (c) Scalability (Hadoop cluster)

Figure 2: Experimental results
[source: Gemulla et al. [2011]]

] = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL),

University of Hildesheim, Germany

10 / 22

Big Data Analytics 2. Matrix Factorization via Distributed SGD

Experiments / Results

2000

1500

1000

0.48x

0.25% ,&\
s 16 32 64

Concurrent map tasks

Wall clock time per ep:
500

Figure 3: Speed-up experiment (Hadoop cluster, 143GB data)

[source: Gemulla et al. [2011]]

ht
n
N
0
i

[m] = = =

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
11 / 22

Big Data Analytics 3. NOMAD

Outline

3. NOMAD

[m] = = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim,

Big Data Analytics 3. NOMAD

items users items users

Figure 1: Illustration of updates used in matrix comple-
tion. Three algorithms are shown here: (a) alternating least
squares and coordinate descent, (b) stochastic gradient de-
scent. Black indicates that the value of the node is being
updated, gray indicates that the value of the node is being
read. White nodes are neither being read nor undated.

[source: Yun et al. [2014]]

[m] = = =
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim,

ht
n
N
0
i

Germany
12 / 22

Big Data Analytics

3. NOMAD

(a) Initial assignment of W
and H. FEach worker works
only on the diagonal active
area in the beginning.

(b) After a worker finishes
processing column j, it sends
the corresponding item pa-
rameter h; to another worker.
Here, hy is sent from worker 1
to 4.

EEE]

(c¢) Upon receipt, the col-
umn is processed by the new
worker. Here, worker 4 can
now process column 2 since it
owns the column.

-

(d) During the execution of
the algorithm, the ownership
of the item parameters h;
changes.

]

=

RN Ge

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

13 / 22

Big Data Analytics 3. NOMAD

Algorithm

Algorithm 1 the basic NOMAD algorithm
1: A: regularization parameter
: {st}: step size sequence
: // initialize parameters
: w; ~ UniformReal (0, ik) for1<i<m,1<I<k

2

3

4

5: hj; ~ UniformReal (O, ﬁ) for1<j<n,1<I<k
6: // initialize queues

7: for j € {1,2,...,n} do

8 q ~ UniformDiscrete {1,2,...,p}
9: queue[q].push((j, h;))

10: end for

11: // start p workers

12: Parallel Foreach ¢q € {1,2,...,p}

13: while stop signal is not yet received do

14: if queue[g] not empty then

15: (j:h;) < queuelq].pop ()

16: for (i,5) € &? do

17: // SGD update

18: t < number of updates on (i, j)

19: wi < Wi — ¢ - [(Aij — wihj)h; + Aw;]
20: h; + h; —s: - [(Aij — wihj)w; + Ahj].
21: end for

22: ¢’ ~ UniformDiscrete {1,2,...,p}

23: queue|q/]push((j, b))

24: end if

25: end while
26: Parallel End

o = = = E=

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

Big Data Analytics 3. NOMAD

Figure 3: Illustration of DSGD algorithm with 4 workers.
Initially W and H are partitioned as shown on the left. Each
worker runs SGD on its active area as indicated. After each
worker completes processing data points in its own active
area, the columns of item parameters H' are exchanged
randomly, and the active area changes. This process is re-
peated for each iteration.

[source: Yun et al. [2014]]

o F
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim,

= DA
Germany
15 / 22

Big Data Analytics 3. NOMAD

e = — = ‘
« ‘ e |
« o i | o
i | |
: : ~
R - ‘
- . - ! | -
s 5 s I bk
| | ¢
. i T
« o X ‘ -
« | l x|
(a) DSGD (b) DSGD++
(c) FPSGD** (d) NOMAD

Figure 4: Comparison of data partitioning schemes between
algorithms. Example active area of stochastic gradient sam-
pling is marked as gray.

o = [source: Yun et ak [2014]] ~

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
16 / 22

Big Data Analytics 3. NOMAD

Yahoo!, machines=1, A = 1.00, k = 100 ‘machines=1, A = 0.05, k = 100

—e— 7 cores—1 s
—a— % cores=8

28 —e—# cores=16
—— 4 cores=30

Timoemod
o ame a0 oo

anemmee © @0 0 0

005 1 15 2 25 0

number of updates 10

510 15 20 25 30

number of cores

Figure 6: Left: Test RMSE of NOMAD as a function of the
number of updates on Yahoo! Music, when the number of
cores is varied. Right: Number of updates of NOMAD per
core per second as a function of the number of cores.

[source: Yun et al. [2014]]

o = = E = DA
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

17 / 22

Big Data Analytics 3. NOMAD

. Netflix, machines=1, cor

30, A = 0.05, k = 100

Yahoo!, machines=1, cor

. A= 1.00, k =100

Hugewiki, machines

0.95 - - . . 1 - - -
—e— NOMAD —e— NOMAD
— FPSGD** 2 — FPSGD**
.- cop. -.- co
ot COD++ COD++
= = = 4
Z 093 2 auf E
0.92 -
2} =]
001 | | | | | | 05 | , \ | L
0 100 200 300 100 0 100 200 300 100 0 500 1000 1500 2000 2500 3.000
seconds seconds scconds

Figure 5: Comparison of NOMAD, FPSGD**, and CCD++ on a single-machine with 30 computation cores.

Netflix, machines=1, A = 0.05, k = 100

Yahoo!, machines=1, A = 1.00, k = 100

Hugewiki, machines=1, A = 001, k = 100
T T T T T T T T T T
—e— # cores —e— # corc o —e— # cores—1
098 —=— # cores=8 | —=— # cores | —=— # cores=8
sl —e—# cores=16 || 0651 6
—— # cores=30
=096 @ @
2 2 g o
z z L
z z Z 06
£ oo g k
e 055
092}
22
L L L L L L 051 L L L |
0 1000 2000 3000 4000 5000 6,000

seconds x cores

L L L L
0 2,000 4,000 6,000 8,000

seconds x cores

Figure 7: Test RMSE of NOMAD as a function of computation time (time

number of cores is varied.

seconds x

cores 10°

in seconds x the number of cores), when th

[m]

=

D¢

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

. 18 /22

Big Data Analytics

test RMSE

test RMSE

Figure 9: Test RMSE of NOMAD as a function of computation time (time in seconds x the number of machines

3. NOMAD
Netflix, machines=32, cores=4, A = 0.05, k = 100 L, A = 1.00, k =100 Hugewiki, machines 4, A= 0.01, k=100
T - - - - - 07 . .
0 —e— NOMAD —e— NOMAD —e— NOMAD
: — DSGD 2 — bpsep || — DSGD
0osl! - - DSGD++ - - DSGD++ 065l - - DSGD4+ ||
. -e- CCD4+ b -e- CCD4+ 0% -e- CCD4+
. g 8
0.96 2 2
e e
094 - -
0.92
; n n \ | \ | | 05 \ \ |
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 200 400 600
seconds seconds seconds
Figure 8: Comparison of NOMAD, DSGD, DSGD++, and CCD++ on a HPC cluster.
Netflix, cores=4, A = 0.05, k = 100 Yahoo!, cores=4, A = 1.00, k = 100 Hugewiki, cores=4, A = 0.01, k = 100
1 T T T 27 T T
X 0.7 —w— # machines=8 ||
098} & —e— # machines
0.65
@ BF =)
0.96 - z z
z Z
T owf = o6l
091 < =
23 0.55
092
22
L L L L L L L L L L 051 L L L L |
0 1,000 2,000 3,000 4,000 5,000 6,000 0 2,000 4,000 6,000

seconds x machines x cores

8,000

seconds x machines x cores

seconds x machines x cores

number of cores per each machine) on a HPC cluster, when the number of machines is varied.

[m]

= =

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

19 / 22

Big Data Analytics 3. NOMAD

Yahoo!, cores=4, A = 1.00, & = 100 Netflix, cores=1, A = 0.05, k = 100
o 10

- # machines=32

test RMSE

updates per m

005 1 15 2 0 2 30

number of updates 0% tumber of machines

Figure 10: Results on HPC cluster when the number of
machines is varied. Left: Test RMSE of NOMAD as a func-
tion of the number of updates on Netflix and Yahoo! Music.
Right: Number of updates of NOMAD per machine per core
per second as a function of the number of machines.

[source: Yun et al. [2014]]

o = = E = DA
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
20 / 22

Big Data Analytics 3. NOMAD

Netflix, machines=32, cores=4, A = 0.05, k = 100 Yahoo!, machines=32, cores=4, A = 1.00, k = 100 Hugewiki, machines=32, cores=4, A = 1.00, k = 100
1 T T T T T 0.65 T T
—a— NOMAD —e— NOMAD —— NOMAD
— DSGD 2lel — Dpsap | — DSGD
0.98 - - DSGD++ | N - - DSGD++ - - DSGD++
--- COD++ . --- CCD++
06
Z 096 1 = =
&] &
094 1 0.55
0.92
| n n n | | | | | 05 \ I \ .
0 100 200 300 400 500 0 100 200 300 400 500 600 0 TOO0 2000 3000 4,000

seconds seconds seconds

Figure 11: Comparison of NOMAD, DSGD, DSGD++, and CCD++ on a commodity hardware cluster.

[source: Yun et al. [2014]]

o = = = DA
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

21 /22

Big Data Analytics 3. NOMAD

machines=4, cores=1, k = 100, A = 0.01 machines=16, cores=4, k = 100, A = 0.01 machines=32, cores=4, k = 100, A = 0.01
L8[T 22— T T T
L —e— NOMAD 9al v —e— NOMAD ||
. — DSGD = L — DSGD
| - - DSGD++ K - - DSGD++
2 | --- CCD++ H 2ol | K -e- CCD4+ [
L7 -
@ @ @
) 2 2
= = =
&] z 2f
§ 7 18F %
L6 18
16
16 b
i | \ . | | ! » |
0 1000 2000 3000 4000 5,000 0 02 04 06 08 0 02 04 06 08

" "
seconds seconds 10 seconds 10

Figure 12: Comparison of algorithms when both dataset size and the number of machines

grows. Left: 4 machines, middle
16 machines, right: 32 machines

[source: Yun et al. [2014]]

o = = E El= 9DaAe
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

22 /22

Big Data Analytics

B
References | v

Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. Large-scale matrix factorization with distributed

stochastic gradient descent. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 69—-77. ACM, 2011. URL http://dl.acm.org/citation.cfm?id=2020426.

Hyokun Yun, Hsiang-Fu Yu, Cho-Jui Hsieh, S. V. N. Vishwanathan, and Inderjit Dhillon. NOMAD: Non-locking,

stOchastic Multi-machine algorithm for Asynchronous and Decentralized matrix completion. Proceedings of the
VLDB Endowment, 7(11):975-986, 2014. URL http://dl.acm.org/citation.cfm?id=2732973.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 22

http://dl.acm.org/citation.cfm?id=2020426
http://dl.acm.org/citation.cfm?id=2732973

	1. Introduction
	2. Matrix Factorization via Distributed SGD
	3. NOMAD
	Appendix

