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Big Data Analytics 1. Introduction

The Matrix Completion Problem

Given
I the values D ⊆ [N]× [M]× R of some cells of an unknown matrix

Y ∈ RN×M and
I a function ` : R× R→ R (called loss),

predict the values of the missing cells,
i.e. find a completion Ŷ ∈ RN×M with minimal error

err(Ŷ ,Y ) :=
N∑

n=1

M∑
m=1

`(Yn,m, Ŷn,m)
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Note: [N] := {1, . . . ,N}.



Big Data Analytics 1. Introduction

The Matrix Factorization Model
I the basic model:

Ŷ :=WH, W ∈ RN×K ,H ∈ RK×M

i.e., Ŷn,m :=Wn,.H.,m
I K is called latent dimension

I parameters are regularized, i.e., minimize

f (W ,H) :=
1
|D|

∑
(n,m,y)∈D

`(y ,Wn,.H.,m) + λ(||W ||22 + ||H||22)

I usually a global offset a and bias terms are used, i.e., fix

Wn,1 :=1, H2,m := 1

yielding Ŷn,m =a + Wn,2 + H1,m + Wn,3:KH3:K ,m

=a + bn + cm + wT
n hm
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Big Data Analytics 1. Introduction

Problem Equivalence

I The matrix completion problem really is
a prediction problem with

X := {0, 1}N × {0, 1}M , Y := R
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Big Data Analytics 1. Introduction

Stochastic Gradient Descent for Matrix Factorization

f (W ,H) :=
1
|D|

∑
(n,m,y)∈D

`(y ,Wn,.H.,m) + λ(||W ||22 + ||H||22)

∝
∑

(n,m,y)∈D

(
`(y ,Wn,.H.,m) + λ(||W ||22 + ||H||22)

)

=
∑

(n,m,y)∈D
(`(y ,Wn,.H.,m) + λ(

|D|
freq1(D, n)

||Wn,.||22

+
|D|

freq2(D,m)
||H.,m||22))

=
∑

(n,m,y)∈D
(`(y ,wT

n hm) + λ1
n||wn||22 + λ2

m||hm||22))

with freq1(D, n) := |{(n′,m′, y) ∈ D | n′ = n}|,

λ1
n := λ

freq2(D,m) := |{(n′,m′, y) ∈ D | m′ = m}|
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Stochastic Gradient Descent for Matrix Factorization

f (W ,H) =
∑

(n,m,y)∈D
(`(y ,wT

n hm) + λ1
n||wn||22 + λ2

m||hm||22))

=:
∑

(n,m,y)∈D
fn,m,y (wn, hm)

∂wn fn,m,y (wn, hm) = ∂ŷ `(y ,wT
n hm)hm + 2λ1

nwn

∂hm fn,m,y (wn, hm) = ∂ŷ `(y ,wT
n hm)wn + 2λ2

mhm

The derivative of the loss needs to be computed once, e.g., for

`(y , ŷ) := (y − ŷ)2

 ∂ŷ `(y , ŷ) = 2(y − ŷ)
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Big Data Analytics 1. Introduction

Stochastic Gradient Descent for Matrix Factorization

1 sgd-mf(∂ŷ `,N,M,D,K , λ,T , η):
2 a := 1

|D|
∑

(n,m,y)∈D y

3 randomly initialize W ∈ RN×K and H ∈ RM×K

4 Wn,1 := 1 for all n := 1, . . . ,N
5 Hm,2 := 1 for all m := 1, . . . ,M

6 λ1
n := 2λ |D|

|{(n′,m′,y)∈D|n′=n}| for all n := 1, . . . ,N

7 λ2
m := 2λ |D|

|{(n′,m′,y)∈D|m′=m}| for all m := 1, . . . ,M

8
9 for t = 1, . . . ,T:

10 for (n,m, y) ∈ D (in random order):

11 e := ∂ŷ `(y, a + wT
n hm)

12 wn := wn − η(ehm + λ1
nwn)

13 hm := hm − η(ewn + λ2
mhm)

14 wn,1 := 1, hm,2 := 1
15
16 return (a,W ,H)
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Big Data Analytics 2. Matrix Factorization via Distributed SGD

Idea
I partition the data into row subsets R1, . . . ,RP , i.e.,

Dp := D|Rp := {(n,m, y) ∈ D | n ∈ Rp}

across P workers
I avoid conflicting distributed SGD updates by

I also partitioning the columns into P subsets C1, . . . ,CP
I for each epoch, make P passes over the data (at each worker),

in every pass working on each worker on a different column subset,
making sure every column subset finally is worked on every worker

W|Rp := (Wr ,k)r∈Rp ,k∈{1,...,K}

H|Cq := (Hc,k)c∈Cq ,k∈{1,...,K}

Dp
|Cq

:= {(n,m, y) ∈ Dp | m ∈ Cq}
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Big Data Analytics 2. Matrix Factorization via Distributed SGD

Distributed SGD for Matrix Factorization
1 sgd-dsgd(∂ŷ `,N,M,D,K , λ,T , η,R,C):
2 for p ∈ {1, . . . ,P} (in parallel):

3 randomly initialize W p ∈ RRp×K

4 W p
n,1 := 1 for all n ∈ Rp

5 ap :=
∑

(n,m,y)∈Dp y
6 push ap to server
7
8 a := 1

|D|
∑P

p=1 ap

9 randomly initialize H ∈ RM×K

10 Hm,2 := 1 for all m := 1, . . . ,M
11
12 for t = 1, . . . ,T:
13 for q = 1, . . . ,P:
14 qp := 1 + (q + p − 2 mod P) for p = 1, . . . ,P
15 for p := 1, . . . ,P in parallel:
16 pop Cp := Cqp ,Hp := H|Cqp from server

17 sgd-mf-update(∂ŷ `,Rp ,Cp ,Dp
|Cp ,K , λ,T = 1, η, a;W p ,Hp)

18 push H|Cqp := Hp to server

19
20 for p := 1, . . . ,P in parallel:
21 push W|Rp := W p to server

22
23 return (a,W ,H)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Experiments / Results
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Figure 2: Experimental results

cores at 2.8GHz and 32GB of memory. We employ a couple of
Hadoop-specific optimizations; see [10].

For our experiments with PSGD and DSGD, we used adaptive
step-size computation based on a sample of roughly 1M data points,
eventually switching to the bold driver. The time for step-size
selection is included in all performance plots.

We used the Netflix competition dataset [3] for our experiments on
real data. This dataset contains a small subset of movie ratings given
by Netflix users, specifically, 100M anonymized, time-stamped rat-
ings from roughly 480k customers on roughly 18k movies. For
larger-scale performance experiments, we used a much larger syn-
thetic dataset with 10M rows, 1M columns, and 1B nonzero entries.
We first generated matrices W ∗ and H∗ by repeatedly sampling
values from the N(0, 10) distribution. We then sampled 1B entries
from the product W ∗H∗ and added N(0, 1) noise to each sample,
ensuring that there existed a reasonable low-rank factorization. We
always centered the input matrix around its mean. The starting
points W 0 and H0 were chosen by sampling entries uniformly and
at random from [−0.5, 0.5]; we used the same starting point for
each algorithm to ensure fair comparison. Finally, for our scalability
experiments, we used the Netflix competition dataset and scaled
up the data in a way that keeps the sparsity of the matrix constant.
Specifically, at each successive scale-up step, we duplicated the
number of customers and movies while quadrupling the number
of ratings (nonzero entries). We repeat this procedure to obtain
matrices between 36GB and 572GB in size. Unless stated otherwise,
we use rank r = 50.

We focus here on two common loss functions: plain nonzero
squared loss LNZSL =

P
(i,j)∈Z(V ij − [WH]ij)

2 and nonzero
squared loss with L2 regularization LL2 = LNZSL + λ

`
‖W ‖2F +

‖H‖2F
´
. For our experiment on synthetic data and LL2, we use a

“principled” value of λ = 0.1; this choice of λ is “natural” in that
the resulting minimum-loss factors correspond to the “maximum a
posteriori” Bayesian estimator of W and H under the Gaussian-
based procedure used to generate the synthetic data. Results for
other loss functions (including GKL loss) are given in [10].

All of our reported experiments focus on training loss, i.e., the
loss over the training data, since our emphasis is on how to compute
a high quality factorization of a given input matrix as efficiently as
possible. The test loss, i.e., how well the resulting factorized matrix
predicts user ratings of unseen movies, is an orthogonal issue that
depends upon, e.g., the choice of loss function and regularization
term. In this regard, we re-emphasize that the DSGD algorithm can
handle a wide variety of loss functions and regularization schemes.
(In fact, we found experimentally that the loss performance of DSGD
relative to other factorization algorithms looked similar for test loss
and training loss.)

7.2 Relative Performance
We evaluated the relative performance of the matrix factoriza-

tion algorithms. For various loss functions and datasets, we ran
100 epochs—i.e, scans of the data matrix—with each algorithm
and measured the elapsed wall-clock time, as well as the value of
the training loss after every epoch. We used 64-way distributed
processing on 8 nodes (with 8 concurrent map tasks per node).

Representative results are given in Figs. 2a and 2b. In all our
experiments, DSGD converges about as fast as—and, in most cases,
faster than–alternative methods. After DSGD, the fastest-converging
algorithms are ALS, then DGD, then PSGD. Note that each algo-
rithm has a different cost per epoch: DSGD ran 43 epochs, ALS
ran 10 epochs, DGD ran 61 epochs, and PSGD ran 30 epochs in the
first hour of the Netflix experiment. These differences in runtime
are explained by different computational costs (highest for ALS,
which has to solve m + n least-squares problems per epoch) and
synchronization costs (highest for PSGD, which has to average all
parameters in each epoch). We omit results for DGD in Fig. 2b
because its centralized parameter-update step ran out of memory.

Besides the rate of convergence, the ultimate training-loss value
achieved is also of interest. DGD will converge to a good lo-
cal minimum, similarly to DSGD, but the convergence is slow;
e.g., in Fig. 2a, DGD was still a long way from convergence after
several hours. With respect to PSGD, we note that the matrix-
factorization problem is “non-identifiable” in that the loss function
has many global minima that correspond to widely different values
of (W ,H). Averages of good partition-local factors as computed
by PSGD do not correspond to good global factors, which explains
why the algorithm converged to suboptimal solutions in the experi-
ments. Finally, ALS, which is a specialized method, is outperformed
by DSGD in the experiments shown here, but came close in perfor-
mance to DSGD in some of our other experiments [10]. Unlike the
other algorithms, we are unaware of any theoretical guarantees of
convergence for ALS when it is applied to nonconvex optimization
problems such as matrix factorization. This lack of theoretical sup-
port is perhaps related to ALS’s erratic behavior. In summary, the
overall performance of DSGD was consistently more stable than
that of the other two algorithms, and the speed of convergence was
comparable or faster.

We also assessed the impact of communication overheads on
DSGD by comparing its performance with standard, sequential
SGD. Note that we could not perform such a comparison on massive
data, because SGD simply does not scale to very large datasets, e.g.,
our 572GB synthetic dataset. Indeed, even if SGD were run without
any data shuffling, so that data could be read sequentially, merely
reading the data once from disk would take hours. We therefore
compared SGD to 64-way DSGD on the smaller Netflix dataset.

[source: Gemulla et al. [2011]]
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Figure 3: Speed-up experiment (Hadoop cluster, 143GB data)

Here, SGD required slightly fewer epochs than DSGD to converge.
This discrepancy is a consequence of different randomizations of the
training sequence: SGD shuffles the entire dataset, whereas DSGD
shuffles only strata and blocks. The situation was reversed with
respect to wall-clock time, and DSGD converged slightly faster than
SGD. Most of DSGD’s processing time was spent on communica-
tion of intermediate results over the (slow) centralized file system.
Recent distributed processing platforms have the potential to reduce
this latency and improve performance for moderately-sized data; we
are currently experimenting with such platforms.

7.3 Scalability of DSGD
We next studied the scalability of DSGD in our Hadoop envi-

ronment, which allowed us to process much larger matrices than
on the in-memory R cluster. In general, we found that DSGD has
good scalability properties on Hadoop, provided that the amount of
data processed per map task does not become so small that system
overheads start to dominate.

Figure 2c shows the wall-clock time per DSGD epoch for different
dataset sizes (measured in number of nonzero entries of V ) and
appropriately scaled numbers of concurrent map tasks (after @-
sign). The processing time initially remains constant as the dataset
size and number of concurrent tasks are each scaled up by a factor
of 4. As we scale to very large datasets (572GB) on large clusters
(80 parallel tasks), the overall runtime increases by a modest 30%.
This latter overhead can potentially be ameliorated by improving
Hadoop’s scheduling mechanism, which was a major bottleneck.

A similar observation is made in Figure 3, where we depict the
speedup performance when the number of ratings (nonzero entries)
is fixed at 6.4B (143GB) and the number of concurrent map tasks is
repeatedly doubled. DSGD initially achieves roughly linear speed-
up up to 32 concurrent tasks. After this point, speed-up performance
starts to degrade. The reason for this behavior is that, when the
number of map tasks becomes large, the amount of data processed
per task becomes small—e.g., 64-way DSGD uses 642 blocks so
that the amount of data per block is only ≈ 35MB. The actual time
to execute DSGD on the data is swamped by Hadoop overheads,
especially the time required to spawn tasks.

8. CONCLUSION
We have developed a stratified version of the classic SGD al-

gorithm and then refined this SSGD algorithm to obtain DSGD, a
distributed matrix-factorization algorithm that can efficiently handle
web-scale matrices. Experiments indicate its superior performance.
In future work, we plan to investigate alternative loss functions,
such as GKL, as well as alternative regularizations. We also plan
to investigate both alternative stratification schemes and emerging
distributed-processing platforms. We will also extend our techniques
to other applications, such as computing Kohonen maps.
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usersitems

(a)

usersitems

(b)

Figure 1: Illustration of updates used in matrix comple-
tion. Three algorithms are shown here: (a) alternating least
squares and coordinate descent, (b) stochastic gradient de-
scent. Black indicates that the value of the node is being
updated, gray indicates that the value of the node is being
read. White nodes are neither being read nor updated.

For the matrix completion problem, note that for a fixed
(i, j) pair, the gradient of (1) can be written as

∇wiJ(W,H) = (Aij − 〈wi,hj〉) hj + λwi and

∇hjJ(W,H) = (Aij − 〈wi,hj〉) wi + λhj ,

Therefore the SGD updates require sampling a random in-
dex (it, jt) uniformly from the set of nonzero indicies Ω, and
performing the update

wit ← wit − st · [(Aitjt −withjt)hjt + λwit ] and (9)

hjt ← hjt − st · [(Aitjt −withjt)wjt + λhjt ] . (10)

3. NOMAD
In NOMAD, we use an optimization scheme based on

SGD. In order to justify this choice, we find it instructive to
first understand the updates performed by ALS, coordinate
descent, and SGD on a bipartite graph which is constructed
as follows: the i-th user node corresponds to wi, the j-th
item node corresponds to hj , and an edge (i, j) indicates
that user i has rated item j (see Figure 1). Both the ALS
update (3) and coordinate descent update (6) for wi require
us to access the values of hj for all j ∈ Ωi. This is shown
in Figure 1 (a), where the black node corresponds to wi,
while the gray nodes correspond to hj for j ∈ Ωi. On the
other hand, the SGD update to wi (9) only requires us to
retrieve the value of hj for a single random j ∈ Ωi (Figure 1
(b)). What this means is that in contrast to ALS or CCD,
multiple SGD updates can be carried out simultaneously in
parallel, without interfering with each other. Put another
way, SGD has higher potential for finer-grained parallelism
than other approaches, and therefore we use it as our opti-
mization scheme in NOMAD.

3.1 Description
For now, we will denote each parallel computing unit as a

worker ; in a shared memory setting a worker is a thread and
in a distributed memory architecture a worker is a machine.
This abstraction allows us to present NOMAD in a unified
manner. Of course, NOMAD can be used in a hybrid set-
ting where there are multiple threads spread across multiple
machines, and this will be discussed in Section 3.4.

In NOMAD, the users {1, 2, . . . ,m} are split into p disjoint
sets I1, I2, . . . , Ip which are of approximately equal size1.
This induces a partition of the rows of the ratings matrix

A. The q-th worker stores n sets of indices Ω̄
(q)
j , for j ∈

{1, . . . , n}, which are defined as

Ω̄
(q)
j :=

{
(i, j) ∈ Ω̄j ; i ∈ Iq

}
,

as well as the corresponding values of A. Note that once
the data is partitioned and distributed to the workers, it is
never moved during the execution of the algorithm.

Recall that there are two types of parameters in ma-
trix completion: user parameters wi’s, and item parame-
ters hj ’s. In NOMAD, wi’s are partitioned according to
I1, I2, . . . , Ip, that is, the q-th worker stores and updates
wi for i ∈ Iq. The variables in W are partitioned at the
beginning, and never move across workers during the execu-
tion of the algorithm. On the other hand, the hj ’s are split
randomly into p partitions at the beginning, and their own-
ership changes as the algorithm progresses. At each point
of time an hj variable resides in one and only worker, and it
moves to another worker after it is processed, independent
of other item variables. Hence these are nomadic variables2.

Processing an item variable hj at the q-th worker entails
executing SGD updates (9) and (10) on the ratings in the

set Ω̄
(q)
j . Note that these updates only require access to hj

and wi for i ∈ Iq; since Iq’s are disjoint, each wi variable
in the set is accessed by only one worker. This is why the
communication of wi variables is not necessary. On the
other hand, hj is updated only by the worker that currently
owns it, so there is no need for a lock; this is the popular
owner-computes rule in parallel computing. See Figure 2.

We now formally define the NOMAD algorithm (see Algo-
rithm 1 for detailed pseudo-code). Each worker q maintains
its own concurrent queue, queue[q], which contains a list of
items it has to process. Each element of the list consists
of the index of the item j (1 ≤ j ≤ n), and a correspond-
ing k-dimensional parameter vector hj ; this pair is denoted
as (j,hj). Each worker q pops a (j,hj) pair from its own
queue, queue[q], and runs stochastic gradient descent up-

date on Ω̄
(q)
j , which is the set of ratings on item j locally

stored in worker q (line 16 to 21). This changes values of
wi for i ∈ Iq and hj . After all the updates on item j are
done, a uniformly random worker q′ is sampled (line 22) and
the updated (j,hj) pair is pushed into the queue of that
worker, q′ (line 23). Note that this is the only time where a
worker communicates with another worker. Also note that
the nature of this communication is asynchronous and non-
blocking. Furthermore, as long as there are items in the
queue, the computations are completely asynchronous and
decentralized. Moreover, all workers are symmetric, that is,
there is no designated master or slave.

3.2 Complexity Analysis
First, we consider the case when the problem is distributed

across p workers, and study how the space and time com-
plexity behaves as a function of p. Each worker has to store

1An alternative strategy is to split the users such that each
set has approximately the same number of ratings.
2Due to symmetry in the formulation of the matrix com-
pletion problem, one can also make the wi’s nomadic and
partition the hj ’s. Since usually the number of users is much
larger than the number of items, this leads to more commu-
nication and therefore we make the hj variables nomadic.

3

[source: Yun et al. [2014]]
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(a) Initial assignment of W
and H. Each worker works
only on the diagonal active
area in the beginning.
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(b) After a worker finishes
processing column j, it sends
the corresponding item pa-
rameter hj to another worker.
Here, h2 is sent from worker 1
to 4.
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(c) Upon receipt, the col-
umn is processed by the new
worker. Here, worker 4 can
now process column 2 since it
owns the column.
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(d) During the execution of
the algorithm, the ownership
of the item parameters hj
changes.

Figure 2: Illustration of the NOMAD algorithm

Algorithm 1 the basic NOMAD algorithm

1: λ: regularization parameter
2: {st}: step size sequence
3: // initialize parameters

4: wil ∼ UniformReal
(

0, 1√
k

)
for 1 ≤ i ≤ m, 1 ≤ l ≤ k

5: hjl ∼ UniformReal
(

0, 1√
k

)
for 1 ≤ j ≤ n, 1 ≤ l ≤ k

6: // initialize queues

7: for j ∈ {1, 2, . . . , n} do
8: q ∼ UniformDiscrete {1, 2, . . . , p}
9: queue[q].push((j,hj))

10: end for
11: // start p workers

12: Parallel Foreach q ∈ {1, 2, . . . , p}
13: while stop signal is not yet received do
14: if queue[q] not empty then
15: (j,hj)← queue[q].pop()

16: for (i, j) ∈ Ω̄
(q)
j do

17: // SGD update

18: t← number of updates on (i, j)
19: wi ← wi − st · [(Aij −wihj)hj + λwi]
20: hj ← hj − st · [(Aij −wihj)wj + λhj ] .
21: end for
22: q′ ∼ UniformDiscrete {1, 2, . . . , p}
23: queue[q′].push((j,hj))
24: end if
25: end while
26: Parallel End

1/p fraction of the m user parameters, and approximately
1/p fraction of the n item parameters. Furthermore, each
worker also stores approximately 1/p fraction of the |Ω| rat-
ings. Since storing a row of W or H requires O(k) space
the space complexity per worker is O((mk + nk + |Ω|)/p).
As for time complexity, we find it useful to use the follow-
ing assumptions: performing the SGD updates in line 16 to
21 takes a · k time and communicating a (j,hj) to another
worker takes c · k time, where a and c are hardware depen-
dent constants. On the average, each (j,hj) pair contains
O (|Ω| /np) non-zero entries. Therefore when a (j,hj) pair
is popped from queue[q] in line 15 of Algorithm 1, on the
average it takes a · (|Ω| k/np) time to process the pair. Since
computation and communication can be done in parallel, as
long as a · (|Ω| k/np) is higher than c · k a worker thread is
always busy and NOMAD scales linearly.

Suppose that |Ω| is fixed but the number of workers p
increases; that is, we take a fixed size dataset and distribute
it across p workers. As expected, for a large enough value
of p (which is determined by hardware dependent constants
a and b) the cost of communication will overwhelm the cost
of processing an item, thus leading to slowdown.

On the other hand, suppose the work per worker is fixed,
that is, |Ω| increases and the number of workers p increases
proportionally. The average time a ·(|Ω| k/np) to process an
item remains constant, and NOMAD scales linearly.

Finally, we discuss the communication complexity of NO-
MAD. For this discussion we focus on a single item param-
eter hj which consists of O(k) numbers. In order to be
processed by all the p workers once, it needs to be commu-
nicated p times. This requires O(kp) communication per
item. There are n items, and if we make a simplifying as-
sumption that during the execution of NOMAD each item
is processed a constant c number of times by each processor,
then the total communication complexity is O(nkp).

3.3 Dynamic Load Balancing
As different workers have different number of ratings per

item, the speed at which a worker processes a set of rat-

ings Ω̄
(q)
j for an item j also varies among workers. Further-

more, in the distributed memory setting different workers
might process updates at different rates dues to differences
in hardware and system load. NOMAD can handle this by
dynamically balancing the workload of workers: in line 22 of
Algorithm 1, instead of sampling the recipient of a message
uniformly at random we can preferentially select a worker
which has fewer items in its queue to process. To do this, a
payload carrying information about the size of the queue[q]
is added to the messages that the workers send each other.
The overhead of passing the payload information is just a
single integer per message. This scheme allows us to dy-
namically load balance, and ensures that a slower worker
will receive smaller amount of work compared to others.

3.4 Hybrid Architecture
In a hybrid architecture we have multiple threads on a sin-

gle machine as well as multiple machines distributed across
the network. In this case, we make two improvements to the
basic algorithm. First, in order to amortize the communica-
tion costs we reserve two additional threads per machine for
sending and receiving (j,hj) pairs over the network. Intra-
machine communication is much cheaper than machine-to-
machine communication, since the former does not involve

4

[source: Yun et al. [2014]]
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x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

xx

x
x

xx

(c) Upon receipt, the col-
umn is processed by the new
worker. Here, worker 4 can
now process column 2 since it
owns the column.

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

xx

x
x

xx

(d) During the execution of
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Figure 2: Illustration of the NOMAD algorithm

Algorithm 1 the basic NOMAD algorithm

1: λ: regularization parameter
2: {st}: step size sequence
3: // initialize parameters

4: wil ∼ UniformReal
(

0, 1√
k

)
for 1 ≤ i ≤ m, 1 ≤ l ≤ k

5: hjl ∼ UniformReal
(

0, 1√
k

)
for 1 ≤ j ≤ n, 1 ≤ l ≤ k

6: // initialize queues

7: for j ∈ {1, 2, . . . , n} do
8: q ∼ UniformDiscrete {1, 2, . . . , p}
9: queue[q].push((j,hj))

10: end for
11: // start p workers

12: Parallel Foreach q ∈ {1, 2, . . . , p}
13: while stop signal is not yet received do
14: if queue[q] not empty then
15: (j,hj)← queue[q].pop()

16: for (i, j) ∈ Ω̄
(q)
j do

17: // SGD update

18: t← number of updates on (i, j)
19: wi ← wi − st · [(Aij −wihj)hj + λwi]
20: hj ← hj − st · [(Aij −wihj)wj + λhj ] .
21: end for
22: q′ ∼ UniformDiscrete {1, 2, . . . , p}
23: queue[q′].push((j,hj))
24: end if
25: end while
26: Parallel End

1/p fraction of the m user parameters, and approximately
1/p fraction of the n item parameters. Furthermore, each
worker also stores approximately 1/p fraction of the |Ω| rat-
ings. Since storing a row of W or H requires O(k) space
the space complexity per worker is O((mk + nk + |Ω|)/p).
As for time complexity, we find it useful to use the follow-
ing assumptions: performing the SGD updates in line 16 to
21 takes a · k time and communicating a (j,hj) to another
worker takes c · k time, where a and c are hardware depen-
dent constants. On the average, each (j,hj) pair contains
O (|Ω| /np) non-zero entries. Therefore when a (j,hj) pair
is popped from queue[q] in line 15 of Algorithm 1, on the
average it takes a · (|Ω| k/np) time to process the pair. Since
computation and communication can be done in parallel, as
long as a · (|Ω| k/np) is higher than c · k a worker thread is
always busy and NOMAD scales linearly.

Suppose that |Ω| is fixed but the number of workers p
increases; that is, we take a fixed size dataset and distribute
it across p workers. As expected, for a large enough value
of p (which is determined by hardware dependent constants
a and b) the cost of communication will overwhelm the cost
of processing an item, thus leading to slowdown.

On the other hand, suppose the work per worker is fixed,
that is, |Ω| increases and the number of workers p increases
proportionally. The average time a ·(|Ω| k/np) to process an
item remains constant, and NOMAD scales linearly.

Finally, we discuss the communication complexity of NO-
MAD. For this discussion we focus on a single item param-
eter hj which consists of O(k) numbers. In order to be
processed by all the p workers once, it needs to be commu-
nicated p times. This requires O(kp) communication per
item. There are n items, and if we make a simplifying as-
sumption that during the execution of NOMAD each item
is processed a constant c number of times by each processor,
then the total communication complexity is O(nkp).

3.3 Dynamic Load Balancing
As different workers have different number of ratings per

item, the speed at which a worker processes a set of rat-

ings Ω̄
(q)
j for an item j also varies among workers. Further-

more, in the distributed memory setting different workers
might process updates at different rates dues to differences
in hardware and system load. NOMAD can handle this by
dynamically balancing the workload of workers: in line 22 of
Algorithm 1, instead of sampling the recipient of a message
uniformly at random we can preferentially select a worker
which has fewer items in its queue to process. To do this, a
payload carrying information about the size of the queue[q]
is added to the messages that the workers send each other.
The overhead of passing the payload information is just a
single integer per message. This scheme allows us to dy-
namically load balance, and ensures that a slower worker
will receive smaller amount of work compared to others.

3.4 Hybrid Architecture
In a hybrid architecture we have multiple threads on a sin-

gle machine as well as multiple machines distributed across
the network. In this case, we make two improvements to the
basic algorithm. First, in order to amortize the communica-
tion costs we reserve two additional threads per machine for
sending and receiving (j,hj) pairs over the network. Intra-
machine communication is much cheaper than machine-to-
machine communication, since the former does not involve

4

[source: Yun et al. [2014]]
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a network hop. Therefore, whenever a machine receives a
(j,hj) pair, it circulates the pair among all of its threads
before sending the pair over the network. This is done by
uniformly sampling a random permutation whose size equals
to the number of worker threads, and sending the item vari-
able to each thread according to this permutation. Circu-
lating a variable more than once was found to not improve
convergence, and hence is not used in our algorithm.

3.5 Implementation Details
Multi-threaded MPI was used for inter-machine commu-

nication. Instead of communicating single (j,hj) pairs, we
follow the strategy of [23], and accumulate a fixed number of
pairs (e.g., 100) before transmitting them over the network.

NOMAD can be implemented with lock-free data struc-
tures since the only interaction between threads is via oper-
ations on the queue. We used the concurrent queue provided
by Intel Thread Building Blocks (TBB) [3]. Although tech-
nically not lock-free, the TBB concurrent queue nevertheless
scales almost linearly with the number of threads.

Since there is very minimal sharing of memory across
threads in NOMAD, by making memory assignments in each
thread carefully aligned with cache lines we can exploit mem-
ory locality and avoid cache ping-pong. This results in near
linear scaling for the multi-threaded setting.

4. RELATED WORK

4.1 Map-Reduce and Friends
Since many machine learning algorithms are iterative in

nature, a popular strategy to distribute them across multi-
ple machines is to use bulk synchronization after every it-
eration. Typically, one partitions the data into chunks that
are distributed to the workers at the beginning. A mas-
ter communicates the current parameters which are used to
perform computations on the slaves. The slaves return the
solutions during the bulk synchronization step, which are
used by the master to update the parameters. The pop-
ularity of this strategy is partly thanks to the widespread
availability of Hadoop [1], an open source implementation
of the MapReduce framework [9].

All three optimization schemes for matrix completion namely
ALS, CCD++, and SGD, can be parallelized using a bulk
synchronization strategy. This is relatively simple for ALS
[27] and CCD++ [26], but a bit more involved for SGD
[12, 18]. Suppose p machines are available. Then, the Dis-
tributed Stochastic Gradient Descent (DSGD) algorithm of
Gemulla et al. [12] partitions the indices of users {1, 2, . . . ,m}
into mutually exclusive sets I1, I2, . . . , Ip and the indices of
items into J1, J2, . . . , Jp. Now, define

Ω(q) := {(i, j) ∈ Ω; i ∈ Iq, j ∈ Jq} , 1 ≤ q ≤ p,
and suppose that each machine runs SGD updates (9) and
(10) independently, but machine q samples (i, j) pairs only

from Ω(q). By construction, Ω(q)’s are disjoint and hence
these updates can be run in parallel. A similar observation
was also made by Recht and Ré [18]. A bulk synchronization
step redistributes the sets J1, J2, . . . , Jp and corresponding
rows of H, which in turn changes the Ω(q) processed by each
machine, and the iteration proceeds (see Figure 3)

Unfortunately, bulk synchronization based algorithms have
two major drawbacks: First, the communication and com-
putation steps are done in sequence. What this means is
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Figure 3: Illustration of DSGD algorithm with 4 workers.
Initially W and H are partitioned as shown on the left. Each
worker runs SGD on its active area as indicated. After each
worker completes processing data points in its own active
area, the columns of item parameters H> are exchanged
randomly, and the active area changes. This process is re-
peated for each iteration.

that when the CPU is busy, the network is idle and vice
versa. The second issue is that they suffer from what is
widely known as the the curse of last reducer [4, 24]. In other
words, all machines have to wait for the slowest machine to
finish before proceeding to the next iteration. Zhuang et al.
[28] report that DSGD suffers from this problem even in the
shared memory setting.

DSGD++ is an algorithm proposed by Teflioudi et al.
[25] to address the first issue discussed above. Instead of
using p partitions, DSGD++ uses 2p partitions. While the
p workers are processing p partitions, the other p partitions
are sent over the network. This keeps both the network and
CPU busy simultaneously. However, DSGD++ also suffers
from the curse of the last reducer.

Another attempt to alleviate the problems of bulk syn-
chronization in the shared memory setting is the FPSGD**
algorithm of Zhuang et al. [28]; given p threads, FPSGD**
partitions the parameters into more than p sets, and uses
a task manager thread to distribute the partitions. When
a thread finishes updating one partition, it requests for an-
other partition from the task manager. It is unclear how to
extend this idea to the distributed memory setting.

In NOMAD we sidestep all the drawbacks of bulk synchro-
nization. Like DSGD++ we also simultaneously keep the
network and CPU busy. On the other hand, like FPSGD**
we effectively load balance between the threads. To under-
stand why NOMAD enjoys both these benefits, it is instruc-
tive to contrast the data partitioning schemes underlying
DSGD, DSGD++, FPSGD**, and NOMAD (see Figure 4).
Given p number of workers, DSGD divides the rating matrix
A into p × p number of blocks; DSGD++ improves upon
DSGD by further dividing each block to 1 × 2 sub-blocks
(Figure 4 (a) and (b)). On the other hand, FPSGD** splits
A into p′ × p′ blocks with p′ > p (Figure 4 (c)), while NO-
MAD uses p× n blocks (Figure 4 (d)). In terms of commu-
nication there is no difference between various partitioning
schemes; all of them require O(nkp) communication for each
item to be processed a constant c number of times. However,
having smaller blocks means that NOMAD has much more
flexibility in assigning blocks to processors, and hence better
ability to exploit parallelism. Because NOMAD operates at
the level of individual item parameters, hj , it can dynam-
ically load balance by assigning fewer columns to a slower

5

[source: Yun et al. [2014]]
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Figure 4: Comparison of data partitioning schemes between
algorithms. Example active area of stochastic gradient sam-
pling is marked as gray.

worker. A pleasant side effect of such a fine grained parti-
tioning coupled with the lock free nature of updates is that
one does not require sophisticated scheduling algorithms to
achieve good performance. Consequently, NOMAD outper-
forms DSGD, DSGD++, and FPSGD**.

4.2 Asynchronous Algorithms
There is growing interest in designing machine learning al-

gorithms that do not perform bulk synchronization. See, for
instance, the randomized (block) coordinate descent meth-
ods of Richtarik and Takac [20] and the Hogwild! algorithm
of Recht et al. [19]. A relatively new approach to asyn-
chronous parallelism is to use a so-called parameter server.
A parameter server is either a single machine or a distributed
set of machines which caches the current values of the pa-
rameters. Workers store local copies of the parameters and
perform updates on them, and periodically synchronize their
local copies with the parameter server. The parameter server
receives updates from all workers, aggregates them, and
communicates them back to the workers. The earliest work
on a parameter server, that we are aware of, is due to Smola
and Narayanamurthy [23], who propose using a parameter
server for collapsed Gibbs sampling in Latent Dirichlet Al-
location. PowerGraph [13], upon which the latest version of
the GraphLab toolkit is based, is also essentially based on
the idea of a parameter server. However, the difference in
case of PowerGraph is that the responsibility of parameters
is distributed across multiple machines, but at the added
expense of synchronizing the copies.

Very roughly speaking, the asynchronously parallel ver-
sion of the ALS algorithm in GraphLab works as follows: wi

and hj variables are distributed across multiple machines,
and whenever wi is being updated with equation (3), the
values of hj ’s for j ∈ Ωi are retrieved across the network
and read-locked until the update is finished. GraphLab pro-
vides functionality such as network communication and a
distributed locking mechanism to implement this. However,

frequently acquiring read-locks over the network can be ex-
pensive. In particular, a popular user who has rated many
items will require read locks on a large number of items, and
this will lead to vast amount of communication and delays in
updates on those items. GraphLab provides a complex job
scheduler which attempts to minimize this cost, but then the
efficiency of parallelization depends on the difficulty of the
scheduling problem and the effectiveness of the scheduler.

In our empirical evaluation NOMAD performs significantly
better than GraphLab. The reasons are not hard to see.
First, because of the lock free nature of NOMAD, we com-
pletely avoid acquiring expensive network locks. Second,
we use SGD which allows us to exploit finer grained paral-
lelism as compared to ALS, and also leads to faster conver-
gence. In fact, the GraphLab framework is not well suited
for SGD (personal communication with the developers of
GraphLab). Finally, because of the finer grained data par-
titioning scheme used in NOMAD, unlike GraphLab whose
performance heavily depends on the underlying scheduling
algorithms, we do not require a complicated scheduling mech-
anism.

4.3 Numerical Linear Algebra
The concepts of asynchronous and non-blocking updates

have also been studied in numerical linear algebra. To avoid
the load balancing problem and to reduce processor idle
time, asynchronous numerical methods were first proposed
over four decades ago by Chazan and Miranker [8]. Given an
operator H : Rm → Rm, to find the fixed point solution x∗

such that H(x∗) = x∗, a standard Gauss-Seidel-type pro-
cedure performs the update xi = (H(x))i sequentially (or
randomly). Using the asynchronous procedure, each com-
putational node asynchronously conducts updates on each
variable (or a subset) xnew

i = (H(x))i and then overwrites
xi in common memory by xnew

i . Theory and applications of
this asynchronous method have been widely studied (see the
literature review of Frommer and Szyld [11] and the semi-
nal textbook by Bertsekas and Tsitsiklis [6]). The concept
of this asynchronous fixed-point update is very closely re-
lated to the Hogwild algorithm of Recht et al. [19] or the
so-called Asynchronous SGD (ASGD) method proposed by
Teflioudi et al. [25]. Unfortunately, such algorithms are non-
serializable, that is, there may not exist an equivalent up-
date ordering in a serial implementation. In contrast, our
NOMAD algorithm is not only asynchronous but also serial-
izable, and therefore achieves faster convergence in practice.

On the other hand, non-blocking communication has also
been proposed to accelerate iterative solvers in a distributed
setting. For example, Hoefler et al. [14] presented a dis-
tributed conjugate gradient implementation with non-blocking
collective MPI operations for solving linear systems. How-
ever, this algorithm still requires synchronization at each CG
iteration, so it is very different from our NOMAD algorithm.

4.4 Discussion
We remark that among algorithms we have discussed so

far, NOMAD is the only distributed-memory algorithm which
is both asynchronous and lock-free. Other parallelizations
of SGD such as DSGD and DSGD++ are lock-free, but not
fully asynchronous; therefore, the cost of synchronization
will increase as the number of machines grows [28]. On the
other hand, GraphLab implementation of ALS [17] is asyn-
chronous but not lock-free, therefore depends on a complex

6

[source: Yun et al. [2014]]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
16 / 22



Big Data Analytics 3. NOMAD

...

Table 3: Exceptions to each experiment

Section Exception
Section 5.2 • run on largemem queue (32 cores, 1TB RAM)

• single precision floating point used
Section 5.4 • run on m1.xlarge (4 cores, 15GB RAM)

• compiled with gcc
• MPICH2 for MPI implementation

Section 5.5 • Synthetic datasets

on the other hand, use an alternative strategy called bold-
driver [12]; here, the step size is adapted by monitoring the
change of the objective function.

5.2 Scaling in Number of Cores
For the first experiment we fixed the number of cores to 30,

and compared the performance of NOMAD vs FPSGD**5

and CCD++ (Figure 5). On Netflix (left) NOMAD not
only converges to a slightly better quality solution (RMSE
0.914 vs 0.916 of others), but is also able to reduce the
RMSE rapidly right from the beginning. On Yahoo! Mu-
sic (middle), NOMAD converges to a slightly worse solu-
tion than FPSGD** (RMSE 21.894 vs 21.853) but as in the
case of Netflix, the initial convergence is more rapid. On
Hugewiki, the difference is smaller but NOMAD still out-
performs. The initial speed of CCD++ on Hugewiki is com-
parable to NOMAD, but the quality of the solution starts
to deteriorate in the middle. Note that the performance of
CCD++ here is better than what was reported in Zhuang
et al. [28] since they used double-precision floating point
arithmetic for CCD++. In other experiments (not reported
here) we varied the number of cores and found that the rela-
tive difference in performance between NOMAD, FPSGD**
and CCD++ are very similar to that observed in Figure 5.

For the second experiment we varied the number of cores
from 4 to 30, and plot the scaling behavior of NOMAD (Fig-
ures 6 and 7). Figure 6 (left) shows how test RMSE changes
as a function of the number of updates on Yahoo! Music.
Interestingly, as we increased the number of cores, the test
RMSE decreased faster. We believe this is because when we
increase the number of cores, the rating matrix A is parti-
tioned into smaller blocks; recall that we split A into p× n
blocks, where p is the number of parallel workers. Therefore,
the communication between workers becomes more frequent,
and each SGD update is based on fresher information (see
also Section 3.2 for mathematical analysis). This effect was
more strongly observed on Yahoo! Music than others, since
Yahoo! Music has much larger number of items (624,961
vs. 17,770 of Netflix and 39,780 of Hugewiki) and therefore
more amount of communication is needed to circulate the
new information to all workers. Results for other datasets
are provided in Figure 18 in Appendix D.

On the other hand, to assess the efficiency of computa-
tion we define average throughput as the average number
of ratings processed per core per second, and plot it for
each dataset in Figure 6 (right), while varying the number
of cores. If NOMAD exhibits linear scaling in terms of the
speed it processes ratings, the average throughput should re-

5Since the current implementation of FPSGD** in LibMF
only reports CPU execution time, we divide this by the num-
ber of threads and use this as a proxy for wall clock time.
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Figure 6: Left: Test RMSE of NOMAD as a function of the
number of updates on Yahoo! Music, when the number of
cores is varied. Right: Number of updates of NOMAD per
core per second as a function of the number of cores.

main constant6. On Netflix, the average throughput indeed
remains almost constant as the number of cores changes.
On Yahoo! Music and Hugewiki, the throughput decreases
to about 50% as the number of cores is increased to 30. We
believe this is mainly due to cache locality effects.

Now we study how much speed-up NOMAD can achieve
by increasing the number of cores. In Figure 7, we set y-
axis to be test RMSE and x-axis to be the total CPU time
expended which is given by the number of seconds elapsed
multiplied by the number of cores. We plot the convergence
curves by setting the # cores=4, 8, 16, and 30. If the curves
overlap, then this shows that we achieve linear speed up as
we increase the number of cores. This is indeed the case
for Netflix and Hugewiki. In the case of Yahoo! Music we
observe that the speed of convergence increases as the num-
ber of cores increases. This, we believe, is again due to the
decrease in the block size which leads to faster convergence.

5.3 Scaling as a Fixed Dataset is Distributed
Across Workers

In this subsection, we use 4 computation threads per ma-
chine. For the first experiment we fix the number of ma-
chines to 32 (64 for hugewiki), and compare the performance
of NOMAD with DSGD, DSGD++ and CCD++ (Figure 8).
On Netflix and Hugewiki, NOMAD converges much faster
than its competitors; not only initial convergence is faster, it
also discovers a better quality solution. On Yahoo! Music,
four methods perform almost the same to each other. This
is because the cost of network communication relative to
the size of the data is much higher for Yahoo! Music; while
Netflix and Hugewiki have 5,575 and 68,635 non-zero rat-
ings per each item respectively, Yahoo! Music has only 404
ratings per item. Therefore, when Yahoo! Music is divided
equally across 32 machines, each item has only 10 ratings
on average per each machine. Hence the cost of sending and
receiving item parameter vector hj for one item j across the
network is higher than that of executing SGD updates on
the ratings of the item locally stored within the machine,

Ω̄
(q)
j . As a consequence, the cost of network communication

dominates the overall execution time of all algorithms, and
little difference in convergence speed is found between them.

6Note that since we use single-precision floating point
arithmetic in this section to match the implementation of
FPSGD**, the throughput of NOMAD is about 50% higher
than that in other experiments.

8

[source: Yun et al. [2014]]
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Figure 5: Comparison of NOMAD, FPSGD**, and CCD++ on a single-machine with 30 computation cores.
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For the second experiment we varied the number of ma-
chines from 1 to 32, and plot the scaling behavior of NO-
MAD (Figures 10 and 9). Figure 10 (left) shows how test
RMSE decreases as a function of the number of updates on
Yahoo! Music. Again, if NOMAD scales linearly the av-
erage throughput has to remain constant; here we observe
improvement in convergence speed when 8 or more machines
are used. This is again the effect of smaller block sizes which
was discussed in Section 5.2. On Netflix, a similar effect was
present but was less significant; on Hugewiki we did not see
any notable difference between configurations (see Figure 19
in Appendix D).

In Figure 10 (right) we plot the average throughput (the
number of updates per machine per core per second) as a
function of the number of machines. On Yahoo! Music the
average throughput goes down as we increase the number
of machines, because as mentioned above, each item has a
small number of ratings. On Hugewiki we observe almost
linear scaling, and on Netflix the average throughput even
improves as we increase the number of machines; we believe
this is because of cache locality effects. As we partition users
into smaller and smaller blocks, the probability of cache miss
on user parameters wi’s within the block decrease, and on
Netflix this makes a meaningful difference: indeed, there are
only 480,189 users in Netflix who have at least one rating.
When this is equally divided into 32 machines, each machine
contains only 11,722 active users on average. Therefore the
wi variables only take 11MB of memory, which is smaller
than the size of L3 cache (20MB) of the machine we used
and therefore leads to increase in the number of updates per
machine per core per second.

Now we study how much speed-up NOMAD can achieve
by increasing the number of machines. In Figure 9, we set
y-axis to be test RMSE and x-axis to be the number of
seconds elapsed multiplied by the total number of cores used
in the configuration. Again, all lines will coincide with each
other if NOMAD shows linear scaling. On Netflix, with 2
and 4 machines we observe mild slowdown, but with more
than 4 machines NOMAD exhibits super-linear scaling. On
Yahoo! Music we observe super-linear scaling with respect
to the speed of a single machine on all configurations, but
the highest speedup is seen with 16 machines. On Hugewiki,
linear scaling is observed in every configuration.

5.4 Scaling on Commodity Hardware
In this subsection, we want to analyze the scaling behav-

ior of NOMAD on commodity hardware. Using Amazon
Web Services (AWS), we set up a computing cluster that
consists of 32 machines; each machine is of type m1.xlarge

and equipped with quad-core Intel Xeon E5430 CPU and
15GB of RAM. Network bandwidth among these machines
is reported to be approximately 1Gb/s7.

Since NOMAD and DSGD++ dedicates two threads for
network communication, on each machine only two cores are
available for computation8. In contrast, bulk synchroniza-
tion algorithms such as DSGD and CCD++ which separate

7http://epamcloud.blogspot.com/2013/03/
testing-amazon-ec2-network-speed.html
8Since network communication is not computation-
intensive, for DSGD++ we used four computation threads
instead of two and got better results; thus we report results
with four computation threads for DSGD++.

9

[source: Yun et al. [2014]]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
18 / 22



Big Data Analytics 3. NOMAD

...

0 20 40 60 80 100 120

0.92

0.94

0.96

0.98

1

seconds

te
st

R
M

S
E

Netflix, machines=32, cores=4, λ = 0.05, k = 100

NOMAD

DSGD

DSGD++

CCD++

0 20 40 60 80 100 120

22

24

26

seconds

te
st

R
M
S
E

Yahoo!, machines=32, cores=4, λ = 1.00, k = 100

NOMAD

DSGD

DSGD++

CCD++

0 200 400 600
0.5

0.55

0.6

0.65

0.7

seconds

te
st

R
M
S
E

Hugewiki, machines=64, cores=4, λ = 0.01, k = 100

NOMAD

DSGD

DSGD++

CCD++

Figure 8: Comparison of NOMAD, DSGD, DSGD++, and CCD++ on a HPC cluster.
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Figure 9: Test RMSE of NOMAD as a function of computation time (time in seconds × the number of machines × the
number of cores per each machine) on a HPC cluster, when the number of machines is varied.

computation and communication can utilize all four cores for
computation. In spite of this disadvantage, Figure 11 shows
that NOMAD outperforms all other algorithms in this set-
ting as well. In this plot, we fixed the number of machines
to 32; on Netflix and Hugewiki, NOMAD converges more
rapidly to a better solution. Recall that on Yahoo! Music, all
four algorithms performed very similarly on a HPC cluster
in Section 5.3. However, on commodity hardware NOMAD
outperforms the other algorithms. This shows that the ef-
ficiency of network communication plays a very important
role in commodity hardware clusters where the communica-
tion is relatively slow. On Hugewiki, however, the number
of columns is very small compared to the number of ratings
and thus network communication plays smaller role in this
dataset compared to others. Therefore, initial convergence
of DSGD is a bit faster than NOMAD as it uses all four
cores on computation while NOMAD uses only two. Still,
the overall convergence speed is similar and NOMAD finds
a better quality solution.

As in Section 5.3, we increased the number of machines
from 1 to 32, and studied the scaling behavior of NOMAD.
The overall trend was identical to what we observed in Fig-
ure 10 and 9; due to page constraints, the plots for this
experiment can be found in the Appendix C.

5.5 Scaling as both Dataset Size and Number
of Machines Grows

In previous sections (Section 5.3 and Section 5.4), we
studied the scalability of algorithms by partitioning a fixed
amount of data into increasing number of machines. In real-
world applications of collaborative filtering, however, the
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Figure 10: Results on HPC cluster when the number of
machines is varied. Left: Test RMSE of NOMAD as a func-
tion of the number of updates on Netflix and Yahoo! Music.
Right: Number of updates of NOMAD per machine per core
per second as a function of the number of machines.

size of the data should grow over time as new users are
added to the system. Therefore, to match the increased
amount of data with equivalent amount of physical memory
and computational power, the number of machines should
increase as well. The aim of this section is to compare the
scaling behavior of NOMAD and that of other algorithms
in this realistic scenario.

To simulate such a situation, we generated synthetic datasets
which resemble characteristics of real data; the number of
ratings for each user and each item is sampled from the cor-
responding empirical distribution of the Netflix data. As we
increase the number of machines from 4 to 32, we fixed the
number of items to be the same to that of Netflix (17,770),
and increased the number of users to be proportional to the

10

[source: Yun et al. [2014]]
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Figure 8: Comparison of NOMAD, DSGD, DSGD++, and CCD++ on a HPC cluster.
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Figure 9: Test RMSE of NOMAD as a function of computation time (time in seconds × the number of machines × the
number of cores per each machine) on a HPC cluster, when the number of machines is varied.

computation and communication can utilize all four cores for
computation. In spite of this disadvantage, Figure 11 shows
that NOMAD outperforms all other algorithms in this set-
ting as well. In this plot, we fixed the number of machines
to 32; on Netflix and Hugewiki, NOMAD converges more
rapidly to a better solution. Recall that on Yahoo! Music, all
four algorithms performed very similarly on a HPC cluster
in Section 5.3. However, on commodity hardware NOMAD
outperforms the other algorithms. This shows that the ef-
ficiency of network communication plays a very important
role in commodity hardware clusters where the communica-
tion is relatively slow. On Hugewiki, however, the number
of columns is very small compared to the number of ratings
and thus network communication plays smaller role in this
dataset compared to others. Therefore, initial convergence
of DSGD is a bit faster than NOMAD as it uses all four
cores on computation while NOMAD uses only two. Still,
the overall convergence speed is similar and NOMAD finds
a better quality solution.

As in Section 5.3, we increased the number of machines
from 1 to 32, and studied the scaling behavior of NOMAD.
The overall trend was identical to what we observed in Fig-
ure 10 and 9; due to page constraints, the plots for this
experiment can be found in the Appendix C.

5.5 Scaling as both Dataset Size and Number
of Machines Grows

In previous sections (Section 5.3 and Section 5.4), we
studied the scalability of algorithms by partitioning a fixed
amount of data into increasing number of machines. In real-
world applications of collaborative filtering, however, the
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Figure 10: Results on HPC cluster when the number of
machines is varied. Left: Test RMSE of NOMAD as a func-
tion of the number of updates on Netflix and Yahoo! Music.
Right: Number of updates of NOMAD per machine per core
per second as a function of the number of machines.

size of the data should grow over time as new users are
added to the system. Therefore, to match the increased
amount of data with equivalent amount of physical memory
and computational power, the number of machines should
increase as well. The aim of this section is to compare the
scaling behavior of NOMAD and that of other algorithms
in this realistic scenario.

To simulate such a situation, we generated synthetic datasets
which resemble characteristics of real data; the number of
ratings for each user and each item is sampled from the cor-
responding empirical distribution of the Netflix data. As we
increase the number of machines from 4 to 32, we fixed the
number of items to be the same to that of Netflix (17,770),
and increased the number of users to be proportional to the

10

[source: Yun et al. [2014]]
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Figure 11: Comparison of NOMAD, DSGD, DSGD++, and CCD++ on a commodity hardware cluster.

number of machines (480,189 × the number of machines9).
Therefore, the expected number of ratings in each dataset is
proportional to the number of machines (99,072,112 × the
number of machines) as well.

Conditioned on the number of ratings for each user and
item, the nonzero locations are sampled uniformly at ran-
dom. Ground-truth user parameters wi’s and item param-
eters hj ’s are generated from 100-dimensional standard iso-
metric Gaussian distribution, and for each rating Aij , Gaus-
sian noise with mean zero and standard deviation 0.1 is
added to the “true” rating 〈wi,hj〉.

Figure 12 shows that the comparative advantage of NO-
MAD against DSGD, DSGD++ and CCD++ increases as
we grow the scale of the problem. NOMAD clearly out-
performs other methods on all configurations; DSGD++ is
very competitive on the small scale, but as the size of the
problem grows NOMAD shows better scaling behavior.

6. CONCLUSION AND FUTURE WORK
From our experimental study we conclude that

• On a single machine, NOMAD shows near-linear scal-
ing up to 30 threads.

• When a fixed size dataset is distributed across multiple
machines, NOMAD shows near-linear scaling up to 32
machines.

• Both in shared-memory and distributed-memory set-
ting, NOMAD exhibits superior performance against
state-of-the-art competitors; in commodity hardware
cluster, the comparative advantage is more conspicu-
ous.

• When both the size of the data as well as the number
of machines grow, the scaling behavior of NOMAD is
much nicer than its competitors.

Although we only discussed the matrix completion prob-
lem in this paper, it is worth noting that the idea of NO-
MAD is more widely applicable. Specifically, ideas discussed
in this paper can be easily adapted as long as the objective
function can be written as

f(W,H) =
∑

i,j∈Ω

fij(wi,hj).

As part of our ongoing work we are investigating ways to
rewrite Support Vector Machines (SVMs), binary logistic
9480,189 is the number of users in Netflix who have at least
one rating.

regression as a saddle point problem which have the above
structure.

Inference in Latent Dirichlet Allocation (LDA) using a col-
lapsed Gibbs sampler has a similar structure as the stochas-
tic gradient descent updates for matrix factorization. An
additional complication in LDA is that the variables need
to be normalized. We are investigating how the NOMAD
framework can be used for LDA.
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