

Big Data Analytics

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

Outline

1. What is Big Data?

2. Overview

3. Organizational Stuff

Outline

1. What is Big Data?

2. Overview

3. Organizational Stuff

What is Big Data?

What is Big Data?

"Big data is like teenage sex:

— Dan Ariely

What is Big Data?

"Big data is like teenage sex: everyone talks about it,

— Dan Ariely

What is Big Data?

"Big data is like teenage sex: everyone talks about it, nobody really knows how to do it,

— Dan Ariely

What is Big Data?

"Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it,

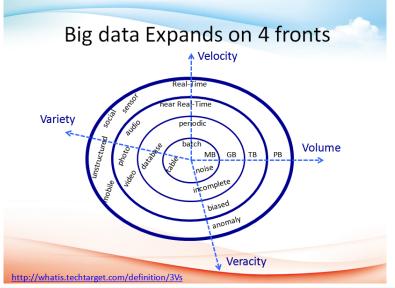
— Dan Ariely

What is Big Data?

"Big data is like teenage sex: everyone talks about it, nobody really knows how to do it, everyone thinks everyone else is doing it, so everyone claims they are doing it."

— Dan Ariely

What is Big Data?


Some definitions:

- "data sets that are so voluminous and complex that traditional data processing application software are inadequate to deal with them." [http://en.wikipedia.org/wiki/Big_data]
- "Big data is high-volume, high-velocity and/or high-variety information assets that demand cost-effective, innovative forms of information processing for enhanced insight and decision making." [www.gartner.com/it-glossary/big-data/]

Note: The "3 Vs" go back to Laney [2001]. Often a 4th V "veracity" and a 5th V "value" is used.

Big Data — Dimensions (the "4 Vs")

What is Big Data?

Big Data is about:

- Storing and accessing
 - ► large amounts of
 - ► (complex/unstructured) data
- Processing high volume data streams
- Making sense of the data
- Making predictions based on the data

Note: Unstructured data in this context means, data that is not already a vector. Some of this data, e.g., relational data and graph data, confusingly often also is called "structured".

Where to find Big Data?

facebook	Email or Phone Password Log In Ceep me logged in Forgot your password?		
Connect with friends and the	Sign Up It's free and always will be.		
world around you on Facebook.	First Name Last Name		
See photos and updates from friends in News Feed.	Your Email		
	Re-enter Email		
Share what's new in your life on your Timeline.	neline. New Password		
0	Birthday		
Find more of what you're looking for with Graph Search.	Month Vear Why do I need to provide my birthday?		
	Female		

- ► 1.4 billion daily active users
 - (2.13 billion monthly active users, Dec. 2017)
- ► size of user data stored by Facebook: 300 Petabytes
- ► average amount of data that Facebook takes in daily: 600 terabytes
- ► size of Facebook's graph search database: 700 Terabytes

[source: https://newsroom.fb.com/company-info/; online source for points 2-4 vanished]

Where to find Big Data?

- ► 3.3 billion searches per day (on average)¹
- ▶ 30 trillion unique URLs identified on the Web¹
- 20 billion sites crawled a day¹
- ▶ In 2008 Google processed more than 20 Petabytes of data per day²

¹http://searchengineland.com/google-search-press-129925 (2012)

 2 Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing on large clusters. Commun. ACM 51, 1 (January 2008), 107-113.

Where to find Big Data?

- ▶ tweets per day: 58 million¹
- Twitter search engine queries per day: 2.1 billion¹
- ▶ registered/active Twitter users: 695 million / 342 million¹

$[^{1}$ http://www.statisticbrain.com/twitter-statistics/] (9/2016)

Where to find Big Data?

		·	Login/Register
	Downloads Help & Docume	ntation Blog Mirrors 🔯 🖲 Search Human	c
Human (GRCh37) 🔻			l .
Human Homo sapiens		What's New in Human release 75 Human: updated RefSeq gene Import	
Search all categories V Search Human	Go	Gencode Basic Renderer	
e.g. BRCA2 or 6:133017695-133161157 or osteoarthritis	The second se	Merged genes and transcripts can be fetched using 'source' column	More news
Genome assembly: GRCh37 (GCA_000001405.14)	0.8	Gene annotation	Pax6 INS
More information and statistics		What can I find? Protein-coding and non-coding genes, splice variants, cDNA and protein sequences, non-coding RNAs.	DMD ssh
Download DNA sequence (FASTA)	View karyotype	More about this genebuild	Example gene
Sconvert your data to GRCh37 coordinates		Download genes, cDNAs, ncRNA, proteins (FASTA)	
Display your data in Ensembl		Vpdate your old Ensembl IDs	
Other assemblies	Example region	Vega* Additional manual annotation can be found in Vega	Example transcript
NCBI36 (Ensembl release 54) V Go			

- Ensembl database contains the genome of humans and 50 other species
- ▶ "only" 250 GB¹

[¹http://www.ensembl.org/]

Where to find Big Data?

- Large Hadron Collider has collected data from over 300 trillion proton-proton collisions
- ► Approx. 25 Petabytes per year

Big Data — Public Datasets

1000 Genomes Project	DNA of 1700 humans	200 TB
Common Crawl Corpus	5G web pages	81 TB
Wikipedia / Freebase	1.9G subject/predicate/object triples	250 GB
Million Song Dataset	audio features of 1M songs	280 GB
OpenStreetMap	a map of earth	90 GB
2000 US Census	US census data	200 GB
PubChem library	biological activities of small molecules	230 GB
NCDC weather data	daily measurements from 9000 stations	20 GB
Open Library	metadata of 20M books	7 GB
Twitter	1.6G tweets	0.6 GB

CD 700 MB, DVD 4.7-17 GB, Blu-ray 25-100 GB, hard disc: 10 TB.

How Large is 1 Petabyte

► 1 PB = 1000 TB = 10¹⁵ B

- ▶ 1 PB = 1000 TB = 10¹⁵ B
- ► 35.7M years counted one byte per second,

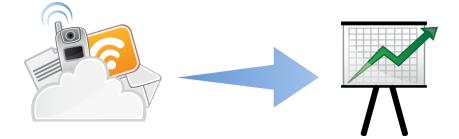
Universiter Fildesheim

- ▶ 1 PB = 1000 TB = 10¹⁵ B
- ► 35.7M years counted one byte per second,
- ► 254 years listening to music stored in CD quality (500MB/h)

- ▶ 1 PB = 1000 TB = 10¹⁵ B
- ► 35.7M years counted one byte per second,
- ► 254 years listening to music stored in CD quality (500MB/h)
- ► 25 years watching DVDs
 - 223.000 DVDs (a 4.7 GB)

- ▶ 1 PB = 1000 TB = 10¹⁵ B
- ► 35.7M years counted one byte per second,
- ► 254 years listening to music stored in CD quality (500MB/h)
- ► 25 years watching DVDs
 - 223.000 DVDs (a 4.7 GB)
 - ▶ but there are only 74.000 TV movies on IMDB ! (1.8M including TV episodes)

- ▶ 1 PB = 1000 TB = 10¹⁵ B
- ► 35.7M years counted one byte per second,
- ► 254 years listening to music stored in CD quality (500MB/h)
- ► 25 years watching DVDs
 - 223.000 DVDs (a 4.7 GB)
 - ▶ but there are only 74.000 TV movies on IMDB ! (1.8M including TV episodes)
- ► can be stored on 100 harddisks à 10 TB/300 € (30,000 €)



- ▶ 1 $PB = 1000 TB = 10^{15} B$
- ► 35.7M years counted one byte per second,
- ► 254 years listening to music stored in CD quality (500MB/h)
- ► 25 years watching DVDs
 - 223.000 DVDs (a 4.7 GB)
 - ▶ but there are only 74.000 TV movies on IMDB ! (1.8M including TV episodes)
- ► can be stored on 100 harddisks à 10 TB/300 \in (30,000 \in)
- ▶ 96 days to read from standard harddisks sequentially (1030 MBits/s)

What to do with Big Data?

We do not want to know things but to understand them!

Universiter Fildesheim

What to do with Big Data? - Case Studies

► T-Mobile USA:

- Integrated Big Data across multiple IT systems to combine customer transaction and interaction data in order to better predict customer defections
- By leveraging social media data along with transaction data from CRM and billing systems, customer defections have been cut in half in a single quarter.

US Xpress:

- Collects data elements ranging from fuel usage to tire condition to truck engine operations to GPS information
- Optimal fleet management

► McLaren's Formula One racing team:

- Real-time car sensor data during car races
- ▶ Real-time identification of issues with its racing cars

What to do with Big Data? - The BI Approach

- Static databases
- Structured data
- Centralized approaches

What to do with Big Data?

- Massive Parallelism
- Heterogeneous data sources
- Unstructured data
- Data streams

What to do with Big Data?

Universitation

Application examples:

- Online personalized advertising
- Sentiment analysis and behavior prediction
- Detecting adverse events and predicting their impact
- ► Automatic Translation
- ► Image Classification and object recognition
- Intelligent public services

How?

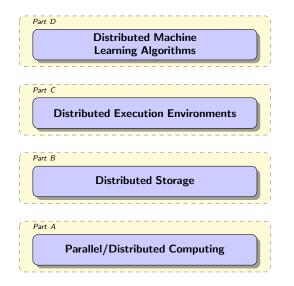
In order to deal with large volumes of data we need to address the following challenges:

- Effectively store and query large amounts of data in a distributed environment
- Parallel and distributed execution environments / programming models
- Data Mining and machine learning techniques to make sense of the data
- Effective data visualization techniques

Big Data Analytics 2. Overview

Outline

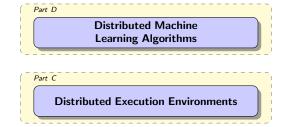
1. What is Big Data?


2. Overview

3. Organizational Stuff

Big Data Analytics 2. Overview

Shiversing Fildeshelf

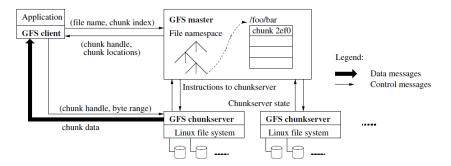

Technology Stack

Big Data Analytics 2. Overview

Shiversing Fildeshelf

Technology Stack

Storing


In a distributed environment the data storing mechanisms should address the following issues

- Parallel Reading and Writing
- Data node Failures
- High Availability

Distributed File Systems

The Google File System Architecture

Databases

Databases are needed for

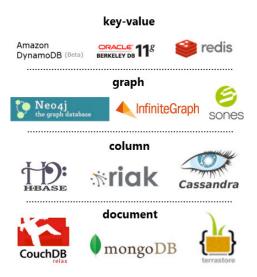
- Querying and indexing
- transaction processing

State-of-the-art: Relational Databases

For processing big data one needs a database which:

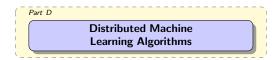
- Supports high level of parallelism
- Supports analytical processing
- ► Has a flexible data model to deal with unstructured data sources

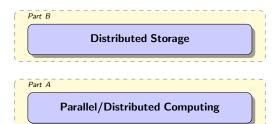
Databases for Big Data - NoSQL



NoSQL - "Not only SQL"

- Wide variety of database technologies
- Dynamic Schema
- sharded indexing
- horizontal scaling
- support columnar storage


NoSQL Databases

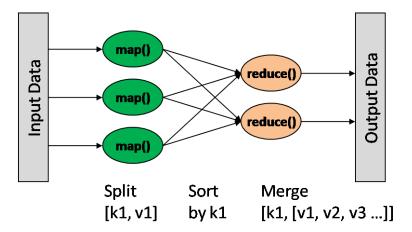


Shiversing Fildeshelf

Technology Stack

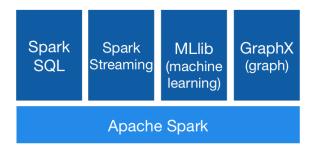
Accessing

A distributed execution environment / computational model is needed to:


- Provide a set of useful computational primitives
- ► Hide the complexity of distributed and parallel programming
- ► Ensure Fault Tolerance

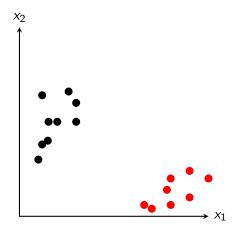
Examples:

- ► MapReduce
- GraphLab
- Pregel
- Apache Spark
- TensorFlow


MapReduce

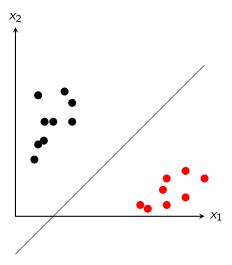
Apache Spark

Technology Stack


Univer Stildes

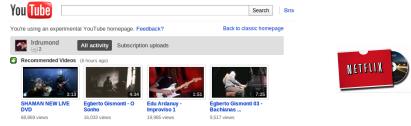
Making sense of the data

- ► Linear and Non Linear Models for classification and regression
 - Scalable learning algorithms (e.g. Stochastic Gradient Descent)
 - Distributed Learning Algorithms (e.g. ADMM)
- ► Models for Link Prediction and link analysis
 - Factorization models
 - Distributed Learning Schemes (e.g. NOMAD, FPSGD)

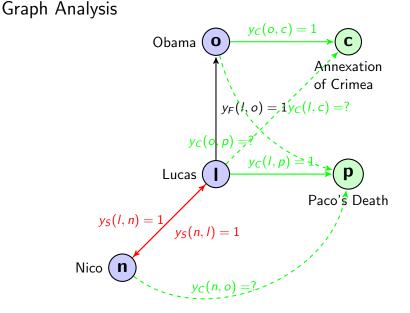

Classification


Classification

Classification



Recommender Systems



See More

Universiter - Hildesheim

Syllabus

Tue. 10.4.	(1)	0. Introduction
Tue. 17.4. Tue. 24.4. Tue. 1.5.	(2) (3) (4)	A. Parallel Computing A.1 Threads A.2 Message Passing Interface (MPI) A.3 Graphical Processing Units (GPUs)
Tue. 8.5. Tue. 15.5. Tue. 22.5. Tue. 29.5.	(5) (6) (7)	 B. Distributed Storage B.1 Distributed File Systems B.2 Partioning of Relational Databases — Pentecoste Break — B.3 NoSQL Databases
Tue. 5.6. Tue. 12.6. Tue. 19.6.	(8) (9) (10)	C. Distributed Computing Environments C.1 Map-Reduce C.2 Resilient Distributed Datasets (Spark) C.3 Computational Graphs (TensorFlow)
Tue. 26.6.	(11)	D. Distributed Machine Learning Algorithms D.1 Distributed Stochastic Gradient Descent
Tue. 3.7. Tue. 10.7.	(12) (13)	D.2 Distributed Matrix Factorization Questions and Answers

Big Data Analytics 3. Organizational Stuff

Outline

1. What is Big Data?

2. Overview

3. Organizational Stuff

Exercises and tutorials

- Shivers/tot
- There will be a weekly sheet with two exercises handed out each Tuesday, 12pm after the lecture.
 - ▶ 1st sheet will be handed out Tue. 17.4
- Solutions to the exercises can be submitted until next Monday 8:00 am.
 - ▶ 1st sheet is due Mon. 23.4., 8 am.
- Exercises will be corrected
- ► Tutorials
 - ► each **Tuesday 8-10** (beginners). 1st tutorial at Tuesday 17.4.
 - ► each Thursday 14-16 (advanced). 1st tutorial at Thursday 19.4.
- Successful participation in the tutorial gives up to 10% bonus points for the exam.
 - ▶ group submissions are OK (but will yield no bonus points)
 - \blacktriangleright copying is plagiarism and will lead to the expulsion from the program

Jniversiter Tildeshein

Exams and credit points

- ► There will be a written exam at the end of the term
 - 2h, 4 problems
- The course gives 6 ECTS
- ► The course can be used in
 - International Master in Data Analytics / Obligatory
 - Angewandte Informatik MSc. / Informatik / Gebiet KI & ML
 - ► IMIT MSc. / Informatik / Gebiet KI & ML
 - ► Wirtschaftsinformatik MSc / Informatik / Gebiet Business Intelligence

Some books

- Anand Rajaraman, Jure Leskovec, and Jeffrey Ullman (2014): Mining of massive datasets, Cambridge University Press. Available online: http://infolab.stanford.edu/~ullman/mmds.html
- Gautam Shroff (2014): The Intelligent Web: Search, smart algorithms, and big data, Oxford University Press.

References

Doug Laney. 3D data management: Controlling data volume, velocity and variety. META Group Research Note, 6(70), 2001.