
Big Data Analytics

Big Data Analytics
A. Parallel Computing / A.1 Threads

Lars Schmidt-Thieme

Information Systems and Machine Learning Lab (ISMLL)
Institute for Computer Science

University of Hildesheim, Germany

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 52

Big Data Analytics

Syllabus
Tue. 9.4. (1) 0. Introduction

A. Parallel Computing
Tue. 16.4. (2) A.1 Threads
Tue. 23.4. (3) A.2 Message Passing Interface (MPI)
Tue. 30.4. (4) A.3 Graphical Processing Units (GPUs)

B. Distributed Storage
Tue. 7.5. (5) B.1 Distributed File Systems
Tue. 14.5. (6) B.2 Partioning of Relational Databases
Tue. 21.5. (7) B.3 NoSQL Databases

C. Distributed Computing Environments
Tue. 28.5. (8) C.1 Map-Reduce
Tue. 4.6. — — Pentecoste Break —
Tue. 11.6. (9) C.2 Resilient Distributed Datasets (Spark)
Tue. 18.6. (10) C.3 Computational Graphs (TensorFlow)

D. Distributed Machine Learning Algorithms
Tue. 25.6. (11) D.1 Distributed Stochastic Gradient Descent
Tue. 2.7. (12) D.2 Distributed Matrix Factorization

Tue. 9.7. (13) Questions and Answers
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

1 / 52

Big Data Analytics

Outline

1. Threads Basics

2. Starting and Interrupting Threads

3. Synchronization I: Monitors

4. Synchronization II: Locks

5. Starting Threads II: Thread Pools and Dependency Graphs

6. Open MP

7. More Examples

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 52

Big Data Analytics 1. Threads Basics

Outline

1. Threads Basics

2. Starting and Interrupting Threads

3. Synchronization I: Monitors

4. Synchronization II: Locks

5. Starting Threads II: Thread Pools and Dependency Graphs

6. Open MP

7. More Examples

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 52

Big Data Analytics 1. Threads Basics

Processes and Threads
I process: a running program

I each process has its exclusive memory

I managed by the operating system, heavy weight

I distributed computing: running on different machines

I may have several threads

I multitasking: run several processes in parallel
I OS switches between processes

I multiprocessing: run in parallel on several processors

I thread: a running subprogram
I threads can share memory (shared address space)
I managed by the program, light weight

I multithreading: run several threads in parallel
I may be switched between processors or run on several in parallel

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 52

Big Data Analytics 1. Threads Basics

Processes and Threads
I process: a running program

I each process has its exclusive memory

I managed by the operating system, heavy weight

I distributed computing: running on different machines

I may have several threads

I multitasking: run several processes in parallel
I OS switches between processes

I multiprocessing: run in parallel on several processors

I thread: a running subprogram
I threads can share memory (shared address space)
I managed by the program, light weight

I multithreading: run several threads in parallel
I may be switched between processors or run on several in parallel

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
1 / 52

Big Data Analytics 1. Threads Basics

Threads APIs
I POSIX threads (Pthreads; IEEE standard 1995): C
I C++ Standard library thread (2011): C++
I Java Standard library (1995, 2004): Java

I Thread (java.lang; 1995)

I Lock, ThreadPoolExecutor etc. (java.util.concurrent; 2004)
I Open Multi-Processing (OpenMP; 1997): C, C++, Fortran

I Java ports: JOMP, omp4j

I Python Standard Library (2015; 3.5): Python
I packages threading, multiprocessing, concurrent

I default interpreter and jit compiler cpython and pypy:
Global Interpreter Lock (GIL)

I time-sliced execution on a single core only

I the GIL can be released in python by many compilers
such as cython, numba and possibly nuitka

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
2 / 52

Big Data Analytics 1. Threads Basics

Threads APIs
I POSIX threads (Pthreads; IEEE standard 1995): C
I C++ Standard library thread (2011): C++
I Java Standard library (1995, 2004): Java

I Thread (java.lang; 1995)

I Lock, ThreadPoolExecutor etc. (java.util.concurrent; 2004)
I Open Multi-Processing (OpenMP; 1997): C, C++, Fortran

I Java ports: JOMP, omp4j
I Python Standard Library (2015; 3.5): Python

I packages threading, multiprocessing, concurrent

I default interpreter and jit compiler cpython and pypy:
Global Interpreter Lock (GIL)

I time-sliced execution on a single core only

I the GIL can be released in python by many compilers
such as cython, numba and possibly nuitka

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
2 / 52

Big Data Analytics 2. Starting and Interrupting Threads

Outline

1. Threads Basics

2. Starting and Interrupting Threads

3. Synchronization I: Monitors

4. Synchronization II: Locks

5. Starting Threads II: Thread Pools and Dependency Graphs

6. Open MP

7. More Examples

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
3 / 52

Big Data Analytics 2. Starting and Interrupting Threads

Starting Threads

Runnable:
I interface in java.lang

I only method: void run().

I models a subprogram / procedure that can be run.

Thread:
I class in java.lang

I constructor Thread(Runnable): a thread to run a given Runnable.

I Thread.start(): begin to execute this thread.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
3 / 52

Big Data Analytics 2. Starting and Interrupting Threads

Starting Threads / Example

1 public class HelloWorld3 implements Runnable {
2 String msg;
3 public HelloWorld3(String msg) {
4 this .msg = msg;
5 }
6 public void run() {
7 while (true)
8 System.out. println (msg);
9 }

10 public static void main(String [] args) {
11 new Thread(new HelloWorld3("A")).start();
12 new Thread(new HelloWorld3("B")).start();
13 new Thread(new HelloWorld3("C")).start();
14 new Thread(new HelloWorld3("D")).start();
15 }
16 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
4 / 52

Output

A
C
B
A
A
D
.
.
.

Big Data Analytics 2. Starting and Interrupting Threads

Interrupting Threads
I Thread.interrupt():

I set the thread’s interrupted property to true.
I if the thread is sleeping or waiting, an InterruptedException will be

thrown.

I Thread.interrupted():
I get the value of the thread’s interrupted property.

I Thread.isAlive():
I a thread is alive if it has been started, but not yet died.

I Thread.currentThread() (static):
I get the thread executing the current code.

I Thread.sleep(long) (static):
I the current thread sleeps for the given number of milliseconds.

I There is no way to stop a thread externally.

I There is no way to interrupt a thread that does not cooperate.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
5 / 52

Big Data Analytics 2. Starting and Interrupting Threads

Interrupting Threads / Example / Example Computation

1 import java . util .∗;
2
3 public class Primes {
4 ArrayList<Long> primes = new ArrayList<>();
5
6 public void compute(long max) {
7 primes.add(2L);
8 for (long n = 3; n < max; n = n+2) {
9 boolean isPrime = true;

10 for (Long prime: primes)
11 if (n % prime == 0) {
12 isPrime = false ;
13 break;
14 }
15 if (isPrime)
16 primes.add(n);
17 }
18 }
19 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
6 / 52

Big Data Analytics 2. Starting and Interrupting Threads

Interrupting Threads / Example (non coop./broken)

1 import java . util .∗;
2
3 public class Worker implements Runnable {
4 public void run() {
5 for (int i = 0; i < 1000; ++i) {
6 System.out. println ("Work step " + i);
7 new Primes().compute(100000);
8 }
9 }

10
11 public static void main(String [] args) {
12 Thread worker = new Thread(new Worker());
13 worker. start ();
14 while (worker. isAlive ()) {
15 String input = System.console().readLine ();
16 if (input . equals(" interrupt ")) {
17 worker. interrupt ();
18 break;
19 }
20 }
21 }
22 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
7 / 52

Output

Work step 0
Work step 1
Work step 2
interrupt
Work step 3

.

.

.

Big Data Analytics 2. Starting and Interrupting Threads

Interrupting Threads / Example (coop./fixed)

1 import java . util .∗;
2
3 public class Worker2 implements Runnable {
4 public void run() {
5 for (int i = 0; i < 1000; ++i) {
6 if (Thread.currentThread (). isInterrupted ())
7 break;
8 System.out. println ("Work step " + i);
9 new Primes().compute(100000);

10 }
11 }
12
13 public static void main(String [] args) {
14 Thread worker = new Thread(new Worker2());
15 worker. start ();
16 while (worker. isAlive ()) {
17 String input = System.console().readLine ();
18 if (input . equals(" interrupt ")) {
19 worker. interrupt ();
20 break;
21 }
22 }
23 }
24 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
8 / 52

Output

Work step 0
Work step 1
Work step 2
interrupt

Big Data Analytics 2. Starting and Interrupting Threads

Interrupting Threads / Example (sleeping)

1 import java . util .∗;
2
3 public class Worker3 implements Runnable {
4 public void run() {
5 for (int i = 0; i < 1000; ++i) {
6 System.out. println ("Work step " + i);
7 try {
8 Thread.sleep (1000);
9 } catch (InterruptedException ex) {

10 break;
11 }
12 }
13 }
14
15 public static void main(String [] args) {
16 Thread worker = new Thread(new Worker3());
17 worker. start ();
18 while (worker. isAlive ()) {
19 String input = System.console().readLine ();
20 if (input . equals(" interrupt ")) {
21 worker. interrupt ();
22 break;
23 }
24 }
25 }
26 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
9 / 52

Big Data Analytics 3. Synchronization I: Monitors

Outline

1. Threads Basics

2. Starting and Interrupting Threads

3. Synchronization I: Monitors

4. Synchronization II: Locks

5. Starting Threads II: Thread Pools and Dependency Graphs

6. Open MP

7. More Examples

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
10 / 52

Big Data Analytics 3. Synchronization I: Monitors

Synchronization

I Several threads running in parallel may need to exchange some
information.

I can be accomplished through shared variables

I Several threads running in parallel may need to coordinate, e.g.,
I a thread needs to wait until another is terminated
I a thread requires exclusive access to some variable

I e.g., to increment a counter or to edit an array

I a thread requires some condition to hold to continue
I e.g., further input in a stream being available

I Called synchronization.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
10 / 52

Big Data Analytics 3. Synchronization I: Monitors

Synchronization

I Several threads running in parallel may need to exchange some
information.

I can be accomplished through shared variables

I Several threads running in parallel may need to coordinate, e.g.,
I a thread needs to wait until another is terminated
I a thread requires exclusive access to some variable

I e.g., to increment a counter or to edit an array

I a thread requires some condition to hold to continue
I e.g., further input in a stream being available

I Called synchronization.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
10 / 52

Big Data Analytics 3. Synchronization I: Monitors

Synchronization

I Several threads running in parallel may need to exchange some
information.

I can be accomplished through shared variables

I Several threads running in parallel may need to coordinate, e.g.,
I a thread needs to wait until another is terminated
I a thread requires exclusive access to some variable

I e.g., to increment a counter or to edit an array

I a thread requires some condition to hold to continue
I e.g., further input in a stream being available

I Called synchronization.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
10 / 52

Big Data Analytics 3. Synchronization I: Monitors

Waiting for Termination

I Thread.join():
I the current thread sleeps until the target thread dies.

I When a program is started, there exists one thread
(often called main thread).

I a program terminates once all its threads died.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
11 / 52

Big Data Analytics 3. Synchronization I: Monitors

Waiting for Termination / Example
1 public class Counter {
2 int count = 0;
3 public void increment() { ++count; }
4 public int value() { return count; }
5 }

1 public class ParallelCounters implements Runnable {
2 Counter count;
3 int num;
4
5 public ParallelCounters (Counter count, int num) {
6 this .count = count;
7 this .num = num;
8 }
9 public void run() {

10 for (int i = 0; i < num; ++i)
11 count.increment();
12 }
13
14 public static void main(String [] args) throws InterruptedException {
15 Counter count = new Counter();
16 Thread a = new Thread(new ParallelCounters(count, 100));
17 Thread b = new Thread(new ParallelCounters(count, 100));
18 Thread c = new Thread(new ParallelCounters(count, 100));
19 Thread d = new Thread(new ParallelCounters(count, 100));
20
21 a. start (); b. start (); c. start (); d. start ();
22
23 System.out. println ("counter: " + count.value ());
24 }
25 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
12 / 52

Big Data Analytics 3. Synchronization I: Monitors

Waiting for Termination / Example

1 public class ParallelCounters2 implements Runnable {
2 Counter count;
3 int num;
4
5 public ParallelCounters2 (Counter count, int num) {
6 this .count = count;
7 this .num = num;
8 }
9 public void run() {

10 for (int i = 0; i < num; ++i)
11 count.increment();
12 }
13
14 public static void main(String [] args) throws InterruptedException {
15 Counter count = new Counter();
16 Thread a = new Thread(new ParallelCounters2(count, 100));
17 Thread b = new Thread(new ParallelCounters2(count, 100));
18 Thread c = new Thread(new ParallelCounters2(count, 100));
19 Thread d = new Thread(new ParallelCounters2(count, 100));
20
21 a. start (); b. start (); c. start (); d. start ();
22
23 a. join (); b. join (); c. join (); d. join ();
24
25 System.out. println ("counter: " + count.value ());
26 }
27 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
13 / 52

Big Data Analytics 3. Synchronization I: Monitors

Synchronized Methods
I Even steps of very simple statements such as ++value may be

interleaved with steps in other threads and lead to corruption.

I For each object and class there exists an implicit lock (called monitor).
I Methods marked synchronized

I try to acquire the monitor of their object and
I block if the monitor is already taken by another thread until it becomes

available.
I thus, there is at most one thread executing any synchronized method

at any time.

I static synchronized methods try to acquire the monitor of the class.

I The synchronized(Object) { . . . } statement tries to acquire the
monitor of the given object/class.

I Thread.holdsLock(Object) (static) tests if the current thread holds
a given monitor.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
14 / 52

Big Data Analytics 3. Synchronization I: Monitors

Synchronized Methods / Example
1 public class Counter2 {
2 int count = 0;
3 public synchronized void increment() { ++count; }
4 public int value() { return count; }
5 }

1 public class ParallelCounters3 implements Runnable {
2 Counter2 count;
3 int num;
4
5 public ParallelCounters3 (Counter2 count, int num) {
6 this .count = count;
7 this .num = num;
8 }
9 public void run() {

10 for (int i = 0; i < num; ++i)
11 count.increment();
12 }
13
14 public static void main(String [] args) throws InterruptedException {
15 Counter2 count = new Counter2();
16 Thread a = new Thread(new ParallelCounters3(count, 100));
17 Thread b = new Thread(new ParallelCounters3(count, 100));
18 Thread c = new Thread(new ParallelCounters3(count, 100));
19 Thread d = new Thread(new ParallelCounters3(count, 100));
20
21 a. start (); b. start (); c. start (); d. start ();
22
23 a. join (); b. join (); c. join (); d. join ();
24
25 System.out. println ("counter: " + count.value ());
26 }
27 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
15 / 52

Big Data Analytics 3. Synchronization I: Monitors

Atomic Objects

I Atomic objects provide methods that are executed as a whole
(and not interrupted by any other threads).

I AtomicInteger provides such operations for a simple int
(java.util.concurrent.atomic):

I set(int): set a value.

I intValue(): get.
I addAndGet(int): atomically adds a value.

I incrementAndGet(): atomically increment.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
16 / 52

Big Data Analytics 3. Synchronization I: Monitors

Atomic Objects
1 import java . util . concurrent .atomic.AtomicInteger ;
2
3 public class ParallelCounters4 implements Runnable {
4 AtomicInteger count;
5 int num;
6
7 public ParallelCounters4 (AtomicInteger count, int num) {
8 this .count = count;
9 this .num = num;

10 }
11 public void run() {
12 for (int i = 0; i < num; ++i)
13 count.incrementAndGet();
14 }
15
16 public static void main(String [] args) throws InterruptedException {
17 AtomicInteger count = new AtomicInteger();
18 Thread a = new Thread(new ParallelCounters4(count, 100));
19 Thread b = new Thread(new ParallelCounters4(count, 100));
20 Thread c = new Thread(new ParallelCounters4(count, 100));
21 Thread d = new Thread(new ParallelCounters4(count, 100));
22
23 a. start (); b. start (); c. start (); d. start ();
24
25 a. join (); b. join (); c. join (); d. join ();
26
27 System.out. println ("counter: " + count.intValue ());
28 }
29 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
17 / 52

Big Data Analytics 3. Synchronization I: Monitors

Synchronization Issues

I Deadlock:
I Thread A is waiting for Thread B,

Thread B is waiting for Thread A.

I Thread A holds lock 1 and requests lock 2,
Thread B holds lock 2 and requests lock 1.

I The program freezes.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
18 / 52

Big Data Analytics 3. Synchronization I: Monitors

Synchronization Issues / Deadlock / Example

1 class Account {
2 String id ;
3 double balance = 0;
4
5 Account(String id) { this . id = id; }
6
7 void withdraw(double amount) { balance −= amount; }
8 void deposit (double amount) { balance += amount; }
9

10 static void transfer (Account from, Account to, double amount) {
11 synchronized (from) {
12 synchronized (to) {
13 from.withdraw(amount);
14 to. deposit (amount);
15 }
16 }
17 }
18 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
19 / 52

Big Data Analytics 3. Synchronization I: Monitors

Synchronization Issues / Deadlock / Example (ctd.)

1 class ParallelTransactions implements Runnable {
2 Account from, to;
3 ParallelTransactions (Account from, Account to) {
4 this .from = from;
5 this . to = to;
6 }
7 public void run() {
8 while (true) {
9 Account. transfer (from, to, 100.00);

10 System.out. println (" transfered 100.00 from " + from.id + " to " + to.id);
11 try {
12 Thread.sleep (1000);
13 } catch (InterruptedException ex) {
14 break;
15 }
16 }
17 }
18 public static void main(String [] args) {
19 Account a = new Account("A"), b = new Account("B");
20 new Thread(new ParallelTransactions (a, b)). start ();
21 new Thread(new ParallelTransactions (b, a)). start ();
22 }
23 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
20 / 52

Big Data Analytics 3. Synchronization I: Monitors

Synchronization Issues / Deadlock / Example (fix)

1 class Account2 {
2 String id ;
3 double balance = 0;
4
5 Account2(String id) { this . id = id; }
6
7 void withdraw(double amount) { balance −= amount; }
8 void deposit (double amount) { balance += amount; }
9

10 static synchronized void transfer (Account2 from, Account2 to, double amount) {
11 synchronized (from) {
12 synchronized (to) {
13 from.withdraw(amount);
14 to. deposit (amount);
15 }
16 }
17 }
18 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
21 / 52

Big Data Analytics 3. Synchronization I: Monitors

Conditions / Guarded Blocks

I Often threads require a specific condition to hold
before they can resume their work.

I polling:
I repeatedly query the condition, proceed if it holds

I wastes resources
I possibly sleep between trials

I sleep time not straight-forward to set

I Condition:
I a queue of threads to wait for a condition to become true

I a method to wait on such a condition (Object.wait)
I a method to signal that the condition may have changed

(Object.notifyAll)
I The condition itself is not part of the model.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
22 / 52

Big Data Analytics 3. Synchronization I: Monitors

Conditions / Guarded Blocks

I Often threads require a specific condition to hold
before they can resume their work.

I polling:
I repeatedly query the condition, proceed if it holds

I wastes resources
I possibly sleep between trials

I sleep time not straight-forward to set

I Condition:
I a queue of threads to wait for a condition to become true

I a method to wait on such a condition (Object.wait)
I a method to signal that the condition may have changed

(Object.notifyAll)
I The condition itself is not part of the model.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
22 / 52

Big Data Analytics 3. Synchronization I: Monitors

Conditions / Guarded Blocks

I Often threads require a specific condition to hold
before they can resume their work.

I polling:
I repeatedly query the condition, proceed if it holds

I wastes resources
I possibly sleep between trials

I sleep time not straight-forward to set

I Condition:
I a queue of threads to wait for a condition to become true

I a method to wait on such a condition (Object.wait)
I a method to signal that the condition may have changed

(Object.notifyAll)
I The condition itself is not part of the model.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
22 / 52

Big Data Analytics 3. Synchronization I: Monitors

Guarded Blocks / Example (1/2)

1 import java . util .∗;
2 class Store {
3 ArrayList<String> store = new ArrayList<>();
4 synchronized void put(String item) { store .add(item); }
5 synchronized String pop() { String item = store.get (0); store .remove(0); return item; }
6 }

1 class Producer implements Runnable {
2 Store store ;
3 public Producer(Store store) { this . store = store; }
4 public void run() {
5 while (true) {
6 try {
7 Thread.sleep (Math.round(Math.random() ∗ 1000));
8 } catch (InterruptedException ex) {}
9 String item = "A";

10 store .put(item);
11 System.out. println ("produced " + item + ", store = " + store. store);
12 }
13 }
14 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
23 / 52

Big Data Analytics 3. Synchronization I: Monitors

Guarded Blocks / Example (2/2)

1 class Consumer implements Runnable {
2 Store store ;
3 public Consumer(Store store) { this . store = store; }
4 public void run() {
5 while (true) {
6 if (store . store . size () >= 2) {
7 String item1 = store.pop(), item2 = store.pop();
8 System.out. println ("consumed " + item1 + " and " + item2);
9 try {

10 Thread.sleep (Math.round(Math.random() ∗ 1000));
11 } catch (InterruptedException ex) {}
12 }
13 }
14 }
15 }

1 class PCExample {
2 public static void main(String [] args) {
3 Store store = new Store();
4 Producer prod = new Producer(store);
5 Consumer cons = new Consumer(store);
6 new Thread(prod). start ();
7 new Thread(cons). start ();
8 }
9 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
24 / 52

Output

produced A, store = [A]
produced A, store = [A, A]
produced A, store = [A, A, A]
produced A, store = [A, A, A, A]
produced A, store = [A, A, A, A, A]

.

.

.

Big Data Analytics 3. Synchronization I: Monitors

Guarded Blocks / Example (fix; 1/2)

1 import java . util .∗;
2 class Store {
3 ArrayList<String> store = new ArrayList<>();
4 public synchronized void put(String item) {
5 synchronized (store) {
6 store .add(item);
7 }
8 notifyAll ();
9 }

10 public String pop() {
11 String item;
12 synchronized (store) {
13 item = store.get (0);
14 store .remove(0);
15 }
16 return item;
17 }
18 public String toString () {
19 String s ;
20 synchronized (store) {
21 s = store. toString ();
22 }
23 return s ;
24 }
25 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
25 / 52

Big Data Analytics 3. Synchronization I: Monitors

Guarded Blocks / Example (fix; 2/2)

1 class Consumer implements Runnable {
2 Store store ;
3 public Consumer(Store store) { this . store = store; }
4 public void run() {
5 try {
6 while (true) {
7 if (store . store . size () >= 2) {
8 String item1 = store.pop(), item2 = store.pop();
9 System.out. println ("consumed " + item1 + " and " + item2 + ", store = " + store);

10 Thread.sleep (Math.round(Math.random() ∗ 1000));
11 } else
12 synchronized (store) {
13 store .wait ();
14 }
15 }
16 } catch (InterruptedException ex) {}
17 }
18 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
26 / 52

Output

produced A, store = [A]
produced A, store = [A, A]
consumed A and A, store = []
produced A, store = [A]
produced A, store = [A, A]
consumed A and A, store = []
produced A, store = [A]
produced A, store = [A, A]
consumed A and A, store = []
produced A, store = [A]

Big Data Analytics 3. Synchronization I: Monitors

Thread States

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
27 / 52

Big Data Analytics 3. Synchronization I: Monitors

Information about threads at runtime

I Thread.currentThread (static): thread executing current code.

I Thread.getState: state of the thread.

I Thread.getId: get a numeric ID of the thread.

I Thread.getActiveCount: get number of concurrent threads.

I Thread.enumerate: get all concurrent threads.

I Thread.getThreadGroup: get group of the thread.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
28 / 52

Big Data Analytics 4. Synchronization II: Locks

Outline

1. Threads Basics

2. Starting and Interrupting Threads

3. Synchronization I: Monitors

4. Synchronization II: Locks

5. Starting Threads II: Thread Pools and Dependency Graphs

6. Open MP

7. More Examples

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
29 / 52

Big Data Analytics 4. Synchronization II: Locks

Locks
I A lock models mutually exclusive access to a resource.

I only one thread can hold a lock at any time.

I locks have methods to acquire and release them.

I ReentrantLock: reentrant implementation of interface Lock
I reentrant: bookkeeping for repeated acquisitions and releases by the

same thread.

I Lock.lock: acquire the lock, if possible, block otherwise until it
becomes available.

I Lock.unlock: release the lock.

I Lock.tryLock: acquire the lock if possible, do nothing otherwise,
return success.

I atomic method for Thread.holdsLock followed by synchronized.

I in package java.util.concurrent.locks
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

29 / 52

Big Data Analytics 4. Synchronization II: Locks

Locks / Example

1 import java . util . concurrent . locks .∗;
2
3 class Account3 {
4 String id ;
5 double balance = 0;
6 private final Lock lock = new ReentrantLock();
7
8 Account3(String id) { this . id = id; }
9

10 void withdraw(double amount) { balance −= amount; }
11 void deposit (double amount) { balance += amount; }
12
13 static boolean transfer (Account3 from, Account3 to, double amount) {
14 boolean from_lock = from.lock.tryLock ();
15 boolean to_lock = to.lock . tryLock ();
16 if (from_lock && to_lock) {
17 from.withdraw(amount);
18 to. deposit (amount);
19 }
20 if (from_lock)
21 from. lock .unlock ();
22 if (to_lock)
23 to. lock .unlock ();
24 return from_lock && to_lock;
25 }
26 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
30 / 52

Big Data Analytics 4. Synchronization II: Locks

Locks / Example

1 class ParallelTransactions3 implements Runnable {
2 Account3 from, to;
3 ParallelTransactions3 (Account3 from, Account3 to) {
4 this .from = from;
5 this . to = to;
6 }
7 public void run() {
8 while (true) {
9 while (! Account3. transfer (from, to, 100.00)) {

10 System.out. println ("accounts busy, delay somewhat");
11 try {
12 Thread.sleep (1000);
13 } catch (InterruptedException ex) {}
14 }
15 System.out. println (" transfered 100.00 from " + from.id + " to " + to.id);
16 try {
17 Thread.sleep (1000);
18 } catch (InterruptedException ex) {}
19 }
20 }
21 public static void main(String [] args) {
22 Account3 a = new Account3("A"), b = new Account3("B");
23 new Thread(new ParallelTransactions3(a, b)). start ();
24 new Thread(new ParallelTransactions3(b, a)). start ();
25 }
26 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
31 / 52

Big Data Analytics 4. Synchronization II: Locks

Locks / Example

1 class ParallelTransactions3 implements Runnable {
2 Account3 from, to;
3 ParallelTransactions3 (Account3 from, Account3 to) {
4 this .from = from;
5 this . to = to;
6 }
7 public void run() {
8 while (true) {
9 while (! Account3. transfer (from, to, 100.00)) {

10 System.out. println ("accounts busy, delay somewhat");
11 try {
12 Thread.sleep (1000);
13 } catch (InterruptedException ex) {}
14 }
15 System.out. println (" transfered 100.00 from " + from.id + " to " + to.id);
16 try {
17 Thread.sleep (1000);
18 } catch (InterruptedException ex) {}
19 }
20 }
21 public static void main(String [] args) {
22 Account3 a = new Account3("A"), b = new Account3("B");
23 new Thread(new ParallelTransactions3(a, b)). start ();
24 new Thread(new ParallelTransactions3(b, a)). start ();
25 }
26 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
31 / 52

Output

transfered 100.00 from A to B
transfered 100.00 from B to A
transfered 100.00 from A to B
transfered 100.00 from B to A
transfered 100.00 from A to B
transfered 100.00 from B to A
accounts busy, delay somewhat
transfered 100.00 from A to B
transfered 100.00 from B to A
transfered 100.00 from A to B
accounts busy, delay somewhat
transfered 100.00 from B to A

Big Data Analytics 4. Synchronization II: Locks

Locks / Good Practice

I if an exception is thrown after Lock.lock,
in simple sequential code Lock.unlock may never be executed.

1 lck . lock ();
2 ... // do something that may throw an exception
3 lck .unlock ();

I better wrap into a try–finally block:
1 try {
2 lck . lock ();
3 ... // do something that may throw an exception
4 } finally {
5 lck .unlock ();
6 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
32 / 52

Big Data Analytics 4. Synchronization II: Locks

Locks / Good Practice

I if an exception is thrown after Lock.lock,
in simple sequential code Lock.unlock may never be executed.

1 lck . lock ();
2 ... // do something that may throw an exception
3 lck .unlock ();

I better wrap into a try–finally block:
1 try {
2 lck . lock ();
3 ... // do something that may throw an exception
4 } finally {
5 lck .unlock ();
6 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
32 / 52

Big Data Analytics 5. Starting Threads II: Thread Pools and Dependency Graphs

Outline

1. Threads Basics

2. Starting and Interrupting Threads

3. Synchronization I: Monitors

4. Synchronization II: Locks

5. Starting Threads II: Thread Pools and Dependency Graphs

6. Open MP

7. More Examples

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
33 / 52

Big Data Analytics 5. Starting Threads II: Thread Pools and Dependency Graphs

Thread pools

I Avoid creation and destruction of thread objects.

I Recycle thread objects, assigning Runnables to instances from a pool.

I ExecutorService (interface):
I submit(Runnable): execute a runnable.

I shutdown: wait for all submitted threads to complete.

I Executors.newFixedThreadPool(int) (static):
I create an ExecutorService with a fixed number of threads

I never run more than given number of threads in parallel.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
33 / 52

Big Data Analytics 5. Starting Threads II: Thread Pools and Dependency Graphs

Thread pools

I Avoid creation and destruction of thread objects.

I Recycle thread objects, assigning Runnables to instances from a pool.

I ExecutorService (interface):
I submit(Runnable): execute a runnable.

I shutdown: wait for all submitted threads to complete.

I Executors.newFixedThreadPool(int) (static):
I create an ExecutorService with a fixed number of threads

I never run more than given number of threads in parallel.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
33 / 52

Big Data Analytics 5. Starting Threads II: Thread Pools and Dependency Graphs

Thread pools

I Avoid creation and destruction of thread objects.

I Recycle thread objects, assigning Runnables to instances from a pool.

I ExecutorService (interface):
I submit(Runnable): execute a runnable.

I shutdown: wait for all submitted threads to complete.

I Executors.newFixedThreadPool(int) (static):
I create an ExecutorService with a fixed number of threads

I never run more than given number of threads in parallel.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
33 / 52

Big Data Analytics 5. Starting Threads II: Thread Pools and Dependency Graphs

Thread pools / Example

1 import java . util . concurrent .∗;
2
3 public class ExThreadpool implements Runnable {
4 String name;
5 public ExThreadpool(String name) { this.name = name; }
6
7 public void run() {
8 System.out. println (" start " + name);
9 try {

10 Thread.sleep (1000);
11 } catch (InterruptedException ex) {}
12 System.out. println ("end " + name);
13 }
14
15 public static void main(String [] args) {
16 int cores = Runtime.getRuntime(). availableProcessors ();
17 System.out. println ("#cores = " + cores);
18
19 ExecutorService pool = Executors.newFixedThreadPool(cores);
20 for (int i = 0; i < 2∗cores; ++i)
21 pool.submit(new ExThreadpool("" + i));
22 // pool.execute(new ExThreadpool("" + i));
23 pool.shutdown();
24 }
25 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
34 / 52

Output

cores = 4
start 0
start 1
start 2
start 3
end 0
end 1
start 4
start 5
end 2
start 6
end 3
start 7
end 4
end 5
end 6
end 7

Big Data Analytics 5. Starting Threads II: Thread Pools and Dependency Graphs

Dependency Graphs
I computation composed of several atomic parts: tasks

I some tasks require the results of others as input
 dependency graph

I encapsulate access to such results in an object: Future<T>
I Future<T>.get():

I wait until the producing task is completed
I then return the result
I throw an ExecutionException if anything goes wrong

I abstract functions as interface: Callable<T>
I like Runnable, but
I returns a Future<T> – a function, not a procedure

I may throw exceptions.

I ExecutorService.submit(Callable<T>): execute a callable.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
35 / 52

Big Data Analytics 5. Starting Threads II: Thread Pools and Dependency Graphs

Dependency Graphs
I computation composed of several atomic parts: tasks

I some tasks require the results of others as input
 dependency graph

I encapsulate access to such results in an object: Future<T>
I Future<T>.get():

I wait until the producing task is completed
I then return the result
I throw an ExecutionException if anything goes wrong

I abstract functions as interface: Callable<T>
I like Runnable, but
I returns a Future<T> – a function, not a procedure

I may throw exceptions.

I ExecutorService.submit(Callable<T>): execute a callable.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
35 / 52

Big Data Analytics 5. Starting Threads II: Thread Pools and Dependency Graphs

Dependency Graphs
I computation composed of several atomic parts: tasks

I some tasks require the results of others as input
 dependency graph

I encapsulate access to such results in an object: Future<T>
I Future<T>.get():

I wait until the producing task is completed
I then return the result
I throw an ExecutionException if anything goes wrong

I abstract functions as interface: Callable<T>
I like Runnable, but
I returns a Future<T> – a function, not a procedure

I may throw exceptions.

I ExecutorService.submit(Callable<T>): execute a callable.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
35 / 52

Big Data Analytics 5. Starting Threads II: Thread Pools and Dependency Graphs

Dependency Graphs
I computation composed of several atomic parts: tasks

I some tasks require the results of others as input
 dependency graph

I encapsulate access to such results in an object: Future<T>
I Future<T>.get():

I wait until the producing task is completed
I then return the result
I throw an ExecutionException if anything goes wrong

I abstract functions as interface: Callable<T>
I like Runnable, but
I returns a Future<T> – a function, not a procedure

I may throw exceptions.

I ExecutorService.submit(Callable<T>): execute a callable.
Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany

35 / 52

Big Data Analytics 5. Starting Threads II: Thread Pools and Dependency Graphs

Dependency Graphs / Example

1 import java . util . concurrent .∗;
2
3 public class ExFuture2 {
4 public static class Constant implements Callable<Double> {
5 Double value;
6 public Constant(Double value) { this . value = value; }
7 public Double call () throws InterruptedException {
8 System.out. println ("Start computing constant");
9 Thread.sleep (Math.round(value ∗ 100));

10 System.out. println ("Compute constant " + value);
11 return value ;
12 }
13 }
14 public static class Sum implements Callable<Double> {
15 Future<Double> d1, d2;
16 public Sum(Future<Double> d1, Future<Double> d2) {
17 this .d1 = d1; this .d2 = d2;
18 }
19 public Double call () throws InterruptedException , ExecutionException {
20 System.out. println ("Start computing sum");
21 Double v1 = d1.get(), v2 = d2.get();
22 Thread.sleep (1000);
23 System.out. println ("Compute sum " + v1 + " + " + v2 + " = " + (v1+v2));
24 return v1 + v2;
25 }
26 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
36 / 52

Big Data Analytics 5. Starting Threads II: Thread Pools and Dependency Graphs

Dependency Graphs / Example

27 public static void main(String [] args) throws InterruptedException , ExecutionException {
28 ExecutorService pool = Executors.newFixedThreadPool(8);
29 Future<Double> c3_res = pool.submit(new Constant(3.0)),
30 c5_res = pool.submit(new Constant(5.0)),
31 c6_res = pool.submit(new Constant(6.0)),
32 sum1_res = pool.submit(new Sum(c5_res, c6_res)),
33 sum2_res = pool.submit(new Sum(c3_res, c5_res)),
34 sum3_res = pool.submit(new Sum(sum1_res, sum2_res));
35 System.out. println ("(3+5)+(5+6) = " + sum3_res.get());
36 pool.shutdown();
37 }
38 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
37 / 52

Output

Start computing constant
Start computing constant
Start computing constant
Start computing sum
Start computing sum
Start computing sum
Compute constant 3.0
Compute constant 5.0
Compute constant 6.0
Compute sum 3.0 + 5.0 = 8.0
Compute sum 5.0 + 6.0 = 11.0
Compute sum 11.0 + 8.0 = 19.0
(3+5)+(5+6) = 19.0

Big Data Analytics 5. Starting Threads II: Thread Pools and Dependency Graphs

Further Thread Classes

I concurrent collections:
I provide atomic thread-safe query and edit operations for collections

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
38 / 52

Big Data Analytics 6. Open MP

Outline

1. Threads Basics

2. Starting and Interrupting Threads

3. Synchronization I: Monitors

4. Synchronization II: Locks

5. Starting Threads II: Thread Pools and Dependency Graphs

6. Open MP

7. More Examples

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
39 / 52

Big Data Analytics 6. Open MP

Open MP

I Open Multi-Processing (OpenMP; 1997): C, C++, Fortran
I Java ports:

I JOMP: seems no longer available?
I JAMP:
I omp4j

I Multithreading directives are added as comments to the code.
I starting with omp

I Special preprocessor omp4j:
I Replace comments by code using the Java threads API.

I Then compile the code using the standard compiler.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
39 / 52

Big Data Analytics 6. Open MP

Parallel Sections / Example

1 public class HelloWorld {
2 public static void main(String [] args) {
3 // omp parallel threadNum(4)
4 {
5 System.out. print (" hello ");
6 }
7 }
8 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
40 / 52

Big Data Analytics 6. Open MP

Parallel Sections / Example

1 public class HelloWorld {
2 public static void main(String [] args) {
3 // omp parallel threadNum(4)
4 {
5 System.out. print (" hello ");
6 }
7 }
8 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
40 / 52

Output

hello hello hello hello

Big Data Analytics 6. Open MP

Parallel Sections / Example / Under the Hood

1 public class HelloWorld {
2 public static void main(String [] args) {
3 class OMPContext {}
4 final OMPContext ompContext = new OMPContext();
5 final org.omp4j.runtime.IOMPExecutor ompExecutor = new org.omp4j.runtime.DynamicExecutor(4);
6
7 for (int ompI = 0; ompI < 4; ompI++) {
8 ompExecutor.execute(new Runnable(){
9 @Override

10 public void run() {
11 System.out. print (" hello ");
12 }
13 });
14 }
15 ompExecutor.waitForExecution();
16 }
17 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
41 / 52

Big Data Analytics 6. Open MP

Parallel For / Example

1 public class ExParallelFor {
2 public static void main(String [] args) {
3 // omp parallel for
4 for (int i = 0; i < 10; i++) {
5 System.out. print (i);
6 }
7 }
8 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
42 / 52

Big Data Analytics 6. Open MP

Parallel For / Example

1 public class ExParallelFor {
2 public static void main(String [] args) {
3 // omp parallel for
4 for (int i = 0; i < 10; i++) {
5 System.out. print (i);
6 }
7 }
8 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
42 / 52

Output

0213458679

Big Data Analytics 6. Open MP

Directives

Directives:

Directive Usage Behavior
// omp parallel Before {...} The statement will be invoked in parallel (as many threads as possible).
// omp parallel for Before for-loop The for-loop will be iterated in parallel.
// omp sections Before {...} Wrapper for // omp sections directives. It may not contain any other code or directives.
// omp section Before {...} The statement will be invoked together with other sections in parallel.
// omp critical Before {...} At most one thread will access the statement at any particular time.
// omp barrier Before {} All threads stop here until the for the last one.
// omp master Before {...} Only master thread will execute the statement.
// omp single Before {...} Only one thread will execute the statement, no matter which one.

Attributes:

Attribute Behavior
threadNum(N) The directive will be invoked with N threads. Default value is set to number of CPUs.
schedule(dynamic|static) The directive will use dynamic or static executor. Default value is set to dynamic.
public(a,b) Variables a and b are shared among all threads.
private(a,b) Variables a and b are created (via parameter-less constructor) for each thread separately.
firstprivate(a,b) Variables a and b are created (via copy-constructor) for each thread separately.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
43 / 52

Big Data Analytics 7. More Examples

Outline

1. Threads Basics

2. Starting and Interrupting Threads

3. Synchronization I: Monitors

4. Synchronization II: Locks

5. Starting Threads II: Thread Pools and Dependency Graphs

6. Open MP

7. More Examples

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
44 / 52

Big Data Analytics 7. More Examples

Primes / Sequential

1 import java . util .∗;
2
3 public class Eratosthenes {
4 boolean[] is_prime;
5 public void compute(int max) {
6 is_prime = new boolean[max+1];
7 for (int i = 1; i <= max; ++i)
8 is_prime[i] = true;
9 for (int i = 2; i < Math.floor(Math.sqrt(max)); ++i) {

10 if (is_prime[i]) {
11 for (int j = 2∗i; j <= max; j += i) {
12 is_prime[j] = false ;
13 }
14 }
15 }
16 }
17 public static void main(String [] args) {
18 Eratosthenes primes = new Eratosthenes();
19 primes.compute(1000000000);
20 }
21 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
44 / 52

Big Data Analytics 7. More Examples

Primes / Bad Parallelization

1 import java . util .∗;
2
3 public class Eratosthenes2 {
4 boolean[] is_prime;
5 public void compute(int max) {
6 is_prime = new boolean[max+1];
7 for (int i = 1; i <= max; ++i)
8 is_prime[i] = true;
9 for (int i = 2; i < Math.floor(Math.sqrt(max)); ++i) {

10 if (is_prime[i]) {
11 // omp parallel for
12 for (int j = 2∗i; j <= max; j += i) {
13 is_prime[j] = false ;
14 }
15 }
16 }
17 }
18 public static void main(String [] args) {
19 Eratosthenes2 primes = new Eratosthenes2();
20 primes.compute(1000000000);
21 }
22 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
45 / 52

Big Data Analytics 7. More Examples

Primes / Recursive
1 import java . util .∗;
2
3 public class Eratosthenes3 {
4 boolean[] is_prime;
5
6 public void compute(int max) {
7 is_prime = new boolean[max+1];
8 for (int i = 0; i < max+1; ++i)
9 is_prime[i] = true;

10 do_compute(max);
11 }
12 protected void do_compute(int max) {
13 if (max <= 2)
14 return ;
15 int max_factor = (int) Math.floor(Math.sqrt(max));
16 do_compute(max_factor);
17 for (int i = 2; i <= max_factor; ++i) {
18 if (is_prime[i]) {
19 for (int j = 2∗i; j <= max; j += i) {
20 is_prime[j] = false ;
21 }
22 }
23 }
24 }
25 public static void main(String [] args) {
26 Eratosthenes3 primes = new Eratosthenes3();
27 primes.compute(1000000000);
28 }
29 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
46 / 52

Big Data Analytics 7. More Examples

Primes / Good Parallelization
1 import java . util .∗;
2
3 public class Eratosthenes4 {
4 boolean[] is_prime;
5
6 public void compute(int max) {
7 is_prime = new boolean[max+1];
8 for (int i = 0; i < max+1; ++i)
9 is_prime[i] = true;

10 do_compute(max);
11 }
12 protected void do_compute(int max) {
13 if (max <= 2)
14 return ;
15 int max_factor = (int) Math.floor(Math.sqrt(max));
16 do_compute(max_factor);
17 // omp parallel for
18 for (int i = 2; i <= max_factor; ++i) {
19 if (is_prime[i]) {
20 for (int j = 2∗i; j <= max; j += i) {
21 is_prime[j] = false ;
22 }
23 }
24 }
25 }
26 public static void main(String [] args) {
27 Eratosthenes4 primes = new Eratosthenes4();
28 primes.compute(1000000000);
29 }
30 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
47 / 52

Big Data Analytics 7. More Examples

Primes / Good Parallelization
1 import java . util .∗;
2
3 public class Eratosthenes4 {
4 boolean[] is_prime;
5
6 public void compute(int max) {
7 is_prime = new boolean[max+1];
8 for (int i = 0; i < max+1; ++i)
9 is_prime[i] = true;

10 do_compute(max);
11 }
12 protected void do_compute(int max) {
13 if (max <= 2)
14 return ;
15 int max_factor = (int) Math.floor(Math.sqrt(max));
16 do_compute(max_factor);
17 // omp parallel for
18 for (int i = 2; i <= max_factor; ++i) {
19 if (is_prime[i]) {
20 for (int j = 2∗i; j <= max; j += i) {
21 is_prime[j] = false ;
22 }
23 }
24 }
25 }
26 public static void main(String [] args) {
27 Eratosthenes4 primes = new Eratosthenes4();
28 primes.compute(1000000000);
29 }
30 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
47 / 52

implementation runtime [s]
sequential 10.4
badly parallel >120.0
recursive 10.0
OK parallel 6.7
(using 8 cores)

Big Data Analytics 7. More Examples

Matrix Multiplication / Sequential
1 public class Matrix {
2 int N, M;
3 double [][] values ;
4 public Matrix(int N, int M) {
5 this .N = N; this.M = M;
6 values = new double[N][M];
7 }
8 public void fill_random() {
9 for (int n = 0; n < N; ++n) {

10 for (int m = 0; m < M; ++m) {
11 values [n][m] = 2 ∗ (Math.random() − 0.5);
12 }
13 }
14 }
15
16 public Matrix mul(Matrix B) throws IllegalArgumentException {
17 if (M != B.N)
18 throw new IllegalArgumentException("Number of columns and rows does not match in mul.");
19 Matrix C = new Matrix(N, B.M);
20 for (int n = 0; n < N; ++n) {
21 for (int m = 0; m < B.M; ++m) {
22 double val = 0;
23 for (int k = 0; k < M; ++k) {
24 val += values[n][k] ∗ B.values [k][m];
25 }
26 C.values [n][m] = val;
27 }
28 }
29 return C;
30 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
48 / 52

32 public static void main(String [] args) {
33 Matrix A = new Matrix(1000, 2000),
34 B = new Matrix(2000, 3000);
35 A.fill_random();
36 B.fill_random();
37 Matrix C = A.mul(B);
38 }
39 }

Big Data Analytics 7. More Examples

Matrix Multiplication / Parallelization
1 public class Matrix {
2 int N, M;
3 double [][] values ;
4 public Matrix(int N, int M) {
5 this .N = N; this.M = M;
6 values = new double[N][M];
7 }
8 public void fill_random() {
9 for (int n = 0; n < N; ++n) {

10 for (int m = 0; m < M; ++m) {
11 values [n][m] = 2 ∗ (Math.random() − 0.5);
12 }
13 }
14 }
15
16 public Matrix mul(Matrix B) throws IllegalArgumentException {
17 if (M != B.N)
18 throw new IllegalArgumentException("Number of columns and rows does not match in mul.");
19 Matrix C = new Matrix(N, B.M);
20 // omp parallel for
21 for (int n = 0; n < N; ++n) {
22 for (int m = 0; m < B.M; ++m) {
23 double val = 0;
24 for (int k = 0; k < M; ++k) {
25 val += values[n][k] ∗ B.values [k][m];
26 }
27 C.values [n][m] = val;
28 }
29 }
30 return C;
31 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
49 / 52

32
33 public static void main(String [] args) {
34 Matrix A = new Matrix(1000, 2000),
35 B = new Matrix(2000, 3000);
36 A.fill_random();
37 B.fill_random();
38 Matrix C = A.mul(B);
39 }
40 }

Big Data Analytics 7. More Examples

Matrix Multiplication / Tiled Sequential

16 public Matrix mul(Matrix B) throws IllegalArgumentException {
17 if (M != B.N)
18 throw new IllegalArgumentException("Number of columns and rows does not match in mul.");
19 Matrix C = new Matrix(N, B.M);
20 int T = (int) Math.ceil (Math.sqrt(M));
21 for (int n0 = 0; n0 < N; n0+= T) {
22 for (int m0 = 0; m0 < B.M; m0+= T) {
23 for (int k0 = 0; k0 < M; k0+= T) {
24 for (int n = n0; n < Math.min(N, n0+T); ++n) {
25 for (int m = m0; m < Math.min(M, m0+T); ++m) {
26 double val = 0;
27 for (int k = k0; k < Math.min(M, k0+T); ++k) {
28 val += values[n][k] ∗ B.values [k][m];
29 }
30 C.values [n][m] += val;
31 }
32 }
33 }
34 }
35 }
36 return C;
37 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
50 / 52

Big Data Analytics 7. More Examples

Matrix Multiplication / Tiled Sequential

16 public Matrix mul(Matrix B) throws IllegalArgumentException {
17 if (M != B.N)
18 throw new IllegalArgumentException("Number of columns and rows does not match in mul.");
19 Matrix C = new Matrix(N, B.M);
20 int T = (int) Math.ceil (Math.sqrt(M));
21 for (int n0 = 0; n0 < N; n0+= T) {
22 for (int m0 = 0; m0 < B.M; m0+= T) {
23 for (int k0 = 0; k0 < M; k0+= T) {
24 for (int n = n0; n < Math.min(N, n0+T); ++n) {
25 for (int m = m0; m < Math.min(M, m0+T); ++m) {
26 double val = 0;
27 for (int k = k0; k < Math.min(M, k0+T); ++k) {
28 val += values[n][k] ∗ B.values [k][m];
29 }
30 C.values [n][m] += val;
31 }
32 }
33 }
34 }
35 }
36 return C;
37 }

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
50 / 52

implementation runtime [s]
sequential 21.2
parallel 4.5
tiled sequential 3.9
tiled parallel 1.2
(using 8 cores)

Big Data Analytics 7. More Examples

Summary (1/2)
I Threads enable lightweight concurrency, i.e., concurrent execution

of parts of a program (tasks).

I A scheduler assigns threads to processors/cores dynamically.
I If there are more active threads than available processors/cores, the

scheduler will do time slicing:
I pick a ready thread and run it for a fixed amount of time,
I suspend the active thread, then pick another one.

I In consequence, there are no guarantees about execution order.

I Compared to processes,
I threads have less overhead to setup and start,

I threads can share memory,
I threads communicate through shared memory

(while processes communicate e.g., through pipes)

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
51 / 52

Big Data Analytics 7. More Examples

Summary (2/2)
I Threads require at least elementary synchronization such as

I one thread waiting for the others to complete (join),
I the possibility to interrupt another thread (cooperatively).

I When shared state is updated, more complex synchronization is
required.

I to avoid data races:
I = concurrent update of the same variable,

leaving it in an undefined state.
I atomic objects offer a set of atomic operations.
I monitors allow more fine-grained synchronization per object.
I guarded blocks / conditions allow (possibly many) threads to wait until

a condition holds and another thread to signal once this is the case.
I locks/mutexes model exclusive access to a resource: only one thread at

a time can acquire a lock, others have to wait, until it is released.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
52 / 52

Big Data Analytics

Further Readings

I General introduction to parallel computing: [Grama et al., 2003, ch.
1+2]

I Design of parallel algorithms: [Grama et al., 2003, ch. 3]

I Processes, threads and scheduling at operation system level:
O’Gorman [2003]

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
53 / 52

Big Data Analytics

References I
Ananth Grama, George Karypis, and Vipin Kumar. Introduction to Parallel Computing. Addison Wesley, 2003.

John O’Gorman. The Linux Process Manager: The Internals of Scheduling, Interrupts and Signals. John Wiley &
Sons, Inc., New York, NY, USA, 2003. ISBN 0470847719.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
54 / 52

	1. Threads Basics
	2. Starting and Interrupting Threads
	3. Synchronization I: Monitors
	4. Synchronization II: Locks
	5. Starting Threads II: Thread Pools and Dependency Graphs
	6. Open MP
	7. More Examples
	Appendix

