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Big Data Analytics 1. Introduction

Relational vs Big-Data Technologies
I Structure:

I relational data bases: data is structured.
I big data applications: data often is raw.

I Process:
I relational data bases: initially created for transactional processing.
I big data applications: analytical processing.

I Entities:
I relational data bases: big if it has many entities (rows) of a kind.

I big data applications: the number of entities is not necessary high, the
amount of information that exist for entities may be large.

I horizontal scaling:
I relational data bases: costs for adding new nodes is high.

I big data applications: scaling should be accomplished inexpensively by
adding new nodes.
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Big Data Analytics 1. Introduction

NoSQL Databases

I A NoSQL or Not Only SQL database provides a mechanism for
storage and retrieval of data that is modeled in means other than the
tabular relations used in relational databases.

I Motivations for this approach include
I simplicity of design and

I horizontal scaling.

I The data structure differs from the RDBMS, and therefore
I some operations are faster in NoSQL, and

I some operations are faster in RDBMS.

I Most NoSQL stores lack true ACID transactions.
I ACID: atomicity, consistency, isolation, durability
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Big Data Analytics 1. Introduction

NoSQL Databases / Types and Implementations

I Key-value: RedisOS, Amazon DynamoDB, MemcachedOS

I Document: MongoDBOS, Amazon DynamoDB, CouchbaseOS

I Graph: Neo4JOS, MS CosmosDB, OrientDBOS

I Column: CassandraOS, HBaseOS, MS CosmosDB

I Object: Caché, Versant Object Database, ObjectStore, Db4oOS
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Big Data Analytics 1. Introduction

BASE vs ACID

I CAP-theorem: in the presence of network partitions, a DBMBs has
to choose between

I Consistency: all reads always return the last write
— then clients cannot read/write during a network partition.

I Availability: clients always can read/write
— then what they receive might not be consistent at all times

I BASE design:
I Basically available: the system aims for high availability.

I Soft state: the state of the system may change over time, even
without input. (due to the eventual consistency model).

I Eventual consistency: the system may not be consistent at all times,
but will become consistent over time.
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Big Data Analytics 2. Key-Value Stores

Key–Value stores

I Key–Value stores use the associative array (dictionary) as their
fundamental data model.

I Data is represented as a collection of key–value pairs.

I One of the simplest non-trivial data models.

Example:
{
"Great Expectations": "John",
"Pride and Prejudice": "Alice",
"Wuthering Heights": "Alice"
}
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Big Data Analytics 3. Document Databases

Document Databases
I Data abstraction:

I relational databases: "relations" (= "tables").

I document databases: "document".

I Documents are (possibly nested) dictionaries.
I like Python dicts.

I Documents are not required to have all the same fields
(aka sections, slots, parts).

I Documents are schemaless.

I Documents are identified by an ID, e.g.,
I marked by a special type ObjectiId,
I stored by a special key _id.

I References are modeled by foreign keys.
I or avoided by using embedded documents.
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Big Data Analytics 3. Document Databases

Example 1 / Schema-less

1 {
2 _id: ObjectId(7df78ad8902c),
3 FirstName: "Bob",
4 Age: 35,
5 Address: "5 Oak St.",
6 Hobby: " sailing "
7 }

1 {
2 _id: ObjectId(5df78ad8902c),
3 FirstName: "Jonathan",
4 Age: 37,
5 Address: "15 Wanamassa Point Road",
6 Languages: [ ’ English ’, ’German’ ]
7 }
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Big Data Analytics 3. Document Databases

Example 2 / Foreign Keys

1 {
2 _id: ObjectId(5df78ad8902c),
3 FirstName: "Jonathan",
4 Age: 37,
5 Address: "15 Wanamassa Point Road",
6 Children : [ ObjectId(5df78ad89020), ObjectId(5df78ad89021),
7 ObjectId(5df78ad89022), ObjectId(5df78ad89023) ]
8 },{
9 _id: ObjectId(5df78ad89020),

10 FirstName: "Michael",
11 Age: 10,
12 },{
13 _id: ObjectId(5df78ad89021),
14 FirstName: "Jennifer ",
15 Age: 8,
16 },{
17 _id: ObjectId(5df78ad89022),
18 FirstName: "Samantha",
19 Age: 5,
20 },{
21 _id: ObjectId(5df78ad89023),
22 FirstName: "Elena",
23 Age: 2,
24 }
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Big Data Analytics 3. Document Databases

Example 3 / Embedded Documents

1 {
2 _id: ObjectId(5df78ad8902c),
3 FirstName: "Jonathan",
4 Age: 37,
5 Address: "15 Wanamassa Point Road",
6 Children : {
7 { FirstName: "Michael", Age: 10 },
8 { FirstName: "Jennifer ", Age: 8 },
9 { FirstName: "Samantha", Age: 5 },

10 { FirstName: "Elena", Age: 2}
11 }
12 }
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Big Data Analytics 3. Document Databases

Organization

I Documents are addressed in the database via a unique key.

I Documents can be retrieved by their
I key

I content

I Documents are organized through
I Collections

I Tags

I Non-visible Metadata

I Directory hierarchies

I Buckets
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Big Data Analytics 3. Document Databases

RDBMS vs. Document Database Terminology

relational database document database
Database Database
Table Collection
Tuple/Row Document
Column Field
Primary key Primary key

(e.g., default key _id in mongodb)
Foreign key Foreign key
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Big Data Analytics 3. Document Databases

Inserting Documents

I insert allows to insert a new document.

I insertMany allows to insert many documents.
1 db. inventory .insertMany([
2 { item: " journal ", qty : 25, size : { h: 14, w: 21, uom: "cm" }, status: "A" },
3 { item: "notebook", qty: 50, size : { h: 8.5, w: 11, uom: "in" }, status : "A" },
4 { item: "paper", qty : 100, size : { h: 8.5, w: 11, uom: "in" }, status : "D" },
5 { item: "planner", qty : 75, size : { h: 22.85, w: 30, uom: "cm" }, status: "D" },
6 { item: "postcard", qty : 45, size : { h: 10, w: 15.25, uom: "cm" }, status: "A" }
7 ]);
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Big Data Analytics 3. Document Databases

Query Documents (1/3)
I all documents of a collection:
1 db. inventory . find ()

1 { "_id" : ObjectId("59116d5340229e45bb5eea9a"), "item" : "journal", "qty" : 25, " size" : { "h" : 14, "w" : 21, "uom" : "cm" }, "status" : "A" }
2 { "_id" : ObjectId("59116d5340229e45bb5eea9b"), "item" : "notebook", "qty" : 50, "size" : { "h" : 8.5, "w" : 11, "uom" : "in" }, "status" : "A" }
3 { "_id" : ObjectId("59116d5340229e45bb5eea9c"), "item" : "paper", "qty" : 100, " size" : { "h" : 8.5, "w" : 11, "uom" : "in" }, "status" : "D" }
4 { "_id" : ObjectId("59116d5340229e45bb5eea9d"), "item" : "planner", "qty" : 75, " size" : { "h" : 22.85, "w" : 30, "uom" : "cm" }, "status" : "D" }
5 { "_id" : ObjectId("59116d5340229e45bb5eea9e"), "item" : "postcard", "qty" : 45, " size" : { "h" : 10, "w" : 15.25, "uom" : "cm" }, "status" : "A" }

I all documents with a property:
1 db. inventory . find({ status : "D"})

1 { "_id" : ObjectId("59116d5340229e45bb5eea9c"), "item" : "paper", "qty" : 100, " size" : { "h" : 8.5, "w" : 11, "uom" : "in" }, "status" : "D" }
2 { "_id" : ObjectId("59116d5340229e45bb5eea9d"), "item" : "planner", "qty" : 75, " size" : { "h" : 22.85, "w" : 30, "uom" : "cm" }, "status" : "D" }

I all documents with several properties:
1 db. inventory . find({ status : "D", qty: 100})

1 { "_id" : ObjectId("59116d5340229e45bb5eea9c"), "item" : "paper", "qty" : 100, " size" : { "h" : 8.5, "w" : 11, "uom" : "in" }, "status" : "D" }
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Big Data Analytics 3. Document Databases

Query Documents (2/3)
I instead of querying for exact value matches, one can use query

operators:
I $lt, $gt, $lte, $gte: numerical comparison

1 db. inventory . find({ qty : { $gte: 75 } } )

1 { "_id" : ObjectId("59116d5340229e45bb5eea9c"), "item" : "paper", "qty" : 100, " size" : { "h" : 8.5, "w" : 11, "uom" : "in" }, "status" : "D" }
2 { "_id" : ObjectId("59116d5340229e45bb5eea9d"), "item" : "planner", "qty" : 75, " size" : { "h" : 22.85, "w" : 30, "uom" : "cm" }, "status" : "D" }

1 db. inventory . find({ qty : { $lte : 75, $gt: 25 } } )

1 { "_id" : ObjectId("59116d5340229e45bb5eea9b"), "item" : "notebook", "qty" : 50, "size" : { "h" : 8.5, "w" : 11, "uom" : "in" }, "status" : "A" }
2 { "_id" : ObjectId("59116d5340229e45bb5eea9d"), "item" : "planner", "qty" : 75, " size" : { "h" : 22.85, "w" : 30, "uom" : "cm" }, "status" : "D" }
3 { "_id" : ObjectId("59116d5340229e45bb5eea9e"), "item" : "postcard", "qty" : 45, " size" : { "h" : 10, "w" : 15.25, "uom" : "cm" }, "status" : "A" }

I //: regular expressions.

1 db. inventory . find({ item: /er$/ } )

1 { "_id" : ObjectId("59116d5340229e45bb5eea9c"), "item" : "paper", "qty" : 100, " size" : { "h" : 8.5, "w" : 11, "uom" : "in" }, "status" : "D" }
2 { "_id" : ObjectId("59116d5340229e45bb5eea9d"), "item" : "planner", "qty" : 75, " size" : { "h" : 22.85, "w" : 30, "uom" : "cm" }, "status" : "D" }
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Big Data Analytics 3. Document Databases

Query Documents (3/3)

I $or or queries:
1 db. inventory . find({ $or : [ { qty : { $lte : 25 } }, { qty: { $gte: 100 } } ] } )

1 { "_id" : ObjectId("59116d5340229e45bb5eea9a"), "item" : "journal", "qty" : 25, " size" : { "h" : 14, "w" : 21, "uom" : "cm" }, "status" : "A" }
2 { "_id" : ObjectId("59116d5340229e45bb5eea9c"), "item" : "paper", "qty" : 100, " size" : { "h" : 8.5, "w" : 11, "uom" : "in" }, "status" : "D" }
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Big Data Analytics 3. Document Databases

Query Documents (4/4)

I fields of nested documents are queried by dot syntax:
1 db. inventory . find({ "size .h": { $gte: 14 } } )

1 { "_id" : ObjectId("59116d5340229e45bb5eea9a"), "item" : "journal", "qty" : 25, " size" : { "h" : 14, "w" : 21, "uom" : "cm" }, "status" : "A" }
2 { "_id" : ObjectId("59116d5340229e45bb5eea9d"), "item" : "planner", "qty" : 75, " size" : { "h" : 22.85, "w" : 30, "uom" : "cm" }, "status" : "D" }
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Big Data Analytics 3. Document Databases

Advantages and Disadvantages

I avoiding foreign keys by embedding documents:
+ expensive join operations are not required.

– possibly redundant information.

I schemaless:
+ one can add a new field at any time.

– one never can be sure a field actually has a value.
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Big Data Analytics 3. Document Databases

Big Data Document Databases

Document databases are useful for big data for two main reasons:
1. Document databases can be horizontally partitioned / sharded.

I Documents are distributed over different nodes.
I Using a partition/sharding function

I e.g., a hash function.

I works exactly the same way as for RDBMS.

2. Documents are sparse representations,
I only some fields/keys have values,

while tuples/rows are dense.
I all columns have values stored explicitely

I also NULL is explicitely stored.
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Big Data Analytics 4. Document Databases: Partitioning

Sharded Document Database / Architecture

[source: https://docs.mongodb.com/manual/core/sharding-introduction/]

Mongo DB (from humongous – slang for enormous)
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Big Data Analytics 4. Document Databases: Partitioning

System Setup / Multiple Hosts
1. install mongodb on all hosts (h0, h1, h2, h3),

e.g., for OpenSuSE:
1 zypper in mongodb

2. start a config server on one host (e.g., h0):
1 mongod −−configsvr

I default port is 27019

3. start a query router on one host (e.g., h0):
1 mongos −−configdb localhost

I default port is 27017

4. start a couple of shard servers on other hosts (e.g., h1, h2, h3):
1 mongod −−shardsrv

I default port is 27018

5. add shards:
1 mongo −−host h0
2 sh.addShard("h1")
3 sh.addShard("h2")
4 sh.addShard("h3")Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Big Data Analytics 4. Document Databases: Partitioning

System Setup / Single Hosts (for Testing)
1. install mongodb, e.g., for OpenSuSE:
1 zypper in mongodb

2. start a config server:
1 mongod −−configsvr −−dbpath db−configsrv/

I config information will be stored in directory db-configsrv/.

3. start a query router:
1 mongos −−configdb localhost:27019

I query routers do not require any data path

4. start a couple of shard servers:
1 mongod −−port 27021 −−dbpath db−shardsrv1/
2 mongod −−port 27022 −−dbpath db−shardsrv2/
3 mongod −−port 27023 −−dbpath db−shardsrv3/

I use different ports and data paths

5. add shards:
1 mongo
2 sh.addShard("localhost:27021")
3 sh.addShard("localhost:27022")
4 sh.addShard("localhost:27023")Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
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Big Data Analytics 4. Document Databases: Partitioning

Database and Collection Setup

1. enable sharding per database
1 sh.enableSharding("mydb")

2. sharding a collection requires the sharding key to be indexed:
1 db. ijcnn1 . createIndex ( { _id: 1 } )

3. shard per collection:
1 sh. shardCollection ("mydb.ijcnn1", { _id: 1 })

4. import data
1 mongoimport −−db mydb −−collection ijcnn1 −−drop −−file ijcnn1.json

I data has to be in json format

I if a database is imported first and then sharded,
it will be distributed across nodes automatically by the balancer.
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Big Data Analytics 4. Document Databases: Partitioning

Database and Collection Setup
I production databases also have to be replicated

I both, data nodes and config nodes

I to work on sharded big data, one should
I not query it from the central router nodes

I rule of thumb: 1 PB moves through a 1 GB ethernet in ca. 100d.

I not query it locally on the shard nodes
I if data also is replicated, one would need to know which nodes to query
I the balancer may move data during query time

I to work on sharded big data, one should
use technologies provided by the database, e.g.,
map-reduce.

I for mongo: mappers and reducers have to be coded in javascript.
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Big Data Analytics 5. Other NoSQL Databases

Graph databases

A graph database is a database that uses graph structures with
I nodes,

I edges, and

I node/edge properties
to represent and store data.
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Big Data Analytics 5. Other NoSQL Databases

Graph databases

I Nodes represent entities such as people, businesses, accounts, or any
other item you might want to keep track of.

I Properties are relevant information that relate to nodes.

I Edges are the lines that connect nodes to nodes

I Most of the important information is often stored in the edges.

I Meaningful patterns emerge when one examines the connections and
interconnections of nodes, properties, and edges.
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Big Data Analytics 5. Other NoSQL Databases

Graph databases

I Compared with relational databases, graph databases are often faster
for associative data sets

I They map more directly to the structure of object-oriented
applications.

I As they depend less on a rigid schema, they are more suitable to
manage ad hoc and changing data with evolving schemas.

I Graph databases are a powerful tool for graph-like queries.
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Big Data Analytics 5. Other NoSQL Databases

Graph queries

I Reachability queries

I shortest path queries

I Pattern queries
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Big Data Analytics 5. Other NoSQL Databases

Column Databases

I column databases store data column-wise,
not row-wise

I also many relational data bases allow column-wise physical storage
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Big Data Analytics 5. Other NoSQL Databases

Object Database

I An object database is a database management system in which
information is represented in the form of objects as used in
object-oriented programming.

I Most object databases also offer some kind of query language, allowing
objects to be found using a declarative programming approach (OQL)

I Access to data can be faster because joins are often not needed.

I Many object databases offer support for versioning.

I They are specially suitable in applications with complex data.
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Big Data Analytics 5. Other NoSQL Databases

Summary

I NoSQL databases denote several types of non-relational databases:
I key-value stores: just store key/value pairs

I document databases: store documents/(nested) dicts

I graph databases: store and query information as a graph

I NoSQL databases are motivated by
I simplicity of design and

I horizontal scaling.

I NoSQL databases usually do not support ACID transactions,
but eventual concistency

I BASE: basically available, soft state, eventually consistent

I CAP theorem: in presence of Network Partitions, a DBMS needs to
choose between Consistency an Availability.

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany
31 / 32
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Summary (2/2)

I Document databases are schemaless
I design decision between foreign keys and embedded documents

I Document databases are queried through query documents
I key-value pairs

I key-relation-value triples

I logical aggregations (or)

I Document databases can partition document collections using a
partition/sharding function.
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Further Readings

I cap theorem: Brewer [2012]

I Mongo DB tutorial: MongoDB [2017]
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