Class 11

Learning Objectives

- Algorithms
- Decision trees
- Naïve Bayesian
- Artificial Neural Networks
- Evaluation methods
- Precision

Goals and Requirements

- Goals:
- To produce an accurate classifier/regression function
- To understand the structure of the problem
- Requirements on the model:
- High accuracy
- Understandable by humans, interpretable
- Fast construction for very large training databases

Another Example of Decision Tree

Apply Model to Test Data

Test Data

Refund	Marital Status		Taxable Income Cheat	

General algorithm

1 Let D_{t} be the set of training records that reach a node t
${ }_{1}$ General Procedure:

- If D_{t} contains records that belong the same class y_{t}, then t is a leaf node labeled as y_{t}
- If D_{t} is an empty set, then t is a leaf node labeled by the default class, y_{d}
- If D_{t} contains records that

Tid	Refund	Marital Status	Taxable Income	
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

Stopping Criteria for Tree Induction
 ${ }_{1}$ Stop expanding a node when all the records belong to the same class

Stop expanding a node when all the records have similar attribute values
${ }_{1}$ Early termination (to be discussed later)

Splitting Based on Nominal Attributes

1 Multi-way split: Use as many partitions as distinct values.

1 Binary split: Divides values into two subsets.
Need to find optimal partitioning.

Luxury\}
OR

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

How to determine the Best

 SplitBefore Splitting: 10 records of class 0 ,
10 records of class 1

Which test condition is the best?

How to determine the Best Split

Greedy approach:

- Nodes with homogeneous class distribution are preferred
Need a measure of node impurity:

C0: 5

```
C1:5
```

Non-homogeneous,
High degree of impurity

C0: 9

Homogeneous, Low degree of impurity

Measure of Node Impurity

${ }_{1}$ Entropy at a given node t:

$$
\text { Entropy }(t)=-\sum_{j} p(j \mid t) \log p(j \mid t)
$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Measures homogeneity of a node.

Maximum $\left(\log n_{c}\right)$ when records are equally distributed among all classes implying least information
Minimum (0.0) when all records belong to one class, implying most information

Entropy function

Example

$$
\operatorname{Entropy}(t)=-\sum_{j} p(j \mid t) \log _{2} p(j \mid t)
$$

C 1	$\mathbf{0}$
C 2	$\mathbf{6}$

$P(C 1)=0 / 6=0 \quad P(C 2)=6 / 6=1$
Entropy $=-0 \log 0-1 \log 1=-0-0=0$

C 1	$\mathbf{1}$
C 2	$\mathbf{5}$

$P(C 1)=1 / 6 \quad P(C 2)=5 / 6$
Entropy $=-(1 / 6) \log _{2}(1 / 6)-(5 / 6) \log _{2}(1 / 6)=0.65$

C 1	$\mathbf{2}$
C 2	$\mathbf{4}$

$P(C 1)=2 / 6 \quad P(C 2)=4 / 6$
Entropy $=-(2 / 6) \log _{2}(2 / 6)-(4 / 6) \log _{2}(4 / 6)=0.92$

Information Gain

Information Gain:

$$
\operatorname{GAIN}_{\text {split }}=\operatorname{Entropy}(p)-\left(\sum_{i=1}^{k} \frac{n_{i}}{n} \operatorname{Entropy}(i)\right)
$$

Parent Node, p is split into k partitions; n_{i} is number of records in partition i

- Measures Reduction in Entropy achieved because of the split. Choose the split that achieves most reduction (maximizes GAIN)
- Used in ID3 and C4.5
- Disadvantage: Tends to prefer splits that result in large number of partitions, each being small but pure.

Expressiveness

Decision tree provides expressive representation for learning discrete-valued function

- But they do not generalize well to certain types of Boolean functions

Example: parity function:

- Class $=1$ if there is an even number of Boolean attributes with truth value $=$ True
- Class $=0$ if there is an odd number of Boolean attributes with truth value $=$ True
For accurate modeling, must have a complete tree
Not expressive enough for modeling continuous variables
- Particularly when test condition involves only a single attribute at-a-time

Decision Boundary

- Border line between two neighboring regions of different classes is known as decision boundary
- Decision boundary is parallel to axes because test condition involves a single attribute at-a-time

Learning Curve

1 Learning curve shows how accuracy changes with varying sample size
Requires a sampling schedule for creating learning curve:

Arithmetic sampling (Langley, et al)
Geometric sampling (Provost et al)

Effect of small sample size:
Bias in the estimate Variance of estimate

Decision Trees: Summary

- Many application of decision trees
- There are many algorithms available for:
- Split selection
- Pruning
- Handling Missing Values
- Data Access
- Decision tree construction still active research area (after 20+ years!)
- Challenges: Performance, scalability, evolving datasets, new applications

Bayes Classifier

A probabilistic framework for solving classification problems
Conditional Probability:

$$
\begin{aligned}
& P(C \mid A)=\frac{P(A, C)}{P(A)} \\
& P(A \mid C)=\frac{P(A, C)}{P(C)}
\end{aligned}
$$

1 Bayes theorem:

$$
P(C \mid A)=\frac{P(A \mid C) P(C)}{P(A)}
$$

Example of Bayes Theorem

- Given:
- A doctor knows that meningitis causes stiff neck 50% of the time
- Prior probability of any patient having meningitis is $1 / 50,000$
- Prior probability of any patient having stiff neck is $1 / 20$
- If a patient has stiff neck, what's the probability he/she has meningitis?
$P(M \mid S)=\frac{P(S \mid M) P(M)}{P(S)}=\frac{0.5 \times 1 / 50000}{1 / 20}=0.0002$

Bayesian Classifiers

- Consider each attribute and class label as random variables
- Given a record with attributes $\left(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$
- Goal is to predict class C
- Specifically, we want to find the value of C that maximizes $P\left(C \mid A_{1}, A_{2}, \ldots, A_{n}\right)$
- Can we estimate $\mathrm{P}\left(\mathrm{C} \mid \mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}\right)$ directly from data?

Bayesian Classifiers

- Approach:
- compute the posterior probability $P\left(C \mid A_{1}, A_{2}, \ldots, A_{n}\right)$ for all values of C using the Bayes theorem

$$
P\left(C \mid A_{1} A_{2} \mathrm{~K} A_{n}\right)=\frac{P\left(A_{1} A_{2} \mathrm{~K} A_{n} \mid C\right) P(C)}{P\left(A_{1} A_{2} \mathrm{~K} A_{n}\right)}
$$

- Choose value of C that maximizes

$$
P\left(C \mid A_{1}, A_{2}, \ldots, A_{n}\right)
$$

- Equivalent to choosing value of C that maximizes

$$
P\left(A_{1}, A_{2}, \ldots, \breve{A}_{n} \mid C\right) P(C)
$$

- How to estimate $P\left(A_{1}, A_{2}, \ldots, A_{n} \mid C\right)$?

Naïve Bayes Classifier

- Assume independence among attributes A_{i} when class is given:
$-P\left(A_{1}, A_{2}, \ldots, A_{n} \mid C\right)=P\left(A_{1} \mid C_{j}\right) P\left(A_{2} \mid C_{j}\right) \ldots P\left(A_{n} \mid C_{j}\right)$
- Can estimate $P\left(A_{i} \mid C_{j}\right)$ for all A_{i} and C_{j}.
- New point is classified to C_{j} if $P\left(C_{j}\right) \cap P\left(A_{i} \mid C_{j}\right)$ is maximal.

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

- e.g., $P(N o)=7 / 10$,
$P($ Yes $)=3 / 10$
For discrete attributes:
$P\left(A_{i} \mid C_{k}\right)=\left|A_{i k}\right| / N_{c_{k}}$
- where $\left|\mathrm{A}_{\mathrm{ik}}\right|$ is number of instances having attribute A_{i} and belongs to class C_{k}
- Examples:
$P($ Status $=$ Married \mid No $)=4 / 7$
$P($ Refund $=$ Yes \mid Yes $)=0$

Example of Naive Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes
M: mammals
N : non-mammals
$P(A \mid M)=\frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7}=0.06$
$P(A \mid N)=\frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13}=0.0042$
$P(A \mid M) P(M)=0.06 \times \frac{7}{20}=0.021$
$P(A \mid N) P(N)=0.004 \times \frac{13}{20}=0.0027$

Give Birth yes	Can Fly	Live in Water no	Have Legs no	?

$P(A \mid M) P(M)>$
$P(A \mid N) P(N)$
=> Mammals

Naive Bayes Classifier

1 If one of the conditional probability is zero, then the entire expression becomes zero
Probability estimation:
Original : $P\left(A_{i} \mid C\right)=\frac{N_{i c}}{N_{c}}$
c: number of classes
Laplace : $P\left(A_{i} \mid C\right)=\frac{N_{i c}+1}{N_{c}+c}$
p: prior probability
m: parameter
m- estimate : $P\left(A_{i} \mid C\right)=\frac{N_{i c}+m p}{N_{c}+m}$

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
- Use other techniques such as Bayesian Belief Networks (BBN)
Artificial Neural Networks (ANN)

X_{1}	X_{2}	X_{3}	Y
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

Output Y is 1 if at least two of the three inputs are equal to 1.

Artificial Neural Networks

 (ANN)| X_{1} | X_{2} | X_{3} | Y |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 |

Input

$$
\begin{aligned}
& Y=I\left(0.3 X_{1}+0.3 X_{2}+0.3 X_{3}-0.4>0\right) \\
& \text { where } I(z)= \begin{cases}1 & \text { if } z \text { is true } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Artificial Neural Networks (ANN)

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links

Input
nodes $\because=$

Perceptron Model

$$
\begin{aligned}
& Y=I\left(\sum_{i} w_{i} X_{i}-t\right) \\
& Y=\operatorname{sign}\left(\sum_{i} w_{i} X_{i}-t\right)
\end{aligned}
$$

Example of perceptron

X_{1}	X_{2}	X_{3}	y
1	0	0	-1
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	-1
0	1	0	-1
0	1	1	1
0	0	0	-1

(a) Data set.

(b) Perceptron.

Figure 5.14. Modeling a boolean function using a perceptron.

Example of perceptron

Figure 5.15. Perceptron decision boundary for the data given in Figure 5.14.

Example of perceptron

Figure 5.16. XOR classification problem. No linear hyperplane can separate the two classes.

Example of multi-layered ANN

(a) Decision boundary

(b) Neural network topology.

Figure 5.19. A two-layer, feed-forward neural network for the XOR problem.

Algorithm for learning ANN

${ }_{1}$ Initialize the weights $\left(w_{0}, w_{1}, \ldots, w_{k}\right)$

Adjust the weights in such a way that the output of ANN is consistent with class labels of training examples

- Objective function: $E=\sum_{i}\left[Y_{i}-f\left(w_{i}, X_{i}\right)\right]^{2}$
- Find the weights w_{i} 's that minimize the above objective function
u e.g., backpropagation algorithm

Neural Networks: Summary

- Pros
- Accurate
- Wide range of applications
- Cons
- Difficult interpretation
- Tends to 'overfit' the data
- Extensive amount of training time
- A lot of data preparation

Collective comparison

	Train time	Run Time	Noise Toler ance	Can Use Prior Know- ledge	Accuracy on Customer Modelling	Under- standable
Decision Trees	fast	fast	poor	no	medium	medium
Bayesian	slow	fast	good	yes	good	good
Neural Networks	slow	fast	good	no	good	poor

Evaluation

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100k	No
3	No	Small	70k	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220k	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90 K	Yes

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Sample Estimate

- Divide D into D_{1} and D_{2}
- Use D_{1} to construct the classifier d
- Then use resubstitution estimate $\mathrm{R}\left(\mathrm{d}, \mathrm{D}_{2}\right)$ to calculate the estimated misclassification error of d
- Unbiased and efficient, but removes D_{2} from training dataset D

Cross-Validation

-Break up data into subsets of the same size

-Hold aside one subsets for testing and use the rest for training

Metrics for Performance Evaluation

${ }_{1}$ Focus on the predictive capability of a model

- Rather than how fast it takes to classify or build models, scalability, etc.
Confusion Matrix:

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL			
CLASS	Class=Yes	a	b
	Class=No	c	d

a: TP (true positive)
b: FN (false negative)
c: FP (false positive)
d: TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Most widely-used metric:
Accuracy $=\frac{a+d}{a+b+c+d}=\frac{T P+T N}{T P+T N+F P+F N}$

Limitation of Accuracy

Consider a 2-class problem

- Number of Class 0 examples $=9990$
- Number of Class 1 examples $=10$

If model predicts everything to be class 0 , accuracy is $9990 / 10000=99.9 \%$

- Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	PREDICTED CLASS		
ACTUAL CLASS	C(ilj)	Class=Yes	Class=No
	Class=Yes	C(Yes\|Yes)	C(No\|Yes)
	C(Yes\|No)	C(No\|No)	

C(ijj): Cost of misclassifying class j example as class i

Example

Cost Matrix	PREDICTED CLASS		
	$\mathrm{C}(\mathrm{i} \mathrm{j})$	+	-
ACTUAL	$\boldsymbol{+}$	-1	100
CLASS	-	1	0

Model M_{1}	PREDICTED CLASS		
ACTUAL CLASS	$\boldsymbol{+}$	$\boldsymbol{+}$	$\boldsymbol{-}$
	$\boldsymbol{-}$	60	250

Accuracy $=80 \%$
Cost $=3910$

Model M_{2}	PREDICTED CLASS		
ACTUAL		+	-
	$\boldsymbol{+}$	250	45
	-	5	200

Accuracy $=90 \%$
Cost $=4255$

Underfitting and Overfitting

Underfitting: when model is too simple, both training and test errors are large

How to Address

Overfitting...
I Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree
- Can use MDL for post-pruning

