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Syllabus
Tue. 9.4. (1) 0. Introduction

A. Parallel Computing
Tue. 16.4. (2) A.1 Threads
Tue. 23.4. (3) A.2 Message Passing Interface (MPI)
Tue. 30.4. (4) A.3 Graphical Processing Units (GPUs)

B. Distributed Storage
Tue. 7.5. (5) B.1 Distributed File Systems
Tue. 14.5. (6) B.2 Partioning of Relational Databases
Tue. 21.5. (7) B.3 NoSQL Databases

C. Distributed Computing Environments
Tue. 28.5. (8) C.1 Map-Reduce
Tue. 4.6. — — Pentecoste Break —
Tue. 11.6. (9) C.2 Resilient Distributed Datasets (Spark)
Tue. 18.6. (10) C.3 Computational Graphs (TensorFlow)

D. Distributed Machine Learning Algorithms
Tue. 25.6. (11) D.1 Distributed Stochastic Gradient Descent
Tue. 2.7. (12) D.2 Distributed Matrix Factorization

Tue. 9.7. (13) Questions and Answers
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Outline

1. Why do we need a Distributed File System?

2. What is a Distributed File System?

3. GFS and HDFS

4. Hadoop Distributed File System (HDFS)
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Why do we need a Distributed File System?

Read???
 - Whole File?
 - Specific part?
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Why do we need a Distributed File System?

Write???
 - Append to the end 
of the file?
 - Insert content in the 
middle?
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Why do we need a Distributed File System?

We want to:
I Read large data fast

I scalability: perform multiple parallel reads and writes

I Have the files available even if one computer crashes
I fault tolerance: replication

I Hide parallelization and distribution details
I transparency: clients can access it like a local filesystem
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What is a Distributed File System?

File Namespace

/

/home

/home/lucas

/home/lucas/big_file
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What is a Distributed File System?

File Namespace

/

/home

/home/john

/home/john/big_file
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Examples

I Windows Distributed File System (DFS; Microsoft, 1996)

I GFS (Google, 2003)

I Lustre (Cluster File Systems, 2003)

I BeeGFS (Fraunhofer, 2005)

I HDFS (Apache Software Foundation, 2006)

I GlusterFS (Red Hat, 2007)

I Ceph (Inktank/Red Hat, 2007)

I MooseFS (Core Technology/Gemius, 2008)

I MapR File System (MapR Technologies, 2010)
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Components

A typical distributed filesystem contains the following components
I Clients - they interface with the user

I Chunk nodes - stores chunks of files

I Master node - stores which parts of each file are on which chunk node
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Distributed File Systems

The Google File System Architecture
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Distributed File Systems - Storing files
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Read Example

C1 C2 C3 C4

Master node

/

/home

/home/john

/home/john/big_file

C5 C6 C7 C8

/home/john/big_file

Chunk 1 C1 C7

Chunk 2 C3 C5

Chunk 3 C4 C6

Chunk 4 C2 C8

Client 
Application

1. read(/home/john/big_file, chunk 1)

2. (Chunk 1 handle, {C1, C7})

3. (Chunk 1 handle, byte range)

4. Chunk 1 data
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Write Example

I Make sure each replica contains the same data all the time

I One replica is designated to be the primary replica

I Master pings the nodes to make sure they are alive
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Write Example

C1 C2 C3 C4

Master node

/

/home

/home/john

/home/john/big_file

C5 C6 C7 C8

/home/john/big_file

Chunk 1 C1 C7

Chunk 2 C3 C5

Chunk 3 C4 C6

Chunk 4 C2 C8

Client 
Application

1. write(/home/john/big_file, chunk 1)

2. (Chunk 1 handle, {C1, C7})

3. (Chunk 1 handle, data)

6. done

4. (Chunk 1 handle, offset)

5. Return status (success or 
failure)
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Big Data Analytics 2. What is a Distributed File System?

Considerations

I Reads are very efficient operations

I Writes are efficient if they append to the end of the file

I Write in the middle of a file can be problematic

I Primary replica decides the order in which to make writes:

I Data is always consistent in all replicas
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Replication Management
I Distributed file systems are usually hosted on large clusters

I many nodes  risk that one of them fails increases
I commodity hardware: risk to fail is increased anyway

I Each chunk is stored redundantly on several chunk nodes
(replication)

I by defaut: 3

I Chunk node regularly send an I-am-alive-message to the master
(heartbeat)

I default: every 3s

I a chunk node without heartbeat for a longer period is considered to be
offline/down/dead

I default: after 10 minutes

I if a chunk node is found to be offline, the name node creates new
replicas of its chunks spread over other chunk nodes.

I until every chunk is replicated 3 times again
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Outline

1. Why do we need a Distributed File System?

2. What is a Distributed File System?

3. GFS and HDFS

4. Hadoop Distributed File System (HDFS)
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GFS vs. HDFS

HDFS GFS
Chunk Size 128Mb 64Mb
Default replicas 2 Files (data and

generation stamp)
3 Chunknodes

Master NameNode GFS Master
Chunk Nodes DataNode Chunk Server

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
15 / 29



Big Data Analytics 3. GFS and HDFS

Google File System
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Hadoop Distributed File System
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Hadoop Overall Architecture
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Hadoop hdfs Setup (1/3)

1. Prerequisites:
I several machines (≥ 1) with password-less ssh login

I here: h0, h1, h2
I test: on h0: ssh h1 brings up a shell on h1

I Java installed on all machines
I test: on h0: java -version and ssh h1 java -version shows version

I hadoop downloaded and unpacked on all machines
(http://hadoop.apache.org/releases.html; here for v2.7.2)

I put hadoop-2.7.2/bin and hadoop-2.7.2/sbin in the path
I or always use full path names to hadoop binaries
I test: on h0: hadoop version and ssh h1 hadoop version shows version

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Hadoop hdfs Setup (2/3)
2. Configure Hadoop hdfs (identical on all machines):

I create a configuration directory somewhere, say in /tmp/hadoop-conf
I set environment variable HADOOP_CONF_DIR accordingly
I put there two files, core-site.xml:
1 <?xml version="1.0" encoding="UTF−8"?>
2 <?xml−stylesheet type="text/xsl" href="configuration. xsl "?>
3 <configuration>
4 <property>
5 <name>fs.defaultFS</name>
6 <value>hdfs://h0:54310</value>
7 </property>
8 </configuration>

I and hdfs-site.xml:
1 <?xml version="1.0" encoding="UTF−8"?>
2 <?xml−stylesheet type="text/xsl" href="configuration. xsl "?>
3 <configuration>
4 <property>
5 <name>dfs.replication</name>
6 <value>2</value>
7 </property>
8 </configuration>

I test: on h0: hdfs getconf -namenodes and ssh h1 hdfs getconf
-namenodes yields h0.
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Hadoop hdfs Setup (3/3)

3. Start hdfs:
I on h0:

I hdfs namenode -format: format disk / create data structures
I hdfs namenode: start namenode daemon
I hdfs datanode: start datanode daemon

I on h1 and h2:
I hdfs datanode: start datanode daemon

I test: on h0: hdfs dfsadmin -report shows h0, h1 and h2.
alternatively, visit the web interface at http://h0:50070
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Hadoop hdfs Setup / Web Interface
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hdfs Filesystem Interface
hdfs dfs -〈command〉 . . . :
I df 〈path〉, e.g., df /

show free disk space

I ls 〈path〉, e.g., ls /
list directory

I mkdir 〈path〉, e.g., mkdir /mydata
create directory

I put 〈files〉. . . 〈path〉, e.g., put abc.csv /mydata
upload files to hdfs

I get 〈paths〉. . . 〈dir〉, e.g., get /mydata/abc.csv abc-copy.csv
download files from hdfs

I cat 〈paths〉. . . , e.g., cat /mydata/abc.csv
pipe files from hdfs to stdout

I mv 〈src〉. . . 〈dest〉, e.g., mv /mydata/abc.csv /mydata/abc.txt
move or rename files on hdfs
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hdfs Filesystem Interface

hdfs dfs -〈command〉 . . . :
I cp 〈src〉. . . 〈dest〉, e.g., cp /mydata/abc.csv /mydata/abc-copy.txt

copy files on hdfs

URLs can be used as path names:
I / denotes the hdfs root.

I file:/// denotes the root of the local filesystem
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hdfs Inspect File Health
hdfs fsck 〈path〉 -files -blocks -locations
shows information about where (datanode) which parts (blocks) of a file
are stored.
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Connecting to namenode via http://lst-uni.ismll.de:50070/fsck?ugi=lst&files=1&blocks=1&locations=1&path=%2Fmydata%2Frcv1_test.binary
FSCK started by lst (auth:SIMPLE) from /147.172.223.14 for path /mydata/rcv1_test.binary at Tue May 03 19:26:28 CEST 2016
/mydata/rcv1_test.binary 1207864838 bytes, 9 block(s): OK
0. BP-282002004-147.172.223.14-1462282706590:blk_1073741842_1018 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK], DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK]]
1. BP-282002004-147.172.223.14-1462282706590:blk_1073741843_1019 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK], DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK]]
2. BP-282002004-147.172.223.14-1462282706590:blk_1073741844_1020 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]
3. BP-282002004-147.172.223.14-1462282706590:blk_1073741845_1021 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]
4. BP-282002004-147.172.223.14-1462282706590:blk_1073741846_1022 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK]]
5. BP-282002004-147.172.223.14-1462282706590:blk_1073741847_1023 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]
6. BP-282002004-147.172.223.14-1462282706590:blk_1073741848_1024 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]
7. BP-282002004-147.172.223.14-1462282706590:blk_1073741849_1025 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK]]
8. BP-282002004-147.172.223.14-1462282706590:blk_1073741850_1026 len=134123014 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]

Status: HEALTHY
Total size: 1207864838 B
Total dirs: 0
Total files: 1
Total symlinks: 0
Total blocks (validated): 9 (avg. block size 134207204 B)
Minimally replicated blocks: 9 (100.0 %)
Over-replicated blocks: 0 (0.0 %)
Under-replicated blocks: 0 (0.0 %)
Mis-replicated blocks: 0 (0.0 %)
Default replication factor: 2
Average block replication: 2.0
Corrupt blocks: 0
Missing replicas: 0 (0.0 %)
Number of data-nodes: 3
Number of racks: 1

FSCK ended at Tue May 03 19:26:28 CEST 2016 in 4 milliseconds

The filesystem under path ’/mydata/rcv1_test.binary’ is HEALTHY
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hdfs Inspect File Health
hdfs fsck 〈path〉 -files -blocks -locations
shows information about where (datanode) which parts (blocks) of a file
are stored.
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Connecting to namenode via http://lst-uni.ismll.de:50070/fsck?ugi=lst&files=1&blocks=1&locations=1&path=%2Fmydata%2Frcv1_test.binary
FSCK started by lst (auth:SIMPLE) from /147.172.223.14 for path /mydata/rcv1_test.binary at Tue May 03 19:26:28 CEST 2016
/mydata/rcv1_test.binary 1207864838 bytes, 9 block(s): OK
0. BP-282002004-147.172.223.14-1462282706590:blk_1073741842_1018 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK], DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK]]
1. BP-282002004-147.172.223.14-1462282706590:blk_1073741843_1019 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK], DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK]]
2. BP-282002004-147.172.223.14-1462282706590:blk_1073741844_1020 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]
3. BP-282002004-147.172.223.14-1462282706590:blk_1073741845_1021 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]
4. BP-282002004-147.172.223.14-1462282706590:blk_1073741846_1022 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK]]
5. BP-282002004-147.172.223.14-1462282706590:blk_1073741847_1023 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]
6. BP-282002004-147.172.223.14-1462282706590:blk_1073741848_1024 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]
7. BP-282002004-147.172.223.14-1462282706590:blk_1073741849_1025 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK]]
8. BP-282002004-147.172.223.14-1462282706590:blk_1073741850_1026 len=134123014 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]

Status: HEALTHY
Total size: 1207864838 B
Total dirs: 0
Total files: 1
Total symlinks: 0
Total blocks (validated): 9 (avg. block size 134207204 B)
Minimally replicated blocks: 9 (100.0 %)
Over-replicated blocks: 0 (0.0 %)
Under-replicated blocks: 0 (0.0 %)
Mis-replicated blocks: 0 (0.0 %)
Default replication factor: 2
Average block replication: 2.0
Corrupt blocks: 0
Missing replicas: 0 (0.0 %)
Number of data-nodes: 3
Number of racks: 1

FSCK ended at Tue May 03 19:26:28 CEST 2016 in 4 milliseconds

The filesystem under path ’/mydata/rcv1_test.binary’ is HEALTHY
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Summary (1/2)
I Basic requirements for distributed filesystem are

I scalability: perform multiple parallel reads and writes
I fault tolerance: replicate files on several nodes
I transparency: clients can access files like on a local filesystem

I Distributed filesystems partition files into chunks / blocks
I chunk/data nodes store individual chunks/blocks of a file.
I a master/name node stores the index

I for every file and chunk, on which chunk nodes it is stored

I reading can be done from any chunk node storing a chunk
I master is queried to find out which chunks nodes this are

I writing needs to be synchronized over chunk nodes storing a chunk
I for every chunk there is a primary chunk node
I the primary chunk node stores a chunk first,

then replicates it to other chunk nodes
and only after all have been written confirms successful write.
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Summary (2/2)

I Reading and write-appending is efficient,
write-in-the-middle is not possible (as it changes the chunk structure)

I The Google File System (GFS) is an early distributed filesystem
I deployed large scale in Googles data centers.

I Hadoop File System (HFS) is an open-source implementation very
similar to GFS.
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Further Readings

I Google File System, the original paper: Ghemawat et al. [2003]

I Brief tutorial on HDFS architecture: Gupta [2015]

I Hadoop File System: [White, 2015, ch. 3]
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