

- · Goals:
 - To produce an accurate classifier/regression function
 - To understand the structure of the problem
- Requirements on the model:
 - High accuracy
 - Understandable by humans, interpretable
 - Fast construction for very large training databases

Bayes Classifier
1 A probabilistic framework for solving classification
problems
2 Conditional Probability:

$$P(C \mid A) = \frac{P(A, C)}{P(A)}$$

$$P(A \mid C) = \frac{P(A, C)}{P(C)}$$
1 Bayes theorem:

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

	_		r to n Da			ate Probabilities
7	īd	Refund	Marital	Taxable		1 Class: $P(C) = N_c/N$ - e.g., $P(No) = 7/10$,
'	10	nerunu	Status	Income	Evade	P(Yes) = 3/10
1		Yes	Single	125K	No	
2	2	No	Married	100K	No	1 For discrete attributes:
3		No	Single	70K	No	
4		Yes	Married	120K	No	$P(A_{i} \mid C_{k}) = A_{ik} / N_{c_{k}}$
5	;	No	Divorced	95K	Yes	 where A_{ik} is number of
6	;	No	Married	60K	No	instances having attribute
7	·	Yes	Divorced	220K	No	A_i and belongs to class C_k
8		No	Single	85K	Yes	
9		No	Married	75K	No	 Examples:
1	0	No	Single	90K	Yes	P(Status=Married No) = 4/7
						P(Refund=Yes Yes)=0

	abt	sifi				A: attributes
Name	Give Birth	Can Fly	Live in Water		Class	A. althoutes
human	yes	no	no	yes	mammals	
python	no	no	no	no	non-mammals	M: mammals
salmon	no	no	yes	no	non-mammals	
whale	yes	no	yes	no	mammals	N: non-mammals
frog	no	no	sometimes		non-mammals	6 6 2 2
komodo	no	no	no	yes	non-mammals	$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$
bat	yes	yes		yes	mammals	7777
pigeon	no	yes	no	yes	non-mammals	
cat	yes	no	no	yes	mammals	D(41)D 1 10 3 4
leopard shark	yes	no	yes	no	non-mammals	$P(A N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0$
turtle	no	no	sometimes		non-mammals	13 13 13 13
penguin	no	no		yes	non-mammals	-
porcupine	yes	no	no	yes	mammals	$D(A M)D(M) = 0.06 \times 1^{-0.00}$
eel	no	no	yes	no	non-mammals	$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.00$
salamander	no	no		yes	non-mammals	20
gila monster	no	no	no	yes	non-mammals	12
platypus	no	no	no	yes	mammals	$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.004$
owl	no	yes	no	yes	non-mammals	$1(1110)1(10) = 0.004 \times \frac{1}{20} = 0.004$
dolphin	yes	no	yes	no	mammals	20
eagle	no	yes	no	yes	non-mammals	

	Train	Run	Noise	Can Use	Accuracy	Under-
	time	Time	Toler	Prior	on Customer	standable
			ance	Know-	Modelling	
				ledge		
Decision	fast	fast	poor	no	medium	medium
Trees						
Bayesian	slow	fast	good	yes	good	good
Neural	slow	fast	good	no	good	poor
Networks			-		-	-

Cross-Validation	
—Break up data into subsets of the same size	
-Hold aside one subsets for testing and use the rest for training	
	44

	PREDICTED CLASS				
	C(i j)	Class=Yes	Class=No		
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes		
CLASS	Class=No	C(Yes No)	C(No No)		

