
Big Data Analytics

Big Data Analytics
B. Distributed Storage / B.1 Distributed File Systems

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 29

Big Data Analytics

Syllabus
Tue. 9.4. (1) 0. Introduction

A. Parallel Computing
Tue. 16.4. (2) A.1 Threads
Tue. 23.4. (3) A.2 Message Passing Interface (MPI)
Tue. 30.4. (4) A.3 Graphical Processing Units (GPUs)

B. Distributed Storage
Tue. 7.5. (5) B.1 Distributed File Systems
Tue. 14.5. (6) B.2 Partioning of Relational Databases
Tue. 21.5. (7) B.3 NoSQL Databases

C. Distributed Computing Environments
Tue. 28.5. (8) C.1 Map-Reduce
Tue. 4.6. — — Pentecoste Break —
Tue. 11.6. (9) C.2 Resilient Distributed Datasets (Spark)
Tue. 18.6. (10) C.3 Computational Graphs (TensorFlow)

D. Distributed Machine Learning Algorithms
Tue. 25.6. (11) D.1 Distributed Stochastic Gradient Descent
Tue. 2.7. (12) D.2 Distributed Matrix Factorization

Tue. 9.7. (13) Questions and Answers
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 29

Big Data Analytics

Outline

1. Why do we need a Distributed File System?

2. What is a Distributed File System?

3. GFS and HDFS

4. Hadoop Distributed File System (HDFS)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 29

Big Data Analytics 1. Why do we need a Distributed File System?

Outline

1. Why do we need a Distributed File System?

2. What is a Distributed File System?

3. GFS and HDFS

4. Hadoop Distributed File System (HDFS)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 29

Big Data Analytics 1. Why do we need a Distributed File System?

Why do we need a Distributed File System?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 29

Big Data Analytics 1. Why do we need a Distributed File System?

Why do we need a Distributed File System?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 29

Big Data Analytics 1. Why do we need a Distributed File System?

Why do we need a Distributed File System?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 29

Big Data Analytics 1. Why do we need a Distributed File System?

Why do we need a Distributed File System?

Read???
 - Whole File?
 - Specific part?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 29

Big Data Analytics 1. Why do we need a Distributed File System?

Why do we need a Distributed File System?

Write???
 - Append to the end
of the file?
 - Insert content in the
middle?

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 29

Big Data Analytics 1. Why do we need a Distributed File System?

Why do we need a Distributed File System?

We want to:
I Read large data fast

I scalability: perform multiple parallel reads and writes

I Have the files available even if one computer crashes
I fault tolerance: replication

I Hide parallelization and distribution details
I transparency: clients can access it like a local filesystem

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
2 / 29

Big Data Analytics 1. Why do we need a Distributed File System?

Why do we need a Distributed File System?

We want to:
I Read large data fast

I scalability: perform multiple parallel reads and writes

I Have the files available even if one computer crashes
I fault tolerance: replication

I Hide parallelization and distribution details
I transparency: clients can access it like a local filesystem

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
2 / 29

Big Data Analytics 1. Why do we need a Distributed File System?

Why do we need a Distributed File System?

We want to:
I Read large data fast

I scalability: perform multiple parallel reads and writes

I Have the files available even if one computer crashes
I fault tolerance: replication

I Hide parallelization and distribution details
I transparency: clients can access it like a local filesystem

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
2 / 29

Big Data Analytics 1. Why do we need a Distributed File System?

Data Transfer Rates

disks local area networks buses
0.01

0.1

1

10

100

1000

10,000

SSD

HDD
Bluray×12

Ethernet 1

Ethernet 10 Infiniband 8

Infiniband 300

4k video

RAM DDR4-3200
PCIe

USB3

type

sp
ee
d
[G
B
it/

s]

27 yr

2.7 yr

97 d

9.7 d

23 h

2.3 h

14 m

du
ra
tio

n
to

tr
an
sf
er

1
P
B

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
3 / 29

Big Data Analytics 2. What is a Distributed File System?

Outline

1. Why do we need a Distributed File System?

2. What is a Distributed File System?

3. GFS and HDFS

4. Hadoop Distributed File System (HDFS)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
4 / 29

Big Data Analytics 2. What is a Distributed File System?

What is a Distributed File System?

File Namespace

/

/home

/home/lucas

/home/lucas/big_file

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
4 / 29

Big Data Analytics 2. What is a Distributed File System?

What is a Distributed File System?

File Namespace

/

/home

/home/john

/home/john/big_file

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
5 / 29

Big Data Analytics 2. What is a Distributed File System?

Examples

I Windows Distributed File System (DFS; Microsoft, 1996)

I GFS (Google, 2003)

I Lustre (Cluster File Systems, 2003)

I BeeGFS (Fraunhofer, 2005)

I HDFS (Apache Software Foundation, 2006)

I GlusterFS (Red Hat, 2007)

I Ceph (Inktank/Red Hat, 2007)

I MooseFS (Core Technology/Gemius, 2008)

I MapR File System (MapR Technologies, 2010)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
6 / 29

Big Data Analytics 2. What is a Distributed File System?

Components

A typical distributed filesystem contains the following components
I Clients - they interface with the user

I Chunk nodes - stores chunks of files

I Master node - stores which parts of each file are on which chunk node

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
7 / 29

Big Data Analytics 2. What is a Distributed File System?

Components

A typical distributed filesystem contains the following components
I Clients - they interface with the user

I Chunk nodes - stores chunks of files

I Master node - stores which parts of each file are on which chunk node

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
7 / 29

Big Data Analytics 2. What is a Distributed File System?

Components

A typical distributed filesystem contains the following components
I Clients - they interface with the user

I Chunk nodes - stores chunks of files

I Master node - stores which parts of each file are on which chunk node

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
7 / 29

Big Data Analytics 2. What is a Distributed File System?

Distributed File Systems

The Google File System Architecture

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
8 / 29

Big Data Analytics 2. What is a Distributed File System?

Distributed File Systems - Storing files

C1 C2 C3 C4

Master node

/

/home

/home/john

/home/john/big_file

C
hu

n
k

1
C

hu
n

k
2

C
hu

n
k

3
C

hu
n

k
4

C5 C6 C7 C8

/home/john/big_file

Chunk 1 C1 C7

Chunk 2 C3 C5

Chunk 3 C4 C6

Chunk 4 C2 C8

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
9 / 29

Big Data Analytics 2. What is a Distributed File System?

Read Example

C1 C2 C3 C4

Master node

/

/home

/home/john

/home/john/big_file

C5 C6 C7 C8

/home/john/big_file

Chunk 1 C1 C7

Chunk 2 C3 C5

Chunk 3 C4 C6

Chunk 4 C2 C8

Client
Application

1. read(/home/john/big_file, chunk 1)

2. (Chunk 1 handle, {C1, C7})

3. (Chunk 1 handle, byte range)

4. Chunk 1 data

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
10 / 29

Big Data Analytics 2. What is a Distributed File System?

Write Example

I Make sure each replica contains the same data all the time

I One replica is designated to be the primary replica

I Master pings the nodes to make sure they are alive

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
11 / 29

Big Data Analytics 2. What is a Distributed File System?

Write Example

I Make sure each replica contains the same data all the time

I One replica is designated to be the primary replica

I Master pings the nodes to make sure they are alive

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
11 / 29

Big Data Analytics 2. What is a Distributed File System?

Write Example

I Make sure each replica contains the same data all the time

I One replica is designated to be the primary replica

I Master pings the nodes to make sure they are alive

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
11 / 29

Big Data Analytics 2. What is a Distributed File System?

Write Example

C1 C2 C3 C4

Master node

/

/home

/home/john

/home/john/big_file

C5 C6 C7 C8

/home/john/big_file

Chunk 1 C1 C7

Chunk 2 C3 C5

Chunk 3 C4 C6

Chunk 4 C2 C8

Client
Application

1. write(/home/john/big_file, chunk 1)

2. (Chunk 1 handle, {C1, C7})

3. (Chunk 1 handle, data)

6. done

4. (Chunk 1 handle, offset)

5. Return status (success or
failure)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
12 / 29

Big Data Analytics 2. What is a Distributed File System?

Considerations

I Reads are very efficient operations

I Writes are efficient if they append to the end of the file

I Write in the middle of a file can be problematic

I Primary replica decides the order in which to make writes:

I Data is always consistent in all replicas

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
13 / 29

Big Data Analytics 2. What is a Distributed File System?

Considerations

I Reads are very efficient operations

I Writes are efficient if they append to the end of the file

I Write in the middle of a file can be problematic

I Primary replica decides the order in which to make writes:

I Data is always consistent in all replicas

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
13 / 29

Big Data Analytics 2. What is a Distributed File System?

Considerations

I Reads are very efficient operations

I Writes are efficient if they append to the end of the file

I Write in the middle of a file can be problematic

I Primary replica decides the order in which to make writes:

I Data is always consistent in all replicas

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
13 / 29

Big Data Analytics 2. What is a Distributed File System?

Considerations

I Reads are very efficient operations

I Writes are efficient if they append to the end of the file

I Write in the middle of a file can be problematic

I Primary replica decides the order in which to make writes:
I Data is always consistent in all replicas

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
13 / 29

Big Data Analytics 2. What is a Distributed File System?

Replication Management
I Distributed file systems are usually hosted on large clusters

I many nodes risk that one of them fails increases
I commodity hardware: risk to fail is increased anyway

I Each chunk is stored redundantly on several chunk nodes
(replication)

I by defaut: 3

I Chunk node regularly send an I-am-alive-message to the master
(heartbeat)

I default: every 3s

I a chunk node without heartbeat for a longer period is considered to be
offline/down/dead

I default: after 10 minutes

I if a chunk node is found to be offline, the name node creates new
replicas of its chunks spread over other chunk nodes.

I until every chunk is replicated 3 times again
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

14 / 29

Big Data Analytics 3. GFS and HDFS

Outline

1. Why do we need a Distributed File System?

2. What is a Distributed File System?

3. GFS and HDFS

4. Hadoop Distributed File System (HDFS)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
15 / 29

Big Data Analytics 3. GFS and HDFS

GFS vs. HDFS

HDFS GFS
Chunk Size 128Mb 64Mb
Default replicas 2 Files (data and

generation stamp)
3 Chunknodes

Master NameNode GFS Master
Chunk Nodes DataNode Chunk Server

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
15 / 29

Big Data Analytics 3. GFS and HDFS

Google File System

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
16 / 29

Big Data Analytics 3. GFS and HDFS

Hadoop Distributed File System

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
17 / 29

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

Outline

1. Why do we need a Distributed File System?

2. What is a Distributed File System?

3. GFS and HDFS

4. Hadoop Distributed File System (HDFS)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
18 / 29

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

Hadoop Overall Architecture

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
18 / 29

source: http://www.tutorialspoint.com/hadoop/hadoop_introduction.htm

http://www.tutorialspoint.com/hadoop/hadoop_introduction.htm

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

Hadoop hdfs Setup (1/3)

1. Prerequisites:
I several machines (≥ 1) with password-less ssh login

I here: h0, h1, h2
I test: on h0: ssh h1 brings up a shell on h1

I Java installed on all machines
I test: on h0: java -version and ssh h1 java -version shows version

I hadoop downloaded and unpacked on all machines
(http://hadoop.apache.org/releases.html; here for v2.7.2)

I put hadoop-2.7.2/bin and hadoop-2.7.2/sbin in the path
I or always use full path names to hadoop binaries
I test: on h0: hadoop version and ssh h1 hadoop version shows version

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
19 / 29

http://hadoop.apache.org/releases.html

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

Hadoop hdfs Setup (2/3)
2. Configure Hadoop hdfs (identical on all machines):

I create a configuration directory somewhere, say in /tmp/hadoop-conf
I set environment variable HADOOP_CONF_DIR accordingly
I put there two files, core-site.xml:
1 <?xml version="1.0" encoding="UTF−8"?>
2 <?xml−stylesheet type="text/xsl" href="configuration. xsl "?>
3 <configuration>
4 <property>
5 <name>fs.defaultFS</name>
6 <value>hdfs://h0:54310</value>
7 </property>
8 </configuration>

I and hdfs-site.xml:
1 <?xml version="1.0" encoding="UTF−8"?>
2 <?xml−stylesheet type="text/xsl" href="configuration. xsl "?>
3 <configuration>
4 <property>
5 <name>dfs.replication</name>
6 <value>2</value>
7 </property>
8 </configuration>

I test: on h0: hdfs getconf -namenodes and ssh h1 hdfs getconf
-namenodes yields h0.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
20 / 29

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

Hadoop hdfs Setup (3/3)

3. Start hdfs:
I on h0:

I hdfs namenode -format: format disk / create data structures
I hdfs namenode: start namenode daemon
I hdfs datanode: start datanode daemon

I on h1 and h2:
I hdfs datanode: start datanode daemon

I test: on h0: hdfs dfsadmin -report shows h0, h1 and h2.
alternatively, visit the web interface at http://h0:50070

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
21 / 29

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

Hadoop hdfs Setup / Web Interface

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
22 / 29

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

hdfs Filesystem Interface
hdfs dfs -〈command〉 . . . :
I df 〈path〉, e.g., df /

show free disk space

I ls 〈path〉, e.g., ls /
list directory

I mkdir 〈path〉, e.g., mkdir /mydata
create directory

I put 〈files〉. . . 〈path〉, e.g., put abc.csv /mydata
upload files to hdfs

I get 〈paths〉. . . 〈dir〉, e.g., get /mydata/abc.csv abc-copy.csv
download files from hdfs

I cat 〈paths〉. . . , e.g., cat /mydata/abc.csv
pipe files from hdfs to stdout

I mv 〈src〉. . . 〈dest〉, e.g., mv /mydata/abc.csv /mydata/abc.txt
move or rename files on hdfs

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
23 / 29

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

hdfs Filesystem Interface
hdfs dfs -〈command〉 . . . :
I df 〈path〉, e.g., df /

show free disk space
I ls 〈path〉, e.g., ls /

list directory

I mkdir 〈path〉, e.g., mkdir /mydata
create directory

I put 〈files〉. . . 〈path〉, e.g., put abc.csv /mydata
upload files to hdfs

I get 〈paths〉. . . 〈dir〉, e.g., get /mydata/abc.csv abc-copy.csv
download files from hdfs

I cat 〈paths〉. . . , e.g., cat /mydata/abc.csv
pipe files from hdfs to stdout

I mv 〈src〉. . . 〈dest〉, e.g., mv /mydata/abc.csv /mydata/abc.txt
move or rename files on hdfs

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
23 / 29

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

hdfs Filesystem Interface
hdfs dfs -〈command〉 . . . :
I df 〈path〉, e.g., df /

show free disk space
I ls 〈path〉, e.g., ls /

list directory
I mkdir 〈path〉, e.g., mkdir /mydata

create directory

I put 〈files〉. . . 〈path〉, e.g., put abc.csv /mydata
upload files to hdfs

I get 〈paths〉. . . 〈dir〉, e.g., get /mydata/abc.csv abc-copy.csv
download files from hdfs

I cat 〈paths〉. . . , e.g., cat /mydata/abc.csv
pipe files from hdfs to stdout

I mv 〈src〉. . . 〈dest〉, e.g., mv /mydata/abc.csv /mydata/abc.txt
move or rename files on hdfs

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
23 / 29

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

hdfs Filesystem Interface
hdfs dfs -〈command〉 . . . :
I df 〈path〉, e.g., df /

show free disk space
I ls 〈path〉, e.g., ls /

list directory
I mkdir 〈path〉, e.g., mkdir /mydata

create directory
I put 〈files〉. . . 〈path〉, e.g., put abc.csv /mydata

upload files to hdfs

I get 〈paths〉. . . 〈dir〉, e.g., get /mydata/abc.csv abc-copy.csv
download files from hdfs

I cat 〈paths〉. . . , e.g., cat /mydata/abc.csv
pipe files from hdfs to stdout

I mv 〈src〉. . . 〈dest〉, e.g., mv /mydata/abc.csv /mydata/abc.txt
move or rename files on hdfs

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
23 / 29

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

hdfs Filesystem Interface
hdfs dfs -〈command〉 . . . :
I df 〈path〉, e.g., df /

show free disk space
I ls 〈path〉, e.g., ls /

list directory
I mkdir 〈path〉, e.g., mkdir /mydata

create directory
I put 〈files〉. . . 〈path〉, e.g., put abc.csv /mydata

upload files to hdfs
I get 〈paths〉. . . 〈dir〉, e.g., get /mydata/abc.csv abc-copy.csv

download files from hdfs

I cat 〈paths〉. . . , e.g., cat /mydata/abc.csv
pipe files from hdfs to stdout

I mv 〈src〉. . . 〈dest〉, e.g., mv /mydata/abc.csv /mydata/abc.txt
move or rename files on hdfs

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
23 / 29

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

hdfs Filesystem Interface
hdfs dfs -〈command〉 . . . :
I df 〈path〉, e.g., df /

show free disk space
I ls 〈path〉, e.g., ls /

list directory
I mkdir 〈path〉, e.g., mkdir /mydata

create directory
I put 〈files〉. . . 〈path〉, e.g., put abc.csv /mydata

upload files to hdfs
I get 〈paths〉. . . 〈dir〉, e.g., get /mydata/abc.csv abc-copy.csv

download files from hdfs
I cat 〈paths〉. . . , e.g., cat /mydata/abc.csv

pipe files from hdfs to stdout

I mv 〈src〉. . . 〈dest〉, e.g., mv /mydata/abc.csv /mydata/abc.txt
move or rename files on hdfs

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
23 / 29

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

hdfs Filesystem Interface
hdfs dfs -〈command〉 . . . :
I df 〈path〉, e.g., df /

show free disk space
I ls 〈path〉, e.g., ls /

list directory
I mkdir 〈path〉, e.g., mkdir /mydata

create directory
I put 〈files〉. . . 〈path〉, e.g., put abc.csv /mydata

upload files to hdfs
I get 〈paths〉. . . 〈dir〉, e.g., get /mydata/abc.csv abc-copy.csv

download files from hdfs
I cat 〈paths〉. . . , e.g., cat /mydata/abc.csv

pipe files from hdfs to stdout
I mv 〈src〉. . . 〈dest〉, e.g., mv /mydata/abc.csv /mydata/abc.txt

move or rename files on hdfs
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

23 / 29

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

hdfs Filesystem Interface

hdfs dfs -〈command〉 . . . :
I cp 〈src〉. . . 〈dest〉, e.g., cp /mydata/abc.csv /mydata/abc-copy.txt

copy files on hdfs

URLs can be used as path names:
I / denotes the hdfs root.

I file:/// denotes the root of the local filesystem

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
24 / 29

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

hdfs Filesystem Interface

hdfs dfs -〈command〉 . . . :
I cp 〈src〉. . . 〈dest〉, e.g., cp /mydata/abc.csv /mydata/abc-copy.txt

copy files on hdfs

URLs can be used as path names:
I / denotes the hdfs root.

I file:/// denotes the root of the local filesystem

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
24 / 29

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

hdfs Inspect File Health
hdfs fsck 〈path〉 -files -blocks -locations
shows information about where (datanode) which parts (blocks) of a file
are stored.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
25 / 29

Connecting to namenode via http://lst-uni.ismll.de:50070/fsck?ugi=lst&files=1&blocks=1&locations=1&path=%2Fmydata%2Frcv1_test.binary
FSCK started by lst (auth:SIMPLE) from /147.172.223.14 for path /mydata/rcv1_test.binary at Tue May 03 19:26:28 CEST 2016
/mydata/rcv1_test.binary 1207864838 bytes, 9 block(s): OK
0. BP-282002004-147.172.223.14-1462282706590:blk_1073741842_1018 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK], DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK]]
1. BP-282002004-147.172.223.14-1462282706590:blk_1073741843_1019 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK], DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK]]
2. BP-282002004-147.172.223.14-1462282706590:blk_1073741844_1020 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]
3. BP-282002004-147.172.223.14-1462282706590:blk_1073741845_1021 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]
4. BP-282002004-147.172.223.14-1462282706590:blk_1073741846_1022 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK]]
5. BP-282002004-147.172.223.14-1462282706590:blk_1073741847_1023 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]
6. BP-282002004-147.172.223.14-1462282706590:blk_1073741848_1024 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]
7. BP-282002004-147.172.223.14-1462282706590:blk_1073741849_1025 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK]]
8. BP-282002004-147.172.223.14-1462282706590:blk_1073741850_1026 len=134123014 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]

Status: HEALTHY
Total size: 1207864838 B
Total dirs: 0
Total files: 1
Total symlinks: 0
Total blocks (validated): 9 (avg. block size 134207204 B)
Minimally replicated blocks: 9 (100.0 %)
Over-replicated blocks: 0 (0.0 %)
Under-replicated blocks: 0 (0.0 %)
Mis-replicated blocks: 0 (0.0 %)
Default replication factor: 2
Average block replication: 2.0
Corrupt blocks: 0
Missing replicas: 0 (0.0 %)
Number of data-nodes: 3
Number of racks: 1

FSCK ended at Tue May 03 19:26:28 CEST 2016 in 4 milliseconds

The filesystem under path ’/mydata/rcv1_test.binary’ is HEALTHY

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

hdfs Inspect File Health
hdfs fsck 〈path〉 -files -blocks -locations
shows information about where (datanode) which parts (blocks) of a file
are stored.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
25 / 29

Connecting to namenode via http://lst-uni.ismll.de:50070/fsck?ugi=lst&files=1&blocks=1&locations=1&path=%2Fmydata%2Frcv1_test.binary
FSCK started by lst (auth:SIMPLE) from /147.172.223.14 for path /mydata/rcv1_test.binary at Tue May 03 19:26:28 CEST 2016
/mydata/rcv1_test.binary 1207864838 bytes, 9 block(s): OK
0. BP-282002004-147.172.223.14-1462282706590:blk_1073741842_1018 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK], DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK]]
1. BP-282002004-147.172.223.14-1462282706590:blk_1073741843_1019 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK], DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK]]
2. BP-282002004-147.172.223.14-1462282706590:blk_1073741844_1020 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]
3. BP-282002004-147.172.223.14-1462282706590:blk_1073741845_1021 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]
4. BP-282002004-147.172.223.14-1462282706590:blk_1073741846_1022 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK]]
5. BP-282002004-147.172.223.14-1462282706590:blk_1073741847_1023 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]
6. BP-282002004-147.172.223.14-1462282706590:blk_1073741848_1024 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]
7. BP-282002004-147.172.223.14-1462282706590:blk_1073741849_1025 len=134217728 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.14:50011,DS-783f2c65-69ea-46ff-88ed-deebabf73158,DISK]]
8. BP-282002004-147.172.223.14-1462282706590:blk_1073741850_1026 len=134123014 repl=2 [DatanodeInfoWithStorage[147.172.223.14:50010,DS-e3b3aadb-4f1c-49d1-872b-1879362f35c1,DISK], DatanodeInfoWithStorage[147.172.223.225:50010,DS-8aa58eb5-b81c-473b-9db6-ce87829d75dd,DISK]]

Status: HEALTHY
Total size: 1207864838 B
Total dirs: 0
Total files: 1
Total symlinks: 0
Total blocks (validated): 9 (avg. block size 134207204 B)
Minimally replicated blocks: 9 (100.0 %)
Over-replicated blocks: 0 (0.0 %)
Under-replicated blocks: 0 (0.0 %)
Mis-replicated blocks: 0 (0.0 %)
Default replication factor: 2
Average block replication: 2.0
Corrupt blocks: 0
Missing replicas: 0 (0.0 %)
Number of data-nodes: 3
Number of racks: 1

FSCK ended at Tue May 03 19:26:28 CEST 2016 in 4 milliseconds

The filesystem under path ’/mydata/rcv1_test.binary’ is HEALTHY

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

Summary (1/2)
I Basic requirements for distributed filesystem are

I scalability: perform multiple parallel reads and writes
I fault tolerance: replicate files on several nodes
I transparency: clients can access files like on a local filesystem

I Distributed filesystems partition files into chunks / blocks
I chunk/data nodes store individual chunks/blocks of a file.
I a master/name node stores the index

I for every file and chunk, on which chunk nodes it is stored

I reading can be done from any chunk node storing a chunk
I master is queried to find out which chunks nodes this are

I writing needs to be synchronized over chunk nodes storing a chunk
I for every chunk there is a primary chunk node
I the primary chunk node stores a chunk first,

then replicates it to other chunk nodes
and only after all have been written confirms successful write.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
26 / 29

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

Summary (2/2)

I Reading and write-appending is efficient,
write-in-the-middle is not possible (as it changes the chunk structure)

I The Google File System (GFS) is an early distributed filesystem
I deployed large scale in Googles data centers.

I Hadoop File System (HFS) is an open-source implementation very
similar to GFS.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
27 / 29

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

Further Readings

I Google File System, the original paper: Ghemawat et al. [2003]

I Brief tutorial on HDFS architecture: Gupta [2015]

I Hadoop File System: [White, 2015, ch. 3]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
28 / 29

Big Data Analytics 4. Hadoop Distributed File System (HDFS)

References
Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In ACM SIGOPS operating

systems review, volume 37, pages 29–43. ACM, 2003.

Lokesh Gupta. Hdfs – hadoop distributed file system architecture tutorial, 2015. URL
http://howtodoinjava.com/big-data/hadoop/hdfs-hadoop-distributed-file-system-architecture-tutorial/.

Tom White. Hadoop: The Definitive Guide. O’Reilly, 4 edition, 2015.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
29 / 29

http://howtodoinjava.com/big-data/hadoop/hdfs-hadoop-distributed-file-system-architecture-tutorial/

	1. Why do we need a Distributed File System?
	2. What is a Distributed File System?
	3. GFS and HDFS
	4. Hadoop Distributed File System (HDFS)

